SlideShare uma empresa Scribd logo
CONJUNTO DOS NÚMEROS
      INTEIROS
O QUE SÃO NÚMEROS NEGATIVOS?
    São números que representam medidas
 abaixo de zero.
Exemplos:
            -4   -35   -1    -2137

 Os números acima de zero são chamados de
                positivos.

                  E O ZERO?

       O zero não é positivo nem negativo.
PARA QUE SERVEM OS NÚMEROS
        NEGATIVOS?

  Dentre várias utilidades veremos as mais comuns:
 Representar temperaturas abaixo de zero.
 Indicar um saldo negativo de uma conta bancária.
 Efetuar subtrações onde o subtraendo é maior que
  o minuendo. Ex: 7-10
COMO É FORMADO O CONJUNTO
  DOS NÚMEROS INTEIROS?
 É formado pelo conjunto dos números naturais,
mais os números negativos.
Representações:
      Ν = { 0,1,2,3,4,5,...}
      Ζ = {... − 5,−4,−3,−2,−1,0,1,2,3,4,5,...}

                                       Z
                                N
COMO REPRESENTAMOS O
CONJUNTO DOS NÚMEROS INTEIROS
     NA RETA NUMÉRICA?


    -5 -4 -3 -2 -1   0   1   2   3   4   5


                           O conjunto dos
                         números naturais é
                         um subconjunto dos
                          números inteiros.
OBSERVAÇÃO:
   Quanto mais a direita estiver um número,
 maior ele será.

Veja:
         -5 -4 -3 -2 -1   0   1   2   3   4   5


        5>3         -3 > -5           0 > -2

          Macete: quanto mais negativo
          for um número, menor ele será.
TENTE FAZER SOZINHO!
                Responda:

a) Qual é o maior número negativo?

b) Qual é o antecessor de -5?

c) Qual é o sucessor de -10?
SOLUÇÃO

a) O maior número negativo é -1.

c) O antecessor de -5 é -6.

e) O sucessor de -10 é -9.
O QUE SIGNIFICAM OS SÍMBOLOS:
               Ζ ,Ζ ,Ζ ,Ζ e Ζ ?
                  *
                  +    −
                            *
                            +
                                   *
                                    −
 Ζ é o conjunto dos números inteiros sem o zero.
  *

                Ζ* = {...,−3,−2,−1,1,2,3,...}
 Ζ + é o conjunto dos números inteiros não-negativos.
                  Ζ + = { 0,1,2,3,...}
 Ζ − é o conjunto dos números inteiros não-positivos.
                      Ζ − = {...,−3,−2,−1,0}
  Ζ   *
      + é o conjunto dos números inteiros positivos.
                       Ζ* = {1,2,3,...}
                        +

          Ζ   *
              − é o conjunto dos números inteiros negativos.
                       Ζ* = {...,−3,−2,−1}
                        _
O QUE É O MÓDULO DE UM NÚMERO?
   É o valor que representa a distância entre
 esse número e o zero.

Exemplo:

           -4           0             4

             A distância entre o número 4 e o
           zero é a mesma entre o número -4
           e o zero. Logo, o módulo desses de
                     4 e -4 é igual a 4.
COMO INDICAMOS O
   MÓDULO DE UM NÚMERO?

    Colocando esse número entre duas barras
 verticais.
Exemplos:   6 =6        20 = 20
            −6 = 6      − 20 = 20

                      O módulo também
                     pode ser chamado de
                        valor absoluto
VAMOS PRATICAR!

Quais são os possíveis valores para x em
                  x = 2?

Resposta:
 2 e -2, pois qualquer um desses números,
quando colocado no lugar do x tem
resultado igual a 2.
TENTE FAZER SOZINHO!


 Apresente os possíveis valores de
         x na expressão:

            x <4
Solução

  Temos que verificar quais são os números
que o módulo dá um resultado menor que 4.


   Logo, a resposta é {-3,-2,-1,0,1,2,3}
O QUE SÃO NÚMEROS SIMÉTRICOS?
   São números que apresentam o mesmo
 módulo.

Exemplos:
            10 e -10
            8 e -8
            201 e -201

               Os números simétricos
               também são chamados
                    de opostos.
RESOLVENDO PROBLEMAS
Responda:
 Qual é o simétrico de 5?
            -5
 Qual é o oposto de -10?
            10
 Qual é o módulo do oposto de -35?
                  35
TENTE FAZER SOZINHO!

    Apresente o simétrico do
 oposto do módulo de -7.


      SOLUÇÃO

  O módulo de -7 é 7.
  O oposto de 7 é -7.
  O simétrico de -7 é 7.
COMO SOMAMOS E SUBTRAÍMOS
        NÚMEROS INTEIROS?

    Primeiro retiramos os parênteses e depois
efetuamos os cálculos.

Se o sinal antes do parêntese for +, então conservamos
o sinal de todos os números dentro do parêntese.

Se o sinal antes do parêntese for -, então mudamos o
sinal de todos os números dentro do parêntese.

     Exemplos: a) + (+30) + (-25) = + 30 – 25 = + 5
                 b) - (-17) + (+3) = + 17 + 3 = + 20
PARA EFETUAR OS CÁLCULOS, USAREMOS A
               SEGUINTE REGRA:

 Se os sinais forem iguais, somamos os valores absolutos e
  conservamos o sinal.

