SlideShare uma empresa Scribd logo
1 de 29
Como resolvemos
problemas através
de uma equação?
Para aproveitar 100%
dessa aula você precisa
saber:
 O Conjuntos dos Números Inteiros e
todas as operações
 O Conjuntos dos Números Racionais
e todas as operações
 Equações do 1º grau
1) Ler o problema
2) Ler novamente e destacar as informações
importantes.
3) Ler pela 3ª vez, montando um esquema e definir a
variável.
4) Ler outra vez e montar a equação
5) Resolver a equação
6) Ler pela última vez para lembrar a pergunta
7) Responder o problema
Para resolver um problema através
de uma equação, devemos
seguir 7 passos:
1) Um número é somado com 10. Multiplica-se essa
soma por 3 e o resultado é 72. Qual é esse
número?
A variável é o número, que chamaremos de x.
Montando a equação:
Número somado com 10
x + 10
Multiplica-se soma por 3
3 (x + 10)
O resultado é 72
3 (x + 10) = 72
Resolvendo a equação:
3 (x + 10) = 72
3x + 30 = 72
3x = 72 – 30
3x = 42
x = 14
A pergunta é: Qual é o número?
A resposta é: O número é 14.
2) Maria tem o dobro da idade de Lúcia. Se Maria
tivesse 8 a menos e Lúcia 4 anos a mais, teriam
a mesma idade. Qual é a idade de Maria?
Lúcia : x
Maria : 2x
Montando a equação:
Se Maria tivesse 8 a menos:
2x – 8
e Lúcia 4 a mais:
x + 4
teriam mesma idade:
2x – 8 = x + 4
Resolvendo a equação:
2x – 8 = x + 4
2x – x = 4 + 8
x = 12
A pergunta é: Qual é a idade de Maria?
Maria: 2x  2 . 12 = 24.
Logo Maria tem 24 anos.
3) No dia que Rodrigo faltou a aula, o quádruplo
do número de meninos presentes foi igual a 28.
Se Rodrigo tivesse comparecido, quantos
seriam os meninos dessa aula?
Meninos: x
Rodrigo faltou: x – 1
Montando a equação:
O quádruplo de meninos presentes:
4 (x – 1)
igual a 28:
4 (x – 1) = 28
Resolvendo a equação:
4 (x – 1) = 28
4x – 4 = 28
4x = 28 + 4
4x = 32
x = 8
Pergunta: Se Rodrigo tivesse comparecido,
quantos seriam os meninos dessa aula?
Resposta: 8 meninos.
4) Num estacionamento encontram-se 15 carros e
x motos, fazendo um total de 100 rodas.
Quantas motos estão estacionadas?
carros: 15
motos: x
rodas: 100
Montando a equação:
Para cada carro, 4 rodas: 4.15 = 60
Para cada moto, 2 rodas: 2x
Total de rodas: 60 + 2x = 100
Resolvendo a equação:
60 + 2x = 100
2x = 100 – 60
2x = 40
x = 20
Pergunta: Quantas motos estão estacionadas?
Resposta: 20 motos
5) Carmem tinha o mesmo número de moedas de
5, 10, 25 e 50 centavos. Com elas, comprou um
livro que custava R$ 15,30. Quantas moedas
Carmem tinha ao todo?
número de moedas de cada valor: x
Montando a equação:
Somando todo o dinheiro que tinha
0,05x + 0,10x + 0,25x + 0,50x
Livro custava 15, 30
0,05x + 0,10x + 0,25x + 0,50x = 15,30
Resolvendo a equação:
0,05x + 0,10x + 0,25x + 0,50x = 15,30
0,90x = 15,30
x = 17
A pergunta é : Quantas moedas Carmem tinha ao
todo?
x + x + x + x = 4x = 4 . 17 = 68
A resposta é: 68 moedas.
6) Somando a metade de um número a sua terça
parte, obtemos 85. Que número é esse?
número: x
Montando a equação:
A metade de um número
Terça parte do número:
Metade do número + terça parte dele = 85
2
x
3
x
85
32
=+
xx
Resolvendo a equação:
A pergunta é: Que número é esse?
A resposta é: O número é 102.
102
5105
51023
85
32
=
=
=+
=+
x
x
xx
xx
3 2 6
7) Lara e seus irmão comeram , depois e
finalmente das rosquinhas que sua mãe fez,
