SlideShare uma empresa Scribd logo
1 de 30
Função Afim
Ao final dessa aula você
                     saberá:
  O que é uma função afim e todas as formas
 de representá-la.
 Como identificar e construir gráficos da
 função afim.
 O que é coeficiente angular, coeficiente
 linear e zero da função
 Identificar se uma função é crescente ou
 decrescente.
 Resolver sistemas através de

   gráficos
 Resolver inequações do 1º grau.
O que é função afim?
       É a função definida por uma expresão do
    1º grau.

                     É apresentada na
Exemplos:
                          forma:
 f(x) = x +1
                      f(x) = ax + b

   y=
        m
       m+5
Como reconhecemos o
                     gráfico de uma função
                             afim?
  O gráfico de uma função afim é sempre
uma reta.                 Os valores de x
 6
     y                             são as abscissas e
                                   os valores de y são
 5
                                      as ordenadas.
 4

 3

 2

 1

 0
                               x
         1   2   3     4   5
Como construímos o
            gráfico de uma função
                    afim?
Basta achar dois pontos que pertençam à
reta da função dada.

Exemplo: Sendo a função f(x) = 2x + 1.

1º passo: escolher dois valores para x.
              x = 0 e x = 1
2º passo: calcular o valor de
             y para cada valor de x
             escolhido.
            f(0) = 2.0 + 1 = 1
            f(1) = 2.1 + 1 = 3

Logo, temos que os pontos são (0,1) e (1,3)
             Dessa forma
            garantimos que
             esses pontos
           pertencem à reta.
3º passo: marcar os pontos no gráfico.
         y


         3

         2

         1
                       x
             1



4º passo: ligar os pontos.
Tente fazer sozinho!


Construa o gráfico da função:
           x −1
        y=
             2
Solução
1º passo: x = 3 e x = 5
2º passo: f(3) = 1 e f(5) = 2

3º e 4º passos:
   y




  2

  1
                                x
      1   2   3   4    5
O que é coeficiente
                  angular?
  É o valor numérico que multiplica a
variável x. Indica a inclinação da reta
em relação ao eixo x.
               Ou seja, é o valor
              de a na expressão:
                  y = ax + b.
Exemplo:
 y = 2x + 1  a = 2

   y = x – 5  a = 1
O que é coeficiente
                     linear?
  É o valor de b em y = ax + b. Indica
o valor de y, onde a reta do gráfico
corta o eixo das ordenadas.

Exemplo:
 y = 2x + 1  b = 1

   y = x – 5  b = -5
O que é Zero da
                      função?
  É o valor de x onde a reta do gráfico
corta o eixo das abscissas.
      Ou seja, o valor de x para y = 0.



Exemplos:
   y = 2x + 1  0 = 2x + 1  x = -1/2

   y = x – 5  0 = x – 5  x = 5
Coeficiente angular

f(x) = 2x – 1         Coeficiente linear
f(0) = 2.0 -1 = -1
                         y
f(1) = 2.1 – 1 = 1
f(2) = 2.2 – 1 = 3
                         3

                         2

                         1
                                                   x
                      -1      1    2   3   4   5
                        -1


   Coeficiente                    Zero da função
     linear                          0 = 2x-1
                                     x = 1/2
Tente fazer sozinho!
I) Encontre y = f(x) sendo f uma função
  polinomial do 1º grau, sabendo que f(-6) = 8
  e f(6) = 12.

II) Seja f uma função real definida pela lei
  f(x) = ax – 3. Se 3 é raiz da função, qual é
  o valor de f(10)?
III) (UF-AM) A função f definida por
     f(x) = -3x +m está representada abaixo:
                 y




                                 x
                          1

                 f (2) + f (1)
Então o valor de                é:
                     f ( 0)
                     7          5
a) -1 b) 0 c) 1 d)         e) −
                      5         7
Soluções
I) f(-6) = 8 e f(6) = 12

              8 = −6a + b
 y = ax + b   
              12 = 6a + b
   20 = 2b       8 = -6a + 10
    b = 10      -2 = -6a
                  a = 1/3

 Logo, f(x) = 1/3 x + 10
II) f(x) = ax - 3
    f(3) = 3a - 3 = 0
               3a = 3
                a = 1

    f(x) = x – 3
    f(10) = 10 – 3
    f(10) = 7
III) f(x) = -3x + m
     f(1) = -3.1 + m = 0
            -3 + m = 0  m = 3
f(x)   =   -3x + 3
f(0)   =   -3.0 + 3   =   3
f(1)   =   -3.1 + 3   =   0
f(2)   =   -3.2 + 3   =   -3

 f (2) + f (1) − 3 + 0
              =        = −1
     f (0)        3
Como identificamos se uma função
  é crescente ou decrescente?
  Verificando o sinal do a em y=ax+b. Se a
for negativo, então a função é decrescente.
Se a for positivo, então a função é crescente.