 Se os sinais forem diferentes, subtraímos os valores
  absolutos e conservamos o sinal do maior.

  Exemplos:
                   a) -(+45) + (-5) = - 45 - 5 = - 50

                   b) -(+20) + (+4) = - 20 + 4 = -16
OBSERVAÇÕES IMPORTANTES!

•   Se não existir sinal antes de um parênteses ou
    antes de um número, então dizemos que o
    sinal é +. Ou seja, + (30) = (+30) = + (+30) =
    30.

•   A soma de números simétricos é igual a zero.
    Ou seja, -10 + 10 = 0 e 8 - 8 = 0.
RESOLVENDO EXPRESSÕES
               (-5) + (-9) + (-3) + (+8) + (+2)=

Tirando os parênteses, temos:

                     -5–9–3+8+2=
Juntando os números negativos e os números positivos, temos
                         - 17 + 10 =
Efetuando os cálculos, encontramos:
                              -7
TENTE FAZER SOZINHO!


    Resolva a expressão:

 12 + {- 2 + [- 3 – (- 2 + 11)]} =
SOLUÇÃO

12 + {- 2 + [- 3 – (- 2 + 11)]} =
12 + {- 2 + [- 3 – (+ 9)]} =
12 + {- 2 + [- 3 – 9]} =
12 + {- 2 + [- 12]} =
12 + {- 2 - 12} =
12 + {- 14} =
12 – 14 =
-2
COMO MULTIPLICAMOS E
 DIVIDIMOS NÚMEROS INTEIROS?

    Basta efetuar os cálculos com os valores
absolutos. O sinal deve obedecer a seguinte
regra: se forem iguais, +, se forem diferentes, - .

Exemplos:
                a) (-3) . (-4) = 12
                b) (+8) : (+4) = 2
                c) (-3) . (+4) = - 12
                d) (+8) : (-4) = - 2
TENTE FAZER SOZINHO!


      Resolva a expressão:

[-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
SOLUÇÃO

[-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
[-27 + (- 8)] : [1 + (+ 6)]=
[-27 - 8] : [1 + 6]=
[-35] : [7]=
-5
COMO ELEVAMOS UM NÚMEROS
  INTEIRO A UMA POTÊNCIA?
   Basta efetuar o cálculo da potência com os
valores absolutos. Se o expoente for par, o
resultado é sempre positivo. Se o for ímpar,
permanece o sinal inicial.


 Exemplos:
              a) (-5)2 = 25
              b) (+5)2 = 25
              c) (-5)3 = - 125
              d) (+5)3 = 125
REGRAS IMPORTANTES
 Qualquer base elevada a 1 é igual a ela mesma.

                     a1 = a
 Zero elevado a qualquer expoente é igual a
  zero.

                      0b = 0
 Qualquer base elevada a zero é igual a 1.


                       a0 = 1
COMO MULTIPLICAMOS
POTÊNCIAS COM A MESMA BASE?

Basta conservar a base e somar os expoentes.

Exemplos:

 (6)7 . (6)3 = 67+3 = 610
                             Quando um número não
                              apresenta expoente,
 (-20)4 . (-20) = (-20)5      dizemos que está
                                  elevado a 1.
COMO DIVIDIMOS POTÊNCIAS COM
       A MESMA BASE?

Basta conservar a base e subtrair os expoentes.

   Exemplos:


           (5)7 : (5)3 = (5)7-3 = 54

           (-9)5 : (-9)3 = (-9)5-3 = (-9)2
COMO ELEVAMOS UMA POTÊNCIA
    A OUTRA POTÊNCIA?

     Basta conservar a base e multiplicar os
expoentes.


Exemplos:
            (42)3 = 42x3 = 46
            (53)6 = 53x6 = 518
COMO EXTRAÍMOS A RAIZ QUADRADA
    DOS NÚMEROS INTEIROS?

  Basta efetuar os cálculos que já conhecemos,
  pois só podemos extrair raiz quadrada de
números não-negativos.

 Exemplos:

             +9 =3
            − 9 não existe no conjunto Ζ.
TENTE FAZER SOZINHO!


      Resolva a expressão:

 ( − 2)   2
                [                    ]
              − ( − 7 ) : 10 0 + 5.( − 3) − 36 =
SOLUÇÃO

( − 2) − [( − 7 ) : 100 + 5.( − 3) ] −
      2
                                         36 =
4 − [ ( − 7 ) : 1 + 5.( − 3) ] − 6
4 − [ − 7 + ( − 15) ] − 6 =
4 − [ − 7 − 15] − 6 =
4 − [ − 22] − 6 =
4 + 22 − 6 =
26 − 6 =
20

Mais conteúdo relacionado

Mais procurados

Aula de fração
Aula de fraçãoAula de fração
Aula de fração
Neilor
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
Marcelo Pinheiro
 
Numeros Inteiros 2
Numeros Inteiros 2Numeros Inteiros 2
Numeros Inteiros 2
Antonio Carneiro
 
Múltiplos e divisores
Múltiplos e divisoresMúltiplos e divisores
Múltiplos e divisores
Patricia Carvalhais
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
Alexandre Cirqueira
 
