SlideShare uma empresa Scribd logo
1 de 36
D
 E
  T
   E
    R
Determinante
     M
      I
       N
         A
          N
          T
           E
O que você sabe
     sobre
 determinante?
Para aproveitar 100%
               dessa aula você precisa
                       saber:
   Matrizes

   Equação do 1º

   Equação do 2º grau
Como representamos o
             determinante de uma
                   matriz?
   Colocando os elementos de uma matriz
entre duas barras verticais.

Exemplos:
    1 2           12
 A =
    4 0  ⇒Det A = 4 0
         
        
      1 4 0            140
            
 B =  2 0 1  ⇒ Det B = 2 0 1
     5 5 3             553
            
Como calculamos o
             determinante de uma
               matriz quadrada?
   Se for uma matriz de ordem 1,
então o determinante é o próprio
elemento da matriz.

Exemplo:
     A = ( − 4 ) ⇒ det A = − 4 = −4
 Se for uma matriz de ordem 2, então o
 determinante é a diferença entre o produto dos
 elementos da matriz principal e o produto dos
 elementos da matriz secundária.

Exemplo:
    2 3          2 3
 A =
    1 0 ⇒
          det A =
                 10

 2.0 − 3.1 = −3
Tente fazer sozinho!
                   x − 1        x y
(UF-PI) Sejam A = 
                   y 2 e B =  1 1
                                    
                                   
  Se det A = 4 e det B = 2, então, x + y é
igual a:
a) 2
b) 3
c) 4
d) 5
e) 6
Solução
          x −1                             x y
det A =           =4             det B =         =2
          y   2                            11
2 x − (− y ) = 4 ⇒ 2 x + y = 4   x− y =2

2 x + y = 4 2 x + y = 4   3x = 6          x-y=2
           ⇒            ⇒
                                            2-y=2
x − y = 2   x − y = 2     x=2
                                            y=0

Logo, x + y = 2 + 0 = 2
Resposta: letra A.
 Se for uma matriz de ordem 3,
então o determinante é calculado
através da Regra de Sarrus.
Exemplo:




det A = 10 – 4 + 0 + 6 + 0 – 12
det A = 0
Tente fazer sozinho!
(Cefet-MG) O(s) valor(es) de x para que

        1 2 x
        x 0 − 1 = −8 é(são):
        x −2 −3

a) -1 b) 1 c) 3 d) -1 e 1 e) -1 e 3
Solução
                 1 2 x 1 2
  1 2 x
                 x 0 − 1 x 0 = −8
  x 0 − 1 = −8
                 x − 2 − 3 x -2
  x −2 −3
              0 -2 6x      0 -2x -2x2

-2 + 6x -2x -2x2 =-8
-2x2 + 4x -10 = 0
As raízes são -1 e 3.
Resposta: letra E.
Propriedades dos
                determinantes
1ª) Se todos os elementos de uma fila
(linha ou coluna) de uma matriz quadrada
forem iguais a zero, o determinante
   dessa
matriz também será zero.
             1 0 4 1 
                       
Exemplo: 2 0 3 0 
        A =            ⇒   det A =0
              3 0 7 2
                       
             9 0 0 5 
                       
2ª) Se os elementos correspondentes de
duas filas (duas linhas ou duas colunas) de
uma matriz forem iguais, o determinante
dessa matriz será zero.

Exemplo:
         1 0 4 1 
                 
         2 7 3 0 
      A =        ⇒det A =0
          2 5 3 0
                 
         9 1 0 5 
                 
3ª) Se duas filas (duas linhas ou duas colunas)
de uma matriz forem proporcionais, o
determinante dessa matriz será zero.

Exemplo:  1 0 4 2 
                  
          2 7 3 4 
       A =        ⇒det A =0
           2 7 3 4
                  
          3 1 0 6 
                  
4ª) Se trocamos duas filas (duas linhas ou duas colunas)
   de posição, o determinante da nova matriz será o
   oposto da matriz anterior.