Exemplos:
 y = -x + 2  a = -1  função decrescente


   Y = ½ + 4  a = ½  função crescente
Também podemos fazer a
y
    análise gráfica:

              Função
            decrescente
        x



y


             Função
            crescente
        x
Como resolvemos sistemas
               através de gráficos?
  Basta traçar os gráficos das duas
equações, no mesmo plano cartesiano. O
resultado é o ponto de interseção.
Exemplo:   x + y = 5
           
           − x + 2 y = 4
Pontos da 1ª equação: (1,4) e (3,2)
Pontos da 2ª equação: (0,2) e (-2,1)
y

       4

       3            I = (2,3)
       2

       1
                                    x
-2   -1     1   2    3   4      5
       -1
      -2




Logo, S = (2,3)
Como é feito o estudo
             do sinal de uma função?
Seguindo os passos:
1º passo: Localizar o zero da função na
 reta real.
2º passo: traçar a reta do gráfico.
3º passo: analisamos os intervalos onde a
 função é positiva ou negativa.
Exemplo: y = x - 2
 1º passo: x – 2 = 0  x = 2
 2º passo: função crescente

                          x
              2



 3º passo: y < 0, para x < 2
           y = 0, para x = 2
           y > 0, para x > 2
Como resolvemos uma
             inequação do 1º grau?
        Fazendo o estudo do sinal.

Exemplo: 2x – 7 > 0
 zero da função: 2x – 7 = 0  x = 7/2
 a > 0  função crescente

                           x
               7/2



Resposta: ]7 2 ,+∞[
E se for uma inequação
                produto ou uma
             inequação quociente?
  Se for uma inequação produto devemos
fazer o estudo do sinal de cada fator. Se
for inequação quociente, devemos fazer o
estudo do sinal do dividendo e do divisor,
separadamente.
Exemplos:
I) (x-2) (1-2x) ≥ 0
x – 2 = 0  x = 2 e 1 – 2x = 0  x = ½
      +++       --------------------------
                                             x
             1/2
      -----------------------       +++++
                                             x
                                2
        -             +               -      x
             1/2                2



            S = [1/2 , 2]
II)
      x+3
           > 0, x ≠ 1
      x −1
x + 3 = 0  x = -3 e x – 1 = 0  x = 1

         --------        +++++++++++++
                                              x
                    -3

          --------------------       ++++++
                                              x
                                 1

            +            -             +      x
                    -3           1


      S=]-∞,-3[ U ]1,+ ∞[
Tente fazer sozinho!
(UFC-CE) O conjunto solução, nos números
                    1− x
reais, da inequação      > −1 é igual a:
                        1+ x

  a ){ x ∈ R; x > −1}
  b){ x ∈ R; x > 0}
  c){ x ∈ R; x > 1}
  d ){ x ∈ R; x > 2}
  e){ x ∈ R; x > 3}
Solução
1− x        1− x          1− x +1+ x      2
     > −1 ⇒      +1 > 0 ⇒            >0⇒      >0
1+ x        1+ x             1+ x        1+ x

           1+x=0                x = -1

         ---------     ++++++++++++
                                      x
                 -1


               S=]-1,+ ∞[
                      letra A

Mais conteúdo relacionado

Mais procurados (20)

Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
Determinantes 2º ano
Determinantes 2º anoDeterminantes 2º ano
Determinantes 2º ano
 
Função seno
Função senoFunção seno
Função seno
 
Equação exponencial
Equação exponencialEquação exponencial
Equação exponencial
 
Pa pdf
Pa pdfPa pdf
Pa pdf
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
 
Resolução comentada matemática 002
Resolução comentada matemática  002Resolução comentada matemática  002
Resolução comentada matemática 002
 
Funções
FunçõesFunções
Funções
 
22ª aula função afim
22ª aula   função afim22ª aula   função afim
22ª aula função afim
 