Criterios de divisibilidade
Criterios de divisibilidadeCriterios de divisibilidade
Criterios de divisibilidade
Fred Gullini
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
Raquel1966
 
Sequencias
SequenciasSequencias
Sequencias
rosania39
 
Numeros racionais
Numeros racionaisNumeros racionais
Numeros racionais
Rosana.Parolisi
 
Conjunto dos Números Inteiros
Conjunto dos Números Inteiros Conjunto dos Números Inteiros
Conjunto dos Números Inteiros
Helen Batista
 
Adição algébrica
Adição algébricaAdição algébrica
Adição algébrica
Marcela Magri
 
Frações
FraçõesFrações
Frações
lveiga
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
rubensdiasjr07
 
Números inteiros relativos adição e subtração
Números inteiros relativos   adição e subtraçãoNúmeros inteiros relativos   adição e subtração
Números inteiros relativos adição e subtração
PatriciaLavos
 
Números inteiros 6º ano
Números inteiros 6º anoNúmeros inteiros 6º ano
Números inteiros 6º ano
Graca Quinta Braga
 
Operações com números racionais
Operações com números racionaisOperações com números racionais
Operações com números racionais
Marcelo Pinheiro
 
Números relativos
Números relativos Números relativos
Números relativos
Helena Borralho
 
Frações
FraçõesFrações
Frações
Luis Veiga
 
Aula 14 números irracionais
Aula 14   números irracionaisAula 14   números irracionais
Aula 14 números irracionais
Ronei Badaró
 
Expressões numéricas
Expressões numéricasExpressões numéricas
Expressões numéricas
Helena Borralho
 

Mais procurados (20)

Aula de fração
Aula de fraçãoAula de fração
Aula de fração
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Numeros Inteiros 2
Numeros Inteiros 2Numeros Inteiros 2
Numeros Inteiros 2
 
Múltiplos e divisores
Múltiplos e divisoresMúltiplos e divisores
Múltiplos e divisores
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Criterios de divisibilidade
Criterios de divisibilidadeCriterios de divisibilidade
Criterios de divisibilidade
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
 
Sequencias
SequenciasSequencias
Sequencias
 
Numeros racionais
Numeros racionaisNumeros racionais
Numeros racionais
 
Conjunto dos Números Inteiros
Conjunto dos Números Inteiros Conjunto dos Números Inteiros
Conjunto dos Números Inteiros
 
Adição algébrica
Adição algébricaAdição algébrica
Adição algébrica
 
Frações
FraçõesFrações
Frações
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
 
Números inteiros relativos adição e subtração
Números inteiros relativos   adição e subtraçãoNúmeros inteiros relativos   adição e subtração
Números inteiros relativos adição e subtração
 
Números inteiros 6º ano
Números inteiros 6º anoNúmeros inteiros 6º ano
Números inteiros 6º ano
 
Operações com números racionais
Operações com números racionaisOperações com números racionais
Operações com números racionais
 
Números relativos
Números relativos Números relativos
Números relativos
 
Frações
FraçõesFrações
Frações
 
Aula 14 números irracionais
Aula 14   números irracionaisAula 14   números irracionais
Aula 14 números irracionais
 
Expressões numéricas
Expressões numéricasExpressões numéricas
Expressões numéricas
 

Destaque

numeros inteiros
 numeros inteiros numeros inteiros
numeros inteiros
Professora Rakell
 
Nº Inteiros
Nº InteirosNº Inteiros
Nº Inteiros
Maria Cristina
 
Idéia de números negativos e positivos
Idéia de números negativos e positivosIdéia de números negativos e positivos
Idéia de números negativos e positivos
yanlucas
 
Números negativos
Números negativosNúmeros negativos
Números negativos
leilamaluf
 
Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)
Olicio Silva
 
Banco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-anoBanco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-ano
Jorge Basílio
 
Exercício de aprofundamento lista extra para a segunda prova
Exercício de aprofundamento   lista extra para a segunda provaExercício de aprofundamento   lista extra para a segunda prova
Exercício de aprofundamento lista extra para a segunda prova
marina_cordova
 
Recuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRecuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestre
Rafael Marques
 
Regras de sinais
 Regras de sinais Regras de sinais
Regras de sinais
cs_lucindo
 
Prova números inteiros - 7° ano
Prova números inteiros  - 7° anoProva números inteiros  - 7° ano
Prova números inteiros - 7° ano
Gentil De Almeida Junior
 
Resolução de problemas e nº inteiros apresentação
Resolução de problemas e nº inteiros apresentaçãoResolução de problemas e nº inteiros apresentação
Resolução de problemas e nº inteiros apresentação
CIEP 456 - E.M. Milcah de Sousa
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reais
leilamaluf
 
Números.reais.introdução
Números.reais.introduçãoNúmeros.reais.introdução
Números.reais.introdução
Filipa Guerreiro
 
Potenciação - Regras e Propriedades - (www.betontem.blogspot.com.br)
Potenciação - Regras e Propriedades - (www.betontem.blogspot.com.br)Potenciação - Regras e Propriedades - (www.betontem.blogspot.com.br)
Potenciação - Regras e Propriedades - (www.betontem.blogspot.com.br)
betontem
 