                 1 2 5              0 1 3 
Exemplo:                                     
              A= 0 1 3       e   B= 1 2 5
                 −1 0 − 2           −1 0 − 2 
                                             


    det A =



   det A = 5 + 2 + 6 = 13, então det B = -13
5ª) Se todos os elementos de uma fila (linha ou coluna)
   forem multiplicados por um mesmo número, então o
  determinante também fica multiplicado por esse número.
Exemplo:         1 2 5
                         
                                     3
                                    
                                           6 15 
                                                
              A= 0 1 3      e   B= 1    2 5
                 −1 0 − 2          −1   0 −2 
                                             

    det A =



   det A = 5 + 2 + 6 = 13, então det B = 39
6ª) Se uma matriz quadrada for multiplicada por um
   número real, então o determinante fica multiplicado por
   esse número elevado a ordem da matriz.

Exemplo:
   1 2 5                   1 2 5  2           4 10 
                                                   
A= 0 1 3         e   B = 2 0 1 3  =  0        2 6
   −1 0 − 2                −1 0 − 2  − 2      0 −4 
                                                   

   det A = 13, então det B = 13. 23 = 104
7ª) O determinante de uma matriz quadrada
é igual ao determinante da sua transposta.

Exemplo:
               1 2 5
                       
            A= 0 1 3 
               −1 0 − 2
                       

 det A = 13, então det At = 13
8ª) O determinante de uma matriz triangular
é igual ao produto dos elementos da
diagonal principal.

Exemplo:         1 2 5 
                        
             A = 0 1 3 
                 0 0 − 2
                        


           det A = 1.1.(-2) = -2
9ª) Teorema de Binet Sendo duas matrizes A e B duas
   matrizes quadradas de mesma ordem e AB a matriz
   produto, então det(AB) = (det A) (det B).

             3 2
Exemplo: A =                     0 2
              5 − 1
                           e   B=
                                   3 4
                                       
                                    
           6 14 
     AB = 
           − 3 6  ⇒ det( AB) = 36 + 42 = 78
                  
                 

    det A . det B = (-3 -10)(0 - 6) = 78
Tente fazer sozinho!
  (UFC-CE) Sejam A e B matrizes 3x3 tais
que det A = 3 e det B = 4.
  Então, det (A . 2B) é igual a:
a) 32
b) 48
c) 64
d) 80
e) 96
Solução
det A = 3 e det B = 4

Pelo Teorema de Binet temos que:
det(A . 2B) = det A . det 2B

E pela 6ª propriedade temos que:
det 2B = 4 . 23 = 32

Logo, det(A . 2B) = 3 . 32 = 96  letra E.
10ª) Seja A uma matriz
                  quadrada invertível
                                  1−1
e A sua inversa. Então, det A =
   -1

                                det A
Exemplo:
                               0 1 
           1 − 1         −1      2
        A=
          2 0      e   A =
                             −1 1 
                                     
                                   2

                                    −1   1
        det A = 0 + 2 = 2, então det A =
                                         2
Tente fazer sozinho!
  (Cefet-PR) Uma matriz A quadrada, de
  ordem 3, possui determinante igual a 2.
  O valor de det (2 . A-1) é:
a) 1
b) 2
c) 3
d) 4
e) 5
Solução
det A = 2

Pela 10ª propriedade temos que:
     −1    1          −1 1
det A =        ⇒ det A =
         det A           2
Pela 6ª propriedade temos que:
det 2.A-1 = 1/2 . 23 = 4

Logo, det (2 . A-1) = 4  letra D.
Teorema de La Place
  Dada uma matriz quadrada de ordem n > 1, o
determinante da matriz A será o número real que
se obtém somando-se os produtos dos elementos
de uma fila (linha ou coluna) qualquer pelos seus
respectivos cofatores.

  Esse teorema nos permite calcular o determinante
de matrizes de ordem maior que 3.
  Porém, antes vamos aprender os conceitos
de Cofator.
O que é Cofator de uma
                    matriz?
  É o produto de (-1)i+j (sendo i e j o índice
de um elemento) pelo determinante da
matriz obtida quando eliminamos a linha e
a coluna desse elemento.