2972340 matematica-exercicios-resolvidos-logaritmos-resolvidos
2972340 matematica-exercicios-resolvidos-logaritmos-resolvidos2972340 matematica-exercicios-resolvidos-logaritmos-resolvidos
2972340 matematica-exercicios-resolvidos-logaritmos-resolvidos
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
Equação do 1º grau
Equação do 1º grauEquação do 1º grau
Equação do 1º grau
 
Aula 02 Cálculo de limites - Conceitos Básicos
Aula 02   Cálculo de limites - Conceitos BásicosAula 02   Cálculo de limites - Conceitos Básicos
Aula 02 Cálculo de limites - Conceitos Básicos
 
P.a. e p.g.
P.a. e p.g.P.a. e p.g.
P.a. e p.g.
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
 
Coordenadas cartesianas
Coordenadas cartesianasCoordenadas cartesianas
Coordenadas cartesianas
 

Destaque

Função afim-linear-constante-gráficos
Função  afim-linear-constante-gráficosFunção  afim-linear-constante-gráficos
Função afim-linear-constante-gráficosmarmorei
 
Matematica função.ppt [salvo automaticamente]
Matematica   função.ppt [salvo automaticamente]Matematica   função.ppt [salvo automaticamente]
Matematica função.ppt [salvo automaticamente]pso2510
 
Estatística Básica - Probabilidade
Estatística Básica - ProbabilidadeEstatística Básica - Probabilidade
Estatística Básica - ProbabilidadeAndré Faria Gomes
 
Matemática - Estudo da reta
Matemática - Estudo da retaMatemática - Estudo da reta
Matemática - Estudo da retaDanielle Siqueira
 
Estudos de Sistemas Lineares de Três equações e Três Incógnitas
Estudos de Sistemas Lineares de Três equações e Três IncógnitasEstudos de Sistemas Lineares de Três equações e Três Incógnitas
Estudos de Sistemas Lineares de Três equações e Três Incógnitassiuffmat06
 
Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9Angela Costa
 
Produto cartesiano e função definição
Produto cartesiano e função  definiçãoProduto cartesiano e função  definição
Produto cartesiano e função definiçãoMeire de Fatima
 
BDI_2_mer_entidade_atributo
BDI_2_mer_entidade_atributoBDI_2_mer_entidade_atributo
BDI_2_mer_entidade_atributoCleiane Oliveira
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - MatrizesAulas De Matemática Apoio
 

Destaque (20)

Função afim-linear-constante-gráficos
Função  afim-linear-constante-gráficosFunção  afim-linear-constante-gráficos
Função afim-linear-constante-gráficos
 
Funções
FunçõesFunções
Funções
 
Matematica função.ppt [salvo automaticamente]
Matematica   função.ppt [salvo automaticamente]Matematica   função.ppt [salvo automaticamente]
Matematica função.ppt [salvo automaticamente]
 
Estatística Básica - Probabilidade
Estatística Básica - ProbabilidadeEstatística Básica - Probabilidade
Estatística Básica - Probabilidade
 
Matemática - Estudo da reta
Matemática - Estudo da retaMatemática - Estudo da reta
Matemática - Estudo da reta
 
Matemática – função primeiro grau 01
Matemática – função primeiro grau 01Matemática – função primeiro grau 01
Matemática – função primeiro grau 01
 
Estudos de Sistemas Lineares de Três equações e Três Incógnitas
Estudos de Sistemas Lineares de Três equações e Três IncógnitasEstudos de Sistemas Lineares de Três equações e Três Incógnitas
Estudos de Sistemas Lineares de Três equações e Três Incógnitas
 
Função do 1º grau
Função do 1º grau Função do 1º grau
Função do 1º grau
 
2mapres
2mapres2mapres
2mapres
 
Apreprof
ApreprofApreprof
Apreprof
 
Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9
 
Sql junções
Sql junçõesSql junções
Sql junções
 
Produto cartesiano e função definição
Produto cartesiano e função  definiçãoProduto cartesiano e função  definição
Produto cartesiano e função definição
 
Função afim
Função afimFunção afim
Função afim
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
Relações
RelaçõesRelações
Relações
 
BDI_2_mer_entidade_atributo
BDI_2_mer_entidade_atributoBDI_2_mer_entidade_atributo
BDI_2_mer_entidade_atributo
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
 