Operações com potências (parte i)
Operações com potências (parte i)Operações com potências (parte i)
Operações com potências (parte i)
aldaalves
 
Potenciação radiciação e fatoração aula 1
Potenciação radiciação e fatoração aula 1Potenciação radiciação e fatoração aula 1
Potenciação radiciação e fatoração aula 1
Daniela F Almenara
 
Avaliação parcial 7 ano - pdf
Avaliação parcial   7 ano - pdfAvaliação parcial   7 ano - pdf
Avaliação parcial 7 ano - pdf
jonihson
 
Exercícios 8º ano - conjunto dos números irracionais e racionais
Exercícios 8º ano - conjunto dos números irracionais e racionaisExercícios 8º ano - conjunto dos números irracionais e racionais
Exercícios 8º ano - conjunto dos números irracionais e racionais
Andréia Rodrigues
 
História dos números decimais
História dos números decimaisHistória dos números decimais
História dos números decimais
kov0901
 
I lista de exercícios de matemática 7ano - gabarito
I lista de exercícios de matemática   7ano - gabaritoI lista de exercícios de matemática   7ano - gabarito
I lista de exercícios de matemática 7ano - gabarito
jonihson
 

Destaque (20)

numeros inteiros
 numeros inteiros numeros inteiros
numeros inteiros
 
Nº Inteiros
Nº InteirosNº Inteiros
Nº Inteiros
 
Idéia de números negativos e positivos
Idéia de números negativos e positivosIdéia de números negativos e positivos
Idéia de números negativos e positivos
 
Números negativos
Números negativosNúmeros negativos
Números negativos
 
Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)
 
Banco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-anoBanco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-ano
 
Exercício de aprofundamento lista extra para a segunda prova
Exercício de aprofundamento   lista extra para a segunda provaExercício de aprofundamento   lista extra para a segunda prova
Exercício de aprofundamento lista extra para a segunda prova
 
Recuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRecuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestre
 
Regras de sinais
 Regras de sinais Regras de sinais
Regras de sinais
 
Prova números inteiros - 7° ano
Prova números inteiros  - 7° anoProva números inteiros  - 7° ano
Prova números inteiros - 7° ano
 
Resolução de problemas e nº inteiros apresentação
Resolução de problemas e nº inteiros apresentaçãoResolução de problemas e nº inteiros apresentação
Resolução de problemas e nº inteiros apresentação
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reais
 
Números.reais.introdução
Números.reais.introduçãoNúmeros.reais.introdução
Números.reais.introdução
 
Potenciação - Regras e Propriedades - (www.betontem.blogspot.com.br)
Potenciação - Regras e Propriedades - (www.betontem.blogspot.com.br)Potenciação - Regras e Propriedades - (www.betontem.blogspot.com.br)
Potenciação - Regras e Propriedades - (www.betontem.blogspot.com.br)
 
Operações com potências (parte i)
Operações com potências (parte i)Operações com potências (parte i)
Operações com potências (parte i)
 
Potenciação radiciação e fatoração aula 1
Potenciação radiciação e fatoração aula 1Potenciação radiciação e fatoração aula 1
Potenciação radiciação e fatoração aula 1
 
Avaliação parcial 7 ano - pdf
Avaliação parcial   7 ano - pdfAvaliação parcial   7 ano - pdf
Avaliação parcial 7 ano - pdf
 
Exercícios 8º ano - conjunto dos números irracionais e racionais
Exercícios 8º ano - conjunto dos números irracionais e racionaisExercícios 8º ano - conjunto dos números irracionais e racionais
Exercícios 8º ano - conjunto dos números irracionais e racionais
 
História dos números decimais
História dos números decimaisHistória dos números decimais
História dos números decimais
 
I lista de exercícios de matemática 7ano - gabarito
I lista de exercícios de matemática   7ano - gabaritoI lista de exercícios de matemática   7ano - gabarito
I lista de exercícios de matemática 7ano - gabarito
 

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros

Slide aula 7º ano sobre o conjunto dos números inteiros
Slide aula 7º ano sobre o conjunto dos números inteirosSlide aula 7º ano sobre o conjunto dos números inteiros
Slide aula 7º ano sobre o conjunto dos números inteiros
RoqueDosSantosJunior
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursos
educacao f
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
Salomao Severo da Silva
 
03_Matematica Banco do Brasil.pdf
03_Matematica Banco do Brasil.pdf03_Matematica Banco do Brasil.pdf
03_Matematica Banco do Brasil.pdf
ConcurseiroSilva4
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
Waleska Alencar
 
Matematica3ef
Matematica3efMatematica3ef
Matematica3ef
educaedil
 
Ceesvo (ensino fundamental) apostila 3
Ceesvo (ensino fundamental)   apostila 3Ceesvo (ensino fundamental)   apostila 3
Ceesvo (ensino fundamental) apostila 3
Nome Sobrenome
 
Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3
Thomas Willams
 
Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1
gustavoniedermayerwagner
 
622 apostila01 mb
622 apostila01 mb622 apostila01 mb
622 apostila01 mb
Rone carvalho
 
Matemática básica
Matemática básicaMatemática básica
Aula 1 mat em
Aula 1   mat emAula 1   mat em
Aula 1 mat em
Walney M.F
 