Exemplo: Considerando a matriz
               2 5 3 
                        
           A =  0 − 2 −1
                6 4 − 3
                        
Vamos calcular os cofator c11.

                  2 5 3 
                           
              A =  0 − 2 −1
                   6 4 − 3
                           
                       − 2 −1
C11 = (-1)   1+1
                   .
                        4 −3


C11 = 1.[-2 .(-3) - (-1). 4] = 6 + 4 = 10
Vamos calcular os cofator c23.

                           2 5 3 
                                    
                       A =  0 − 2 −1
                            6 4 − 3
                                    
                        2 5
C23 = (-1)   2+3
                   .
                        6 4


C23 = -1.[2 .4 – 5 . 6] = -1. (8 - 30)= -1(-22) = 22
Teorema de La Place
  Dada uma matriz quadrada de ordem n > 1,
o determinante da matriz A será o número
  real
que se obtém somando-se os produtos dos
elementos de uma fila (linha ou coluna)
qualquer pelos seus respectivos cofatores.

 Exemplo: Considerando3amatriz
                2 5
                         
            A =  0 − 2 −1
                 6 4 − 3
                         
Vamos calcular o determinante
                       usando da segunda linha.
                           2 5 3 
                                    
                       A =  0 − 2 −1
                            6 4 − 3
                                    
                       5   3
C21 = (-1)   2+1
                   .           = -1.[5 .(-3) – 3 . 4] = 27
                       4 −3
                       2   3
C22 = (-1)2+2 . 6 − 3 = 1.[2 .(-3) - (3. 6)] = -24
                       2   5
C23 = (-1)2+3 . 6 4 = -1.[2 . 4 - 5. 6)] = 22
Então, o cálculo do
              determinante da matriz
                  2 5 3 
                           
              A =  0 − 2 −1
                   6 4 − 3
                           
Pelo Teorema de La Place é:

det A = 27.0 + (-24).(-2) + 22.(-1)
det A = 0 + 48 - 22
det A = 26.
O que você aprendeu:
   Como representar e calcular um
    determinante.
   Regra de Sarrus.
   As propriedades dos determinantes.
   Teorema de La Place.
Bibliografia
  Dante, Luiz Roberto – Matemática Contexto
  e Aplicações. 3ª edição – 2008. Editora Ática
  – SP. Páginas: 146 a 174.
 Iezzi, Gelson; Dolce, Osvaldo; Périgo,
  Roberto; Degenszajn, David – Matemática
  (volume único). 4ª edição – 2007. Editora
  Atual – SP. Páginas: 303 a 313.
 Bianchini, Edwaldo; Paccola, Herval – Curso
  de Matemática. 3ª edição – 2003. Editora
  Moderna – SP. Páginas: 295 a 308.
 http://www.somatematica.com.br/emedio/det
  erminantes/

Mais conteúdo relacionado

Mais procurados

Equação 1° grau
Equação 1° grauEquação 1° grau
Equação 1° grau190384221087
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3Erivaldo Duarte
 
Lista Resolvida de Números racionais
Lista Resolvida de Números racionaisLista Resolvida de Números racionais
Lista Resolvida de Números racionaisProfessora Andréia
 
Mat matrizes determinantes 001 exercicios
Mat matrizes determinantes  001 exerciciosMat matrizes determinantes  001 exercicios
Mat matrizes determinantes 001 exerciciostrigono_metrico
 
Lista de exercícios sobre matrizes série
Lista de exercícios sobre matrizes     sérieLista de exercícios sobre matrizes     série
Lista de exercícios sobre matrizes sériejackpage
 
Equação do 1º e 2º grau
Equação do 1º e 2º grauEquação do 1º e 2º grau
Equação do 1º e 2º grauZaqueu Oliveira
 
Lista de exercícios 8 série
Lista de exercícios 8 sérieLista de exercícios 8 série
Lista de exercícios 8 sérieColégio Integral
 