sobrando no prato 3 rosquinhas. Quantas
rosquinhas a mãe de Lara fez?
número de rosquinhas : x
Montando a equação:
Quanto eles comeram
Quantas empadas rosquinhas foram feitas
6
1
2
1
xxx
6
1
4
1
2
1
++
4
1
xxxx =+++ 3
6
1
4
1
2
1
Resolvendo a equação:
A pergunta é: quantas rosquinhas foram feitas?
A resposta é: 36 rosquinhas
36
36
3612236
1236236
3
6
1
4
1
2
1
=
−=−
−=−++
=+++
=+++
x
x
xxxx
xxxx
xxxx
6 3 2 12 12
8) Uma batedeira e um liquidificador custam juntos
151 reais. A batedeira custa 21 reais a mais
que o liquidificador. Qual o preço da
batedeira?
Liquidificador: x
Batedeira: x + 21
Montando a equação:
Custam juntos 151
x + x + 21 = 151
Resolvendo a equação:
x + x + 21 = 151
2x = 151- 21
2x = 130
x = 65
A pergunta é: Qual o preço da batedeira?
Batedeira: x + 21  65 + 21 = 86
A resposta é: A batedeira custa 86 reais.
9) Quando André nasceu, o pai dele tinha 28 anos.
Hoje, a soma da idade de André com a de seu pai
é 44 anos. Qual a idade atual do pai de André?
André: x
Pai: x + 28
Montando a equação:
A soma das idades é 44 anos
x + x + 28 = 44
Resolvendo a equação:
x + x + 28 = 44
2x = 44 – 28
2x = 16
x = 8
A pergunta é: Qual é a idade do pai de André?
Pai de André: x + 28  8 + 28 = 36
A resposta é: O pai de André tem 36 anos.
10) Num jogo de basquete foram assinalados 118
pontos. A equipe vencedora ganhou por uma
diferença de 12 pontos. Quantos pontos marcou
a equipe vencedora?
Equipe perdedora: x
Equipe vencedora: x + 12
Montando a equação:
Soma dos pontos das equipes é 118.
x + x + 12 = 118
Resolvendo a equação:
x + x + 12 = 118
2x = 118 – 12
2x = 106
x = 53
A pergunta é: Quantos pontos marcou a
equipe vencedora?
Equipe vencedora: x + 12  53 + 12 = 65
A resposta é: 65 pontos
11) Gabriel, Giovana e Gláucia são irmãos. Hoje, a
idade de Giovana é o triplo da idade de Gabriel e
a idade de Gláucia é o quíntuplo da idade de
Gabriel. Qual é a idade de cada irmão, sabendo
que juntos eles tem 27 anos?
Gabriel: x
Giovana: 3x
Gláucia: 5x
Montando a equação:
Juntos tem 27 anos
x + 3x + 5x = 27
Resolvendo a equação:
x + 3x + 5x = 27
9x = 27
x = 3
A pergunta é: Qual é a idade de cada irmão?
Gabriel: x = 3
Giovana: 3x = 3 . 3 = 9
Gláucia: 5x = 5 . 3 = 15
A resposta é: Gabriel tem 3 anos, Giovana tem 9
anos e Gláucia tem 15 anos.
12) A base de um retângulo tem 8 cm a mais que a
largura. Seu perímetro é igual ao perímetro de
um quadrado com 19 cm de lado. Quanto mede
a base desse retângulo?
Largura: x
Base: x + 8
Logo, o perímetro do quadrado é
19 x 4 = 76
xx
x + 8
x + 8
O perímetro de uma figura geométrica igual a
soma de todos os lados dessa figura.
19
19
19 19
Montando a equação:
O perímetro do retângulo é igual ao perímetro do
quarado.
x + x + 8 + x + x + 8 = 76
Resolvendo a equação:
x + x + 8 + x + x + 8 = 76
4x + 16 = 76
4x = 60
x = 15
A pergunta é: Qual é a base desse retângulo?
Base: x + 8  15 + 8 = 23
A resposta é: A base mede
23 cm
Bibliografia
• Bianchini, Edwaldo – Matemática 6ª
série (7º ano), 6ª edição – 1998,
Editora Moderna. Páginas: 82 até
117.
• Silveira, Ênio; Marques, Cláudio –
Matemática 6ª série, 1ª edição –
2002, Editora Moderna. Páginas: 64
até 87.
Objetivos
 Montar equações do 1º grau, a partir
de um problema.
 Resolver as equações montadas.

Mais conteúdo relacionado

Mais procurados

1226083244 cálculo mental
1226083244 cálculo mental1226083244 cálculo mental
1226083244 cálculo mentalPelo Siro
 
Equações introdução
Equações   introduçãoEquações   introdução
Equações introduçãoAlda Santos
 
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...Cleidvaldo Oliveira
 
Multiplos e divisores_de_um_número
Multiplos e divisores_de_um_númeroMultiplos e divisores_de_um_número
Multiplos e divisores_de_um_númerotuchav
 
Múltiplos e divisores
Múltiplos e divisoresMúltiplos e divisores
Múltiplos e divisoresAneChagas
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numerotrigono_metria
 
Resolução de problemas conducentes à equações inequações quadráticas
Resolução de problemas conducentes à equações inequações  quadráticasResolução de problemas conducentes à equações inequações  quadráticas
Resolução de problemas conducentes à equações inequações quadráticasPaulo Mutolo
 
Equacionar problemas conducentes á equações quadráticas
Equacionar problemas conducentes á equações quadráticasEquacionar problemas conducentes á equações quadráticas
Equacionar problemas conducentes á equações quadráticasPaulo Mutolo
 
Divisão
DivisãoDivisão
Divisãotuchav
 
Regras para o algoritmo da divisão 2
Regras para o algoritmo da divisão 2Regras para o algoritmo da divisão 2
Regras para o algoritmo da divisão 2Ana Cláudia Lucas
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturaisrubensdiasjr07
 
Exercicios complementares -_matematica_-7o ano_3a_[1]
Exercicios complementares -_matematica_-7o ano_3a_[1]Exercicios complementares -_matematica_-7o ano_3a_[1]
Exercicios complementares -_matematica_-7o ano_3a_[1]Tatiane Oliveira Pinheiro
 
Resolução de problemas
Resolução de problemasResolução de problemas
Resolução de problemasleoniocpi180
 

Mais procurados (20)

Múltiplos e divisores
Múltiplos e divisoresMúltiplos e divisores
Múltiplos e divisores
 
1226083244 cálculo mental
1226083244 cálculo mental1226083244 cálculo mental
1226083244 cálculo mental
 
Equações introdução
Equações   introduçãoEquações   introdução
Equações introdução
 
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
 
Multiplos e divisores_de_um_número
Multiplos e divisores_de_um_númeroMultiplos e divisores_de_um_número
Multiplos e divisores_de_um_número
 
Matematica eja
Matematica ejaMatematica eja
Matematica eja
 
Divisão1
Divisão1Divisão1
Divisão1
 
Binarios
BinariosBinarios
Binarios
 
Múltiplos e divisores
Múltiplos e divisoresMúltiplos e divisores
Múltiplos e divisores
 
Divisão
DivisãoDivisão
Divisão
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numero
 
Resolução de problemas conducentes à equações inequações quadráticas
Resolução de problemas conducentes à equações inequações  quadráticasResolução de problemas conducentes à equações inequações  quadráticas
Resolução de problemas conducentes à equações inequações quadráticas
 
Equacionar problemas conducentes á equações quadráticas
Equacionar problemas conducentes á equações quadráticasEquacionar problemas conducentes á equações quadráticas
Equacionar problemas conducentes á equações quadráticas
 
Divisão
DivisãoDivisão
Divisão
 
Adição e subtração
Adição e subtraçãoAdição e subtração
Adição e subtração
 
Regras para o algoritmo da divisão 2
Regras para o algoritmo da divisão 2Regras para o algoritmo da divisão 2
Regras para o algoritmo da divisão 2
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
 
Exercicios complementares -_matematica_-7o ano_3a_[1]
Exercicios complementares -_matematica_-7o ano_3a_[1]Exercicios complementares -_matematica_-7o ano_3a_[1]
Exercicios complementares -_matematica_-7o ano_3a_[1]
 
Gabarito2710
Gabarito2710Gabarito2710
Gabarito2710
 
Resolução de problemas
Resolução de problemasResolução de problemas
Resolução de problemas
 

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações

www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com EquaçõesClarice Leclaire
 
Analise combinatoria 1
Analise combinatoria 1Analise combinatoria 1
Analise combinatoria 1SEDUC-PA
 
Problemas de 1º grau
Problemas de 1º grauProblemas de 1º grau
Problemas de 1º grauBlairvll
 
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabaritoprofzwipp
 
Mat equacoes do 1 grau 003
Mat equacoes do 1 grau  003Mat equacoes do 1 grau  003
Mat equacoes do 1 grau 003trigono_metria
 
Erivaldo e Baiano. UFSC.pdf
Erivaldo e Baiano. UFSC.pdfErivaldo e Baiano. UFSC.pdf
Erivaldo e Baiano. UFSC.pdfIsadoraMEstudos
 
1 f 1a semana 32 cópias
1 f 1a semana   32 cópias1 f 1a semana   32 cópias
1 f 1a semana 32 cópiasOtávio Sales
 
Sistemas De EquaçõEs
Sistemas De EquaçõEsSistemas De EquaçõEs
Sistemas De EquaçõEsGonzaga60
 
Resolvendo sistemas
Resolvendo sistemasResolvendo sistemas
Resolvendo sistemasErasmo lopes
 

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações (20)

www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
 
Eqmatemática 7 ano
Eqmatemática 7 anoEqmatemática 7 ano
Eqmatemática 7 ano
 
Aula2 equação 1º_
Aula2 equação 1º_Aula2 equação 1º_
Aula2 equação 1º_
 
Analise combinatoria 1
Analise combinatoria 1Analise combinatoria 1
Analise combinatoria 1
 
Problemas de 1º grau
Problemas de 1º grauProblemas de 1º grau
Problemas de 1º grau
 
Matemática Enem
Matemática EnemMatemática Enem
Matemática Enem
 
Atividades 2- saerjinho 9 ano 2º bimestre. gabarito
Atividades   2- saerjinho 9 ano 2º bimestre. gabaritoAtividades   2- saerjinho 9 ano 2º bimestre. gabarito
Atividades 2- saerjinho 9 ano 2º bimestre. gabarito
 
Problemas
ProblemasProblemas