Apostila matematica-1-02-conjuntos-numericos
Apostila matematica-1-02-conjuntos-numericosApostila matematica-1-02-conjuntos-numericos
Apostila matematica-1-02-conjuntos-numericos
Emerson Carlos
 
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
EdinaldaSalgueiro
 
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdfisoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
LourencianneCardoso
 
Aula 1 mat ef
Aula 1   mat efAula 1   mat ef
Aula 1 mat ef
Walney M.F
 
Matematica7 numeros racionais_e_introducao_a_algebra
Matematica7 numeros racionais_e_introducao_a_algebraMatematica7 numeros racionais_e_introducao_a_algebra
Matematica7 numeros racionais_e_introducao_a_algebra
NataliaMartins69
 
Conjuntos numéricos versão mini
Conjuntos numéricos   versão miniConjuntos numéricos   versão mini
Conjuntos numéricos versão mini
Luciano Pessanha
 
Números inteiros relativos
Números inteiros relativosNúmeros inteiros relativos
Números inteiros relativos
matematica3g
 
Matemática básica engenharias
Matemática básica   engenhariasMatemática básica   engenharias

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros (20)

Slide aula 7º ano sobre o conjunto dos números inteiros
Slide aula 7º ano sobre o conjunto dos números inteirosSlide aula 7º ano sobre o conjunto dos números inteiros
Slide aula 7º ano sobre o conjunto dos números inteiros
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursos
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
 
03_Matematica Banco do Brasil.pdf
03_Matematica Banco do Brasil.pdf03_Matematica Banco do Brasil.pdf
03_Matematica Banco do Brasil.pdf
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
 
Matematica3ef
Matematica3efMatematica3ef
Matematica3ef
 
Ceesvo (ensino fundamental) apostila 3
Ceesvo (ensino fundamental)   apostila 3Ceesvo (ensino fundamental)   apostila 3
Ceesvo (ensino fundamental) apostila 3
 
Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3
 
Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1
 
622 apostila01 mb
622 apostila01 mb622 apostila01 mb
622 apostila01 mb
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Aula 1 mat em
Aula 1   mat emAula 1   mat em
Aula 1 mat em
 
Apostila matematica-1-02-conjuntos-numericos
Apostila matematica-1-02-conjuntos-numericosApostila matematica-1-02-conjuntos-numericos
Apostila matematica-1-02-conjuntos-numericos
 
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
 
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdfisoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
 
Aula 1 mat ef
Aula 1   mat efAula 1   mat ef
Aula 1 mat ef
 
Matematica7 numeros racionais_e_introducao_a_algebra
Matematica7 numeros racionais_e_introducao_a_algebraMatematica7 numeros racionais_e_introducao_a_algebra
Matematica7 numeros racionais_e_introducao_a_algebra
 
Conjuntos numéricos versão mini
Conjuntos numéricos   versão miniConjuntos numéricos   versão mini
Conjuntos numéricos versão mini
 
Números inteiros relativos
Números inteiros relativosNúmeros inteiros relativos
Números inteiros relativos
 
Matemática básica engenharias
Matemática básica   engenhariasMatemática básica   engenharias
Matemática básica engenharias
 

Mais de Aulas De Matemática Apoio

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - Determinante
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
Aulas De Matemática Apoio
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
Aulas De Matemática Apoio
 

Mais de Aulas De Matemática Apoio (20)

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - Determinante
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
 

Último

DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptxDEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
ConservoConstrues
 
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdfUFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
Manuais Formação
 
Vivendo a Arquitetura Salesforce - 02.pptx
Vivendo a Arquitetura Salesforce - 02.pptxVivendo a Arquitetura Salesforce - 02.pptx
Vivendo a Arquitetura Salesforce - 02.pptx
Mauricio Alexandre Silva
 
Podcast: como preparar e produzir um programa radiofônico e distribuir na int...
Podcast: como preparar e produzir um programa radiofônico e distribuir na int...Podcast: como preparar e produzir um programa radiofônico e distribuir na int...
Podcast: como preparar e produzir um programa radiofônico e distribuir na int...
Militao Ricardo
 
Atividade Bio evolução e especiação .docx
Atividade Bio evolução e especiação .docxAtividade Bio evolução e especiação .docx
Atividade Bio evolução e especiação .docx
MARCELARUBIAGAVA
 
Pedagogia universitária em ciência e tecnologia
Pedagogia universitária em ciência e tecnologiaPedagogia universitária em ciência e tecnologia
Pedagogia universitária em ciência e tecnologia
Nertan Dias
 
ATIVIDADES de alfabetização do mês de junho
ATIVIDADES de alfabetização do mês de junhoATIVIDADES de alfabetização do mês de junho
ATIVIDADES de alfabetização do mês de junho
Crisnaiara
 
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptxSlides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Roteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptxRoteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptx
pamellaaraujo10
 
Loteria - Adição, subtração, multiplicação e divisão.
Loteria - Adição,  subtração,  multiplicação e divisão.Loteria - Adição,  subtração,  multiplicação e divisão.
Loteria - Adição, subtração, multiplicação e divisão.
Mary Alvarenga
 