Mark Weiser
Mark WeiserMark Weiser
Mark Weiser
 
Progressões
ProgressõesProgressões
Progressões
 

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Função Afim

www.aulaparticularonline.net.br - Matemática - Função Afim
www.aulaparticularonline.net.br - Matemática -  Função Afimwww.aulaparticularonline.net.br - Matemática -  Função Afim
www.aulaparticularonline.net.br - Matemática - Função AfimLucia Silveira
 
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função AfimClarice Leclaire
 
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função AfimBeatriz Góes
 
Função afimwww.AulasEnsinoMedio.com.br - Matemática - Função Afim
Função afimwww.AulasEnsinoMedio.com.br - Matemática -  Função AfimFunção afimwww.AulasEnsinoMedio.com.br - Matemática -  Função Afim
Função afimwww.AulasEnsinoMedio.com.br - Matemática - Função AfimAulasEnsinoMedio
 
Funcoes primeiro ano
Funcoes  primeiro anoFuncoes  primeiro ano
Funcoes primeiro anoISJ
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro BarrosoAntonio Carneiro
 
Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° grausDaniel Muniz
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Zaqueu Oliveira
 
Apostila 001 trigonometria funcoes
Apostila  001 trigonometria funcoesApostila  001 trigonometria funcoes
Apostila 001 trigonometria funcoescon_seguir
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-graucon_seguir
 
1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO Imarcelotorraca
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grauprofmribeiro
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade iiWelison Lopes
 
Exame matematica
Exame matematicaExame matematica
Exame matematicaJoão Pinto
 
Apostila 002 funções exponencial
Apostila  002 funções exponencialApostila  002 funções exponencial
Apostila 002 funções exponencialcon_seguir
 

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Função Afim (20)

www.aulaparticularonline.net.br - Matemática - Função Afim
www.aulaparticularonline.net.br - Matemática -  Função Afimwww.aulaparticularonline.net.br - Matemática -  Função Afim
www.aulaparticularonline.net.br - Matemática - Função Afim
 
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 
Função afimwww.AulasEnsinoMedio.com.br - Matemática - Função Afim
Função afimwww.AulasEnsinoMedio.com.br - Matemática -  Função AfimFunção afimwww.AulasEnsinoMedio.com.br - Matemática -  Função Afim
Função afimwww.AulasEnsinoMedio.com.br - Matemática - Função Afim
 
Funcoes primeiro ano
Funcoes  primeiro anoFuncoes  primeiro ano
Funcoes primeiro ano
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 
Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° graus
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Apostila 001 trigonometria funcoes
Apostila  001 trigonometria funcoesApostila  001 trigonometria funcoes
Apostila 001 trigonometria funcoes
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
 
1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
 
Resumo MatemÔÇática.pdf
Resumo MatemÔÇática.pdfResumo MatemÔÇática.pdf
Resumo MatemÔÇática.pdf
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade ii
 
Funções
Funções Funções
Funções
 
Exame matematica
Exame matematicaExame matematica
Exame matematica
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
 
Apostila 002 funções exponencial
Apostila  002 funções exponencialApostila  002 funções exponencial
Apostila 002 funções exponencial
 

Mais de Aulas De Matemática Apoio

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com EquaçõesAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - LogaritmoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações AlgébricasAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração ConceitualAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - RadiciaçãoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - ProbabilidadeAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - PotenciaçãoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e PontosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números ComplexosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - DeterminanteAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos NuméricosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e CilindrosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - PolinômiosAulas De Matemática Apoio
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo TrigonométricoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - ÂngulosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números InteirosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação ExponêncialAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Equação do 1º Grau
 www.AulasDeMatematicaApoio.com  - Matemática -  Equação do 1º Grau www.AulasDeMatematicaApoio.com  - Matemática -  Equação do 1º Grau
www.AulasDeMatematicaApoio.com - Matemática - Equação do 1º GrauAulas De Matemática Apoio
 

Mais de Aulas De Matemática Apoio (20)

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - Determinante
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
 
www.AulasDeMatematicaApoio.com - Matemática - Equação do 1º Grau
 www.AulasDeMatematicaApoio.com  - Matemática -  Equação do 1º Grau www.AulasDeMatematicaApoio.com  - Matemática -  Equação do 1º Grau
www.AulasDeMatematicaApoio.com - Matemática - Equação do 1º Grau
 

Último

Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLaseVasconcelos1
 
Orientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxOrientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxJMTCS
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREIVONETETAVARESRAMOS
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024GleyceMoreiraXWeslle
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas BrasileirosMary Alvarenga
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfmarialuciadasilva17
 