Aula (Função quadrática)
Aula (Função quadrática)Aula (Função quadrática)
Aula (Função quadrática)samuel vitor
 
Regras de sinais
Regras de sinaisRegras de sinais
Regras de sinaisToniwmat
 
EQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resoluçãoEQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resoluçãobetontem
 
Matrizes e determinantes exercícios
Matrizes e determinantes   exercícios Matrizes e determinantes   exercícios
Matrizes e determinantes exercícios Edson Marcos Silva
 
Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.agendab
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidosAdriano Souza
 
Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9Angela Costa
 

Mais procurados (20)

Equação 1° grau
Equação 1° grauEquação 1° grau
Equação 1° grau
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3
 
Lista Resolvida de Números racionais
Lista Resolvida de Números racionaisLista Resolvida de Números racionais
Lista Resolvida de Números racionais
 
Matriz e Determinantes
Matriz e DeterminantesMatriz e Determinantes
Matriz e Determinantes
 
Matematica
MatematicaMatematica
Matematica
 
Mat matrizes determinantes 001 exercicios
Mat matrizes determinantes  001 exerciciosMat matrizes determinantes  001 exercicios
Mat matrizes determinantes 001 exercicios
 
Lista de exercícios sobre matrizes série
Lista de exercícios sobre matrizes     sérieLista de exercícios sobre matrizes     série
Lista de exercícios sobre matrizes série
 
Equação do 1º e 2º grau
Equação do 1º e 2º grauEquação do 1º e 2º grau
Equação do 1º e 2º grau
 
Lista de exercícios 8 série
Lista de exercícios 8 sérieLista de exercícios 8 série
Lista de exercícios 8 série
 
Circunferência
CircunferênciaCircunferência
Circunferência
 
Aula (Função quadrática)
Aula (Função quadrática)Aula (Função quadrática)
Aula (Função quadrática)
 
Matrizes 2014
Matrizes 2014Matrizes 2014
Matrizes 2014
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
8 ano produtos notáveis e ângulos
8 ano produtos notáveis e ângulos8 ano produtos notáveis e ângulos
8 ano produtos notáveis e ângulos
 
Regras de sinais
Regras de sinaisRegras de sinais
Regras de sinais
 
EQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resoluçãoEQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resolução
 
Matrizes e determinantes exercícios
Matrizes e determinantes   exercícios Matrizes e determinantes   exercícios
Matrizes e determinantes exercícios
 
Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
 
Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9
 

Semelhante a Determinante de matrizes

www.aulasapoio.com - Matemática - Determinantes
www.aulasapoio.com  - Matemática -  Determinanteswww.aulasapoio.com  - Matemática -  Determinantes
www.aulasapoio.com - Matemática - DeterminantesAulas Apoio
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - DeterminantesClarice Leclaire
 
www.professoraparticularapoio.com.br -Matemática - Determinantes
www.professoraparticularapoio.com.br -Matemática -  Determinanteswww.professoraparticularapoio.com.br -Matemática -  Determinantes
www.professoraparticularapoio.com.br -Matemática - DeterminantesPatrícia Morais
 
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes
www.AulasDeMatematicaApoio.com.br - Matemática - DeterminantesBeatriz Góes
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - DeterminantesAulasEnsinoMedio
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - DeterminantesAulasEnsinoMedio
 
www.aulaparticularonline.net.br - Matemática - Matrizes
www.aulaparticularonline.net.br - Matemática -  Matrizeswww.aulaparticularonline.net.br - Matemática -  Matrizes
www.aulaparticularonline.net.br - Matemática - MatrizesLucia Silveira
 
www.aulasapoio.com - Matemática - Matrizes
www.aulasapoio.com  - Matemática -  Matrizeswww.aulasapoio.com  - Matemática -  Matrizes
www.aulasapoio.com - Matemática - MatrizesAulas Apoio
 
www.AulasDeMatematicaApoio.com.br - Matemática - Matrizes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Matrizes www.AulasDeMatematicaApoio.com.br  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com.br - Matemática - MatrizesBeatriz Góes
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - MatrizesAulas De Matemática Apoio
 
Mat exercicios resolvidos 002
Mat exercicios resolvidos  002Mat exercicios resolvidos  002
Mat exercicios resolvidos 002trigono_metrico
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes resIsabella Silva
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes resIsabella Silva
 
Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]AUTONOMO
 
Determinantes Sistemas Lineares
Determinantes Sistemas LinearesDeterminantes Sistemas Lineares
Determinantes Sistemas LinearesISJ
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas linearesISJ
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas linearesISJ
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas linearesAntonio Carneiro
 
Exercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoExercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoOtávio Sales
 

Semelhante a Determinante de matrizes (20)

www.aulasapoio.com - Matemática - Determinantes
www.aulasapoio.com  - Matemática -  Determinanteswww.aulasapoio.com  - Matemática -  Determinantes
www.aulasapoio.com - Matemática - Determinantes
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 
www.professoraparticularapoio.com.br -Matemática - Determinantes
www.professoraparticularapoio.com.br -Matemática -  Determinanteswww.professoraparticularapoio.com.br -Matemática -  Determinantes
www.professoraparticularapoio.com.br -Matemática - Determinantes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
 
www.aulaparticularonline.net.br - Matemática - Matrizes
www.aulaparticularonline.net.br - Matemática -  Matrizeswww.aulaparticularonline.net.br - Matemática -  Matrizes
www.aulaparticularonline.net.br - Matemática - Matrizes
 
www.aulasapoio.com - Matemática - Matrizes
www.aulasapoio.com  - Matemática -  Matrizeswww.aulasapoio.com  - Matemática -  Matrizes
www.aulasapoio.com - Matemática - Matrizes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Matrizes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Matrizes www.AulasDeMatematicaApoio.com.br  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com.br - Matemática - Matrizes
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
 
Mat exercicios resolvidos 002
Mat exercicios resolvidos  002Mat exercicios resolvidos  002
Mat exercicios resolvidos 002
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes res
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes res
 
Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]
 
Determinantes Sistemas Lineares
Determinantes Sistemas LinearesDeterminantes Sistemas Lineares
Determinantes Sistemas Lineares
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas lineares
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas lineares
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas lineares
 
Exercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoExercícios matrizes ii gabarito
Exercícios matrizes ii gabarito
 
Determinantes
DeterminantesDeterminantes
Determinantes
 

Mais de Aulas De Matemática Apoio

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com EquaçõesAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - LogaritmoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações AlgébricasAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração ConceitualAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - RadiciaçãoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - ProbabilidadeAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - PotenciaçãoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e PontosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números ComplexosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função AfimAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos NuméricosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e CilindrosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - PolinômiosAulas De Matemática Apoio
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo TrigonométricoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - ÂngulosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números InteirosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação ExponêncialAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Equação do 1º Grau
 www.AulasDeMatematicaApoio.com  - Matemática -  Equação do 1º Grau www.AulasDeMatematicaApoio.com  - Matemática -  Equação do 1º Grau
www.AulasDeMatematicaApoio.com - Matemática - Equação do 1º GrauAulas De Matemática Apoio
 

Mais de Aulas De Matemática Apoio (20)

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
 
www.AulasDeMatematicaApoio.com - Matemática - Equação do 1º Grau
 www.AulasDeMatematicaApoio.com  - Matemática -  Equação do 1º Grau www.AulasDeMatematicaApoio.com  - Matemática -  Equação do 1º Grau
www.AulasDeMatematicaApoio.com - Matemática - Equação do 1º Grau
 

Último

Junto ao poço estava eu Quando um homem judeu Viu a sede que havia em mim
Junto ao poço estava eu Quando um homem judeu Viu a sede que havia em mimJunto ao poço estava eu Quando um homem judeu Viu a sede que havia em mim
Junto ao poço estava eu Quando um homem judeu Viu a sede que havia em mimWashingtonSampaio5
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxacaciocarmo1
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxconcelhovdragons
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdfProfGleide
 
As Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAs Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAlexandreFrana33
 
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.HildegardeAngel
 
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptxQUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptxAntonioVieira539017
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terraBiblioteca UCS
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...Martin M Flynn
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxLuizHenriquedeAlmeid6
 
A população Brasileira e diferença de populoso e povoado
A população Brasileira e diferença de populoso e povoadoA população Brasileira e diferença de populoso e povoado
A população Brasileira e diferença de populoso e povoadodanieligomes4
 
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdforganizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdfCarlosRodrigues832670
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLaseVasconcelos1
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxDeyvidBriel
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfmarialuciadasilva17
 
Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?MrciaRocha48
 
parte indígena.pptxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
parte indígena.pptxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzparte indígena.pptxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
parte indígena.pptxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzAlexandrePereira818171
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoCelianeOliveira8
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxGislaineDuresCruz
 

Último (20)

Junto ao poço estava eu Quando um homem judeu Viu a sede que havia em mim
Junto ao poço estava eu Quando um homem judeu Viu a sede que havia em mimJunto ao poço estava eu Quando um homem judeu Viu a sede que havia em mim
Junto ao poço estava eu Quando um homem judeu Viu a sede que havia em mim
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptx
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
 
As Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAs Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptx
 
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
 
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptxQUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terra
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
 
A população Brasileira e diferença de populoso e povoado
A população Brasileira e diferença de populoso e povoadoA população Brasileira e diferença de populoso e povoado
A população Brasileira e diferença de populoso e povoado
 
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdforganizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdf
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
 
Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?
 
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
“O AMANHÃ EXIGE O MELHOR DE HOJE”       _“O AMANHÃ EXIGE O MELHOR DE HOJE”       _
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
 
parte indígena.pptxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
parte indígena.pptxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzparte indígena.pptxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
parte indígena.pptxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e feminino
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
 