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
Manuais Formação
 
CLASSIFICAÇÃO DAS ORAÇÕES SUBORDINADAS SUBSTANTIVAS 9º ANO.pptx
CLASSIFICAÇÃO DAS ORAÇÕES SUBORDINADAS SUBSTANTIVAS 9º ANO.pptxCLASSIFICAÇÃO DAS ORAÇÕES SUBORDINADAS SUBSTANTIVAS 9º ANO.pptx
CLASSIFICAÇÃO DAS ORAÇÕES SUBORDINADAS SUBSTANTIVAS 9º ANO.pptx
Deiciane Chaves
 
(44-ESTUDO - LUCAS) A ESPIRITUALIDADE EM CRISE NO VALE
(44-ESTUDO - LUCAS) A ESPIRITUALIDADE EM CRISE NO VALE(44-ESTUDO - LUCAS) A ESPIRITUALIDADE EM CRISE NO VALE
(44-ESTUDO - LUCAS) A ESPIRITUALIDADE EM CRISE NO VALE
Pr Davi Passos - Estudos Bíblicos
 
formação - 2º ano São José da Tapera ...
formação - 2º ano São José da Tapera ...formação - 2º ano São José da Tapera ...
formação - 2º ano São José da Tapera ...
JakiraCosta
 
O século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptxO século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptx
geiseortiz1
 
Vivendo a Arquitetura Salesforce - 01.pptx
Vivendo a Arquitetura Salesforce - 01.pptxVivendo a Arquitetura Salesforce - 01.pptx
Vivendo a Arquitetura Salesforce - 01.pptx
Mauricio Alexandre Silva
 
LITERATURA INDÍGENA BRASILEIRA: elementos constitutivos.ppt
LITERATURA INDÍGENA BRASILEIRA: elementos constitutivos.pptLITERATURA INDÍGENA BRASILEIRA: elementos constitutivos.ppt
LITERATURA INDÍGENA BRASILEIRA: elementos constitutivos.ppt
EdimaresSilvestre
 
Infografia | Resultados das Eleições Europeias 2024-2029
Infografia | Resultados das Eleições Europeias 2024-2029Infografia | Resultados das Eleições Europeias 2024-2029
Infografia | Resultados das Eleições Europeias 2024-2029
Centro Jacques Delors
 
Resumo de Química 10º ano Estudo exames nacionais
Resumo de Química 10º ano Estudo exames nacionaisResumo de Química 10º ano Estudo exames nacionais
Resumo de Química 10º ano Estudo exames nacionais
beatrizsilva525654
 
Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
vitorreissouzasilva
 

Último (20)

DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptxDEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
 
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdfUFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
 
Vivendo a Arquitetura Salesforce - 02.pptx
Vivendo a Arquitetura Salesforce - 02.pptxVivendo a Arquitetura Salesforce - 02.pptx
Vivendo a Arquitetura Salesforce - 02.pptx
 
Podcast: como preparar e produzir um programa radiofônico e distribuir na int...
Podcast: como preparar e produzir um programa radiofônico e distribuir na int...Podcast: como preparar e produzir um programa radiofônico e distribuir na int...
Podcast: como preparar e produzir um programa radiofônico e distribuir na int...
 
Atividade Bio evolução e especiação .docx
Atividade Bio evolução e especiação .docxAtividade Bio evolução e especiação .docx
Atividade Bio evolução e especiação .docx
 
Pedagogia universitária em ciência e tecnologia
Pedagogia universitária em ciência e tecnologiaPedagogia universitária em ciência e tecnologia
Pedagogia universitária em ciência e tecnologia
 
ATIVIDADES de alfabetização do mês de junho
ATIVIDADES de alfabetização do mês de junhoATIVIDADES de alfabetização do mês de junho
ATIVIDADES de alfabetização do mês de junho
 
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptxSlides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
 
Roteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptxRoteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptx
 
Loteria - Adição, subtração, multiplicação e divisão.
Loteria - Adição,  subtração,  multiplicação e divisão.Loteria - Adição,  subtração,  multiplicação e divisão.
Loteria - Adição, subtração, multiplicação e divisão.
 
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
 
CLASSIFICAÇÃO DAS ORAÇÕES SUBORDINADAS SUBSTANTIVAS 9º ANO.pptx
CLASSIFICAÇÃO DAS ORAÇÕES SUBORDINADAS SUBSTANTIVAS 9º ANO.pptxCLASSIFICAÇÃO DAS ORAÇÕES SUBORDINADAS SUBSTANTIVAS 9º ANO.pptx
CLASSIFICAÇÃO DAS ORAÇÕES SUBORDINADAS SUBSTANTIVAS 9º ANO.pptx
 
(44-ESTUDO - LUCAS) A ESPIRITUALIDADE EM CRISE NO VALE
(44-ESTUDO - LUCAS) A ESPIRITUALIDADE EM CRISE NO VALE(44-ESTUDO - LUCAS) A ESPIRITUALIDADE EM CRISE NO VALE
(44-ESTUDO - LUCAS) A ESPIRITUALIDADE EM CRISE NO VALE
 
formação - 2º ano São José da Tapera ...
formação - 2º ano São José da Tapera ...formação - 2º ano São José da Tapera ...
formação - 2º ano São José da Tapera ...
 