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...nexocan937
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoCelianeOliveira8
 
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...LuizHenriquedeAlmeid6
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxLuizHenriquedeAlmeid6
 
Apreciação crítica -exercícios de escrita
Apreciação crítica -exercícios de escritaApreciação crítica -exercícios de escrita
Apreciação crítica -exercícios de escritaeliana862656
 
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETOProjeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETODouglasVasconcelosMa
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxacaciocarmo1
 
19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileirosMary Alvarenga
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptAlineSilvaPotuk
 
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURACRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURADouglasVasconcelosMa
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxLuizHenriquedeAlmeid6
 
As variações do uso da palavra "como" no texto
As variações do uso da palavra "como" no  textoAs variações do uso da palavra "como" no  texto
As variações do uso da palavra "como" no textoMariaPauladeSouzaTur
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxLuizHenriquedeAlmeid6
 

Último (20)

Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdf
 
Orientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxOrientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptx
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas Brasileiros
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
 
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e feminino
 
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
 
Apreciação crítica -exercícios de escrita
Apreciação crítica -exercícios de escritaApreciação crítica -exercícios de escrita
Apreciação crítica -exercícios de escrita
 
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETOProjeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptx
 
19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
 
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURACRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
 
As variações do uso da palavra "como" no texto
As variações do uso da palavra "como" no  textoAs variações do uso da palavra "como" no  texto
As variações do uso da palavra "como" no texto
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
 

www.AulasDeMatematicaApoio.com - Matemática - Função Afim

  • 2. Ao final dessa aula você saberá:  O que é uma função afim e todas as formas de representá-la.  Como identificar e construir gráficos da função afim.  O que é coeficiente angular, coeficiente linear e zero da função  Identificar se uma função é crescente ou decrescente.  Resolver sistemas através de gráficos  Resolver inequações do 1º grau.
  • 3. O que é função afim? É a função definida por uma expresão do 1º grau. É apresentada na Exemplos: forma:  f(x) = x +1 f(x) = ax + b  y= m m+5
  • 4. Como reconhecemos o gráfico de uma função afim? O gráfico de uma função afim é sempre uma reta. Os valores de x 6 y são as abscissas e os valores de y são 5 as ordenadas. 4 3 2 1 0 x 1 2 3 4 5
  • 5. Como construímos o gráfico de uma função afim? Basta achar dois pontos que pertençam à reta da função dada. Exemplo: Sendo a função f(x) = 2x + 1. 1º passo: escolher dois valores para x. x = 0 e x = 1
  • 6. 2º passo: calcular o valor de y para cada valor de x escolhido. f(0) = 2.0 + 1 = 1 f(1) = 2.1 + 1 = 3 Logo, temos que os pontos são (0,1) e (1,3) Dessa forma garantimos que esses pontos pertencem à reta.
  • 7. 3º passo: marcar os pontos no gráfico. y 3 2 1 x 1 4º passo: ligar os pontos.
  • 8. Tente fazer sozinho! Construa o gráfico da função: x −1 y= 2
  • 9. Solução 1º passo: x = 3 e x = 5 2º passo: f(3) = 1 e f(5) = 2 3º e 4º passos: y 2 1 x 1 2 3 4 5
  • 10. O que é coeficiente angular? É o valor numérico que multiplica a variável x. Indica a inclinação da reta em relação ao eixo x. Ou seja, é o valor de a na expressão: y = ax + b. Exemplo:  y = 2x + 1  a = 2  y = x – 5  a = 1
  • 11. O que é coeficiente linear? É o valor de b em y = ax + b. Indica o valor de y, onde a reta do gráfico corta o eixo das ordenadas. Exemplo:  y = 2x + 1  b = 1  y = x – 5  b = -5
  • 12. O que é Zero da função? É o valor de x onde a reta do gráfico corta o eixo das abscissas. Ou seja, o valor de x para y = 0. Exemplos:  y = 2x + 1  0 = 2x + 1  x = -1/2  y = x – 5  0 = x – 5  x = 5
  • 13. Coeficiente angular f(x) = 2x – 1 Coeficiente linear f(0) = 2.0 -1 = -1 y f(1) = 2.1 – 1 = 1 f(2) = 2.2 – 1 = 3 3 2 1 x -1 1 2 3 4 5 -1 Coeficiente Zero da função linear 0 = 2x-1 x = 1/2
  • 14. Tente fazer sozinho! I) Encontre y = f(x) sendo f uma função polinomial do 1º grau, sabendo que f(-6) = 8 e f(6) = 12. II) Seja f uma função real definida pela lei f(x) = ax – 3. Se 3 é raiz da função, qual é o valor de f(10)?
  • 15. III) (UF-AM) A função f definida por f(x) = -3x +m está representada abaixo: y x 1 f (2) + f (1) Então o valor de é: f ( 0) 7 5 a) -1 b) 0 c) 1 d) e) − 5 7
  • 16. Soluções I) f(-6) = 8 e f(6) = 12 8 = −6a + b y = ax + b  12 = 6a + b 20 = 2b 8 = -6a + 10 b = 10 -2 = -6a a = 1/3 Logo, f(x) = 1/3 x + 10
  • 17. II) f(x) = ax - 3 f(3) = 3a - 3 = 0 3a = 3 a = 1 f(x) = x – 3 f(10) = 10 – 3 f(10) = 7
  • 18. III) f(x) = -3x + m f(1) = -3.1 + m = 0 -3 + m = 0  m = 3 f(x) = -3x + 3 f(0) = -3.0 + 3 = 3 f(1) = -3.1 + 3 = 0 f(2) = -3.2 + 3 = -3 f (2) + f (1) − 3 + 0 = = −1 f (0) 3
  • 19. Como identificamos se uma função é crescente ou decrescente? Verificando o sinal do a em y=ax+b. Se a for negativo, então a função é decrescente. Se a for positivo, então a função é crescente. Exemplos:  y = -x + 2  a = -1  função decrescente  Y = ½ + 4  a = ½  função crescente
  • 20. Também podemos fazer a y análise gráfica: Função decrescente x y Função crescente x
  • 21. Como resolvemos sistemas através de gráficos? Basta traçar os gráficos das duas equações, no mesmo plano cartesiano. O resultado é o ponto de interseção. Exemplo: x + y = 5  − x + 2 y = 4 Pontos da 1ª equação: (1,4) e (3,2) Pontos da 2ª equação: (0,2) e (-2,1)
  • 22. y 4 3 I = (2,3) 2 1 x -2 -1 1 2 3 4 5 -1 -2 Logo, S = (2,3)
  • 23. Como é feito o estudo do sinal de uma função? Seguindo os passos: 1º passo: Localizar o zero da função na reta real. 2º passo: traçar a reta do gráfico. 3º passo: analisamos os intervalos onde a função é positiva ou negativa.
  • 24. Exemplo: y = x - 2 1º passo: x – 2 = 0  x = 2 2º passo: função crescente x 2 3º passo: y < 0, para x < 2 y = 0, para x = 2 y > 0, para x > 2
  • 25. Como resolvemos uma inequação do 1º grau? Fazendo o estudo do sinal. Exemplo: 2x – 7 > 0  zero da função: 2x – 7 = 0  x = 7/2  a > 0  função crescente x 7/2 Resposta: ]7 2 ,+∞[
  • 26. E se for uma inequação produto ou uma inequação quociente? Se for uma inequação produto devemos fazer o estudo do sinal de cada fator. Se for inequação quociente, devemos fazer o estudo do sinal do dividendo e do divisor, separadamente.
  • 27. Exemplos: I) (x-2) (1-2x) ≥ 0 x – 2 = 0  x = 2 e 1 – 2x = 0  x = ½ +++ -------------------------- x 1/2 ----------------------- +++++ x 2 - + - x 1/2 2 S = [1/2 , 2]
  • 28. II) x+3 > 0, x ≠ 1 x −1 x + 3 = 0  x = -3 e x – 1 = 0  x = 1 -------- +++++++++++++ x -3 -------------------- ++++++ x 1 + - + x -3 1 S=]-∞,-3[ U ]1,+ ∞[
  • 29. Tente fazer sozinho! (UFC-CE) O conjunto solução, nos números 1− x reais, da inequação > −1 é igual a: 1+ x a ){ x ∈ R; x > −1} b){ x ∈ R; x > 0} c){ x ∈ R; x > 1} d ){ x ∈ R; x > 2} e){ x ∈ R; x > 3}
  • 30. Solução 1− x 1− x 1− x +1+ x 2 > −1 ⇒ +1 > 0 ⇒ >0⇒ >0 1+ x 1+ x 1+ x 1+ x 1+x=0 x = -1 --------- ++++++++++++ x -1 S=]-1,+ ∞[ letra A