Determinante de matrizes

  • 1. D E T E R Determinante M I N A N T E
  • 2. O que você sabe sobre determinante?
  • 3. Para aproveitar 100% dessa aula você precisa saber:  Matrizes  Equação do 1º  Equação do 2º grau
  • 4. Como representamos o determinante de uma matriz? Colocando os elementos de uma matriz entre duas barras verticais. Exemplos: 1 2  12 A = 4 0  ⇒Det A = 4 0     1 4 0 140   B =  2 0 1  ⇒ Det B = 2 0 1 5 5 3  553  
  • 5. Como calculamos o determinante de uma matriz quadrada?  Se for uma matriz de ordem 1, então o determinante é o próprio elemento da matriz. Exemplo: A = ( − 4 ) ⇒ det A = − 4 = −4
  • 6.  Se for uma matriz de ordem 2, então o determinante é a diferença entre o produto dos elementos da matriz principal e o produto dos elementos da matriz secundária. Exemplo: 2 3  2 3 A = 1 0 ⇒  det A =   10 2.0 − 3.1 = −3
  • 7. Tente fazer sozinho!  x − 1  x y (UF-PI) Sejam A =   y 2 e B =  1 1        Se det A = 4 e det B = 2, então, x + y é igual a: a) 2 b) 3 c) 4 d) 5 e) 6
  • 8. Solução x −1 x y det A = =4 det B = =2 y 2 11 2 x − (− y ) = 4 ⇒ 2 x + y = 4 x− y =2 2 x + y = 4 2 x + y = 4 3x = 6 x-y=2  ⇒ ⇒ 2-y=2 x − y = 2 x − y = 2 x=2 y=0 Logo, x + y = 2 + 0 = 2 Resposta: letra A.
  • 9.  Se for uma matriz de ordem 3, então o determinante é calculado através da Regra de Sarrus.
  • 10.
  • 11. Exemplo: det A = 10 – 4 + 0 + 6 + 0 – 12 det A = 0
  • 12. Tente fazer sozinho! (Cefet-MG) O(s) valor(es) de x para que 1 2 x x 0 − 1 = −8 é(são): x −2 −3 a) -1 b) 1 c) 3 d) -1 e 1 e) -1 e 3
  • 13. Solução 1 2 x 1 2 1 2 x x 0 − 1 x 0 = −8 x 0 − 1 = −8 x − 2 − 3 x -2 x −2 −3 0 -2 6x 0 -2x -2x2 -2 + 6x -2x -2x2 =-8 -2x2 + 4x -10 = 0 As raízes são -1 e 3. Resposta: letra E.
  • 14. Propriedades dos determinantes 1ª) Se todos os elementos de uma fila (linha ou coluna) de uma matriz quadrada forem iguais a zero, o determinante dessa matriz também será zero. 1 0 4 1    Exemplo: 2 0 3 0  A = ⇒ det A =0 3 0 7 2   9 0 0 5   
  • 15. 2ª) Se os elementos correspondentes de duas filas (duas linhas ou duas colunas) de uma matriz forem iguais, o determinante dessa matriz será zero. Exemplo: 1 0 4 1    2 7 3 0  A = ⇒det A =0 2 5 3 0   9 1 0 5   
  • 16. 3ª) Se duas filas (duas linhas ou duas colunas) de uma matriz forem proporcionais, o determinante dessa matriz será zero. Exemplo: 1 0 4 2    2 7 3 4  A = ⇒det A =0 2 7 3 4   3 1 0 6   
  • 17. 4ª) Se trocamos duas filas (duas linhas ou duas colunas) de posição, o determinante da nova matriz será o oposto da matriz anterior.  1 2 5  0 1 3  Exemplo:     A= 0 1 3  e B= 1 2 5  −1 0 − 2   −1 0 − 2      det A = det A = 5 + 2 + 6 = 13, então det B = -13
  • 18. 5ª) Se todos os elementos de uma fila (linha ou coluna) forem multiplicados por um mesmo número, então o determinante também fica multiplicado por esse número. Exemplo:  1 2 5    3  6 15   A= 0 1 3  e B= 1 2 5  −1 0 − 2  −1 0 −2      det A = det A = 5 + 2 + 6 = 13, então det B = 39
  • 19. 6ª) Se uma matriz quadrada for multiplicada por um número real, então o determinante fica multiplicado por esse número elevado a ordem da matriz. Exemplo:  1 2 5  1 2 5  2 4 10        A= 0 1 3  e B = 2 0 1 3  =  0 2 6  −1 0 − 2  −1 0 − 2  − 2 0 −4        det A = 13, então det B = 13. 23 = 104
  • 20. 7ª) O determinante de uma matriz quadrada é igual ao determinante da sua transposta. Exemplo:  1 2 5   A= 0 1 3   −1 0 − 2   det A = 13, então det At = 13
  • 21. 8ª) O determinante de uma matriz triangular é igual ao produto dos elementos da diagonal principal. Exemplo: 1 2 5    A = 0 1 3  0 0 − 2   det A = 1.1.(-2) = -2
  • 22. 9ª) Teorema de Binet Sendo duas matrizes A e B duas matrizes quadradas de mesma ordem e AB a matriz produto, então det(AB) = (det A) (det B). 3 2 Exemplo: A =  0 2  5 − 1  e B=  3 4       6 14  AB =   − 3 6  ⇒ det( AB) = 36 + 42 = 78    det A . det B = (-3 -10)(0 - 6) = 78
  • 23. Tente fazer sozinho! (UFC-CE) Sejam A e B matrizes 3x3 tais que det A = 3 e det B = 4. Então, det (A . 2B) é igual a: a) 32 b) 48 c) 64 d) 80 e) 96
  • 24. Solução det A = 3 e det B = 4 Pelo Teorema de Binet temos que: det(A . 2B) = det A . det 2B E pela 6ª propriedade temos que: det 2B = 4 . 23 = 32 Logo, det(A . 2B) = 3 . 32 = 96  letra E.
  • 25. 10ª) Seja A uma matriz quadrada invertível 1−1 e A sua inversa. Então, det A = -1 det A Exemplo:  0 1   1 − 1 −1  2 A= 2 0   e A =    −1 1    2 −1 1 det A = 0 + 2 = 2, então det A = 2
  • 26. Tente fazer sozinho! (Cefet-PR) Uma matriz A quadrada, de ordem 3, possui determinante igual a 2. O valor de det (2 . A-1) é: a) 1 b) 2 c) 3 d) 4 e) 5
  • 27. Solução det A = 2 Pela 10ª propriedade temos que: −1 1 −1 1 det A = ⇒ det A = det A 2 Pela 6ª propriedade temos que: det 2.A-1 = 1/2 . 23 = 4 Logo, det (2 . A-1) = 4  letra D.
  • 28. Teorema de La Place Dada uma matriz quadrada de ordem n > 1, o determinante da matriz A será o número real que se obtém somando-se os produtos dos elementos de uma fila (linha ou coluna) qualquer pelos seus respectivos cofatores. Esse teorema nos permite calcular o determinante de matrizes de ordem maior que 3. Porém, antes vamos aprender os conceitos de Cofator.
  • 29. O que é Cofator de uma matriz? É o produto de (-1)i+j (sendo i e j o índice de um elemento) pelo determinante da matriz obtida quando eliminamos a linha e a coluna desse elemento. Exemplo: Considerando a matriz 2 5 3    A =  0 − 2 −1  6 4 − 3  
  • 30. Vamos calcular os cofator c11. 2 5 3    A =  0 − 2 −1  6 4 − 3   − 2 −1 C11 = (-1) 1+1 . 4 −3 C11 = 1.[-2 .(-3) - (-1). 4] = 6 + 4 = 10
  • 31. Vamos calcular os cofator c23. 2 5 3    A =  0 − 2 −1  6 4 − 3   2 5 C23 = (-1) 2+3 . 6 4 C23 = -1.[2 .4 – 5 . 6] = -1. (8 - 30)= -1(-22) = 22
  • 32. Teorema de La Place Dada uma matriz quadrada de ordem n > 1, o determinante da matriz A será o número real que se obtém somando-se os produtos dos elementos de uma fila (linha ou coluna) qualquer pelos seus respectivos cofatores. Exemplo: Considerando3amatriz 2 5   A =  0 − 2 −1  6 4 − 3  
  • 33. Vamos calcular o determinante usando da segunda linha. 2 5 3    A =  0 − 2 −1  6 4 − 3   5 3 C21 = (-1) 2+1 . = -1.[5 .(-3) – 3 . 4] = 27 4 −3 2 3 C22 = (-1)2+2 . 6 − 3 = 1.[2 .(-3) - (3. 6)] = -24 2 5 C23 = (-1)2+3 . 6 4 = -1.[2 . 4 - 5. 6)] = 22
  • 34. Então, o cálculo do determinante da matriz 2 5 3    A =  0 − 2 −1  6 4 − 3   Pelo Teorema de La Place é: det A = 27.0 + (-24).(-2) + 22.(-1) det A = 0 + 48 - 22 det A = 26.
  • 35. O que você aprendeu:  Como representar e calcular um determinante.  Regra de Sarrus.  As propriedades dos determinantes.  Teorema de La Place.
  • 36. Bibliografia  Dante, Luiz Roberto – Matemática Contexto e Aplicações. 3ª edição – 2008. Editora Ática – SP. Páginas: 146 a 174.  Iezzi, Gelson; Dolce, Osvaldo; Périgo, Roberto; Degenszajn, David – Matemática (volume único). 4ª edição – 2007. Editora Atual – SP. Páginas: 303 a 313.  Bianchini, Edwaldo; Paccola, Herval – Curso de Matemática. 3ª edição – 2003. Editora Moderna – SP. Páginas: 295 a 308.  http://www.somatematica.com.br/emedio/det erminantes/