O século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptxO século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptx
 
Vivendo a Arquitetura Salesforce - 01.pptx
Vivendo a Arquitetura Salesforce - 01.pptxVivendo a Arquitetura Salesforce - 01.pptx
Vivendo a Arquitetura Salesforce - 01.pptx
 
LITERATURA INDÍGENA BRASILEIRA: elementos constitutivos.ppt
LITERATURA INDÍGENA BRASILEIRA: elementos constitutivos.pptLITERATURA INDÍGENA BRASILEIRA: elementos constitutivos.ppt
LITERATURA INDÍGENA BRASILEIRA: elementos constitutivos.ppt
 
Infografia | Resultados das Eleições Europeias 2024-2029
Infografia | Resultados das Eleições Europeias 2024-2029Infografia | Resultados das Eleições Europeias 2024-2029
Infografia | Resultados das Eleições Europeias 2024-2029
 
Resumo de Química 10º ano Estudo exames nacionais
Resumo de Química 10º ano Estudo exames nacionaisResumo de Química 10º ano Estudo exames nacionais
Resumo de Química 10º ano Estudo exames nacionais
 
Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
 

www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros

  • 2. O QUE SÃO NÚMEROS NEGATIVOS? São números que representam medidas abaixo de zero. Exemplos: -4 -35 -1 -2137 Os números acima de zero são chamados de positivos. E O ZERO? O zero não é positivo nem negativo.
  • 3. PARA QUE SERVEM OS NÚMEROS NEGATIVOS? Dentre várias utilidades veremos as mais comuns:  Representar temperaturas abaixo de zero.  Indicar um saldo negativo de uma conta bancária.  Efetuar subtrações onde o subtraendo é maior que o minuendo. Ex: 7-10
  • 4. COMO É FORMADO O CONJUNTO DOS NÚMEROS INTEIROS? É formado pelo conjunto dos números naturais, mais os números negativos. Representações: Ν = { 0,1,2,3,4,5,...} Ζ = {... − 5,−4,−3,−2,−1,0,1,2,3,4,5,...} Z N
  • 5. COMO REPRESENTAMOS O CONJUNTO DOS NÚMEROS INTEIROS NA RETA NUMÉRICA? -5 -4 -3 -2 -1 0 1 2 3 4 5 O conjunto dos números naturais é um subconjunto dos números inteiros.
  • 6. OBSERVAÇÃO: Quanto mais a direita estiver um número, maior ele será. Veja: -5 -4 -3 -2 -1 0 1 2 3 4 5 5>3 -3 > -5 0 > -2 Macete: quanto mais negativo for um número, menor ele será.
  • 7. TENTE FAZER SOZINHO! Responda: a) Qual é o maior número negativo? b) Qual é o antecessor de -5? c) Qual é o sucessor de -10?
  • 8. SOLUÇÃO a) O maior número negativo é -1. c) O antecessor de -5 é -6. e) O sucessor de -10 é -9.
  • 9. O QUE SIGNIFICAM OS SÍMBOLOS: Ζ ,Ζ ,Ζ ,Ζ e Ζ ? * + − * + * − Ζ é o conjunto dos números inteiros sem o zero. * Ζ* = {...,−3,−2,−1,1,2,3,...} Ζ + é o conjunto dos números inteiros não-negativos. Ζ + = { 0,1,2,3,...} Ζ − é o conjunto dos números inteiros não-positivos. Ζ − = {...,−3,−2,−1,0} Ζ * + é o conjunto dos números inteiros positivos. Ζ* = {1,2,3,...} + Ζ * − é o conjunto dos números inteiros negativos. Ζ* = {...,−3,−2,−1} _
  • 10. O QUE É O MÓDULO DE UM NÚMERO? É o valor que representa a distância entre esse número e o zero. Exemplo: -4 0 4 A distância entre o número 4 e o zero é a mesma entre o número -4 e o zero. Logo, o módulo desses de 4 e -4 é igual a 4.
  • 11. COMO INDICAMOS O MÓDULO DE UM NÚMERO? Colocando esse número entre duas barras verticais. Exemplos: 6 =6 20 = 20 −6 = 6 − 20 = 20 O módulo também pode ser chamado de valor absoluto
  • 12. VAMOS PRATICAR! Quais são os possíveis valores para x em x = 2? Resposta: 2 e -2, pois qualquer um desses números, quando colocado no lugar do x tem resultado igual a 2.
  • 13. TENTE FAZER SOZINHO! Apresente os possíveis valores de x na expressão: x <4
  • 14. Solução Temos que verificar quais são os números que o módulo dá um resultado menor que 4. Logo, a resposta é {-3,-2,-1,0,1,2,3}
  • 15. O QUE SÃO NÚMEROS SIMÉTRICOS? São números que apresentam o mesmo módulo. Exemplos: 10 e -10 8 e -8 201 e -201 Os números simétricos também são chamados de opostos.
  • 16. RESOLVENDO PROBLEMAS Responda:  Qual é o simétrico de 5? -5  Qual é o oposto de -10? 10  Qual é o módulo do oposto de -35? 35
  • 17. TENTE FAZER SOZINHO! Apresente o simétrico do oposto do módulo de -7. SOLUÇÃO O módulo de -7 é 7. O oposto de 7 é -7. O simétrico de -7 é 7.
  • 18. COMO SOMAMOS E SUBTRAÍMOS NÚMEROS INTEIROS? Primeiro retiramos os parênteses e depois efetuamos os cálculos. Se o sinal antes do parêntese for +, então conservamos o sinal de todos os números dentro do parêntese. Se o sinal antes do parêntese for -, então mudamos o sinal de todos os números dentro do parêntese. Exemplos: a) + (+30) + (-25) = + 30 – 25 = + 5 b) - (-17) + (+3) = + 17 + 3 = + 20
  • 19. PARA EFETUAR OS CÁLCULOS, USAREMOS A SEGUINTE REGRA:  Se os sinais forem iguais, somamos os valores absolutos e conservamos o sinal.  Se os sinais forem diferentes, subtraímos os valores absolutos e conservamos o sinal do maior. Exemplos: a) -(+45) + (-5) = - 45 - 5 = - 50 b) -(+20) + (+4) = - 20 + 4 = -16
  • 20. OBSERVAÇÕES IMPORTANTES! • Se não existir sinal antes de um parênteses ou antes de um número, então dizemos que o sinal é +. Ou seja, + (30) = (+30) = + (+30) = 30. • A soma de números simétricos é igual a zero. Ou seja, -10 + 10 = 0 e 8 - 8 = 0.
  • 21. RESOLVENDO EXPRESSÕES (-5) + (-9) + (-3) + (+8) + (+2)= Tirando os parênteses, temos: -5–9–3+8+2= Juntando os números negativos e os números positivos, temos - 17 + 10 = Efetuando os cálculos, encontramos: -7
  • 22. TENTE FAZER SOZINHO! Resolva a expressão: 12 + {- 2 + [- 3 – (- 2 + 11)]} =
  • 23. SOLUÇÃO 12 + {- 2 + [- 3 – (- 2 + 11)]} = 12 + {- 2 + [- 3 – (+ 9)]} = 12 + {- 2 + [- 3 – 9]} = 12 + {- 2 + [- 12]} = 12 + {- 2 - 12} = 12 + {- 14} = 12 – 14 = -2
  • 24. COMO MULTIPLICAMOS E DIVIDIMOS NÚMEROS INTEIROS? Basta efetuar os cálculos com os valores absolutos. O sinal deve obedecer a seguinte regra: se forem iguais, +, se forem diferentes, - . Exemplos: a) (-3) . (-4) = 12 b) (+8) : (+4) = 2 c) (-3) . (+4) = - 12 d) (+8) : (-4) = - 2
  • 25. TENTE FAZER SOZINHO! Resolva a expressão: [-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
  • 26. SOLUÇÃO [-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]= [-27 + (- 8)] : [1 + (+ 6)]= [-27 - 8] : [1 + 6]= [-35] : [7]= -5
  • 27. COMO ELEVAMOS UM NÚMEROS INTEIRO A UMA POTÊNCIA? Basta efetuar o cálculo da potência com os valores absolutos. Se o expoente for par, o resultado é sempre positivo. Se o for ímpar, permanece o sinal inicial. Exemplos: a) (-5)2 = 25 b) (+5)2 = 25 c) (-5)3 = - 125 d) (+5)3 = 125
  • 28. REGRAS IMPORTANTES  Qualquer base elevada a 1 é igual a ela mesma. a1 = a  Zero elevado a qualquer expoente é igual a zero. 0b = 0  Qualquer base elevada a zero é igual a 1. a0 = 1
  • 29. COMO MULTIPLICAMOS POTÊNCIAS COM A MESMA BASE? Basta conservar a base e somar os expoentes. Exemplos:  (6)7 . (6)3 = 67+3 = 610 Quando um número não apresenta expoente,  (-20)4 . (-20) = (-20)5 dizemos que está elevado a 1.
  • 30. COMO DIVIDIMOS POTÊNCIAS COM A MESMA BASE? Basta conservar a base e subtrair os expoentes. Exemplos:  (5)7 : (5)3 = (5)7-3 = 54  (-9)5 : (-9)3 = (-9)5-3 = (-9)2
  • 31. COMO ELEVAMOS UMA POTÊNCIA A OUTRA POTÊNCIA? Basta conservar a base e multiplicar os expoentes. Exemplos: (42)3 = 42x3 = 46 (53)6 = 53x6 = 518
  • 32. COMO EXTRAÍMOS A RAIZ QUADRADA DOS NÚMEROS INTEIROS? Basta efetuar os cálculos que já conhecemos, pois só podemos extrair raiz quadrada de números não-negativos. Exemplos: +9 =3 − 9 não existe no conjunto Ζ.
  • 33. TENTE FAZER SOZINHO! Resolva a expressão: ( − 2) 2 [ ] − ( − 7 ) : 10 0 + 5.( − 3) − 36 =
  • 34. SOLUÇÃO ( − 2) − [( − 7 ) : 100 + 5.( − 3) ] − 2 36 = 4 − [ ( − 7 ) : 1 + 5.( − 3) ] − 6 4 − [ − 7 + ( − 15) ] − 6 = 4 − [ − 7 − 15] − 6 = 4 − [ − 22] − 6 = 4 + 22 − 6 = 26 − 6 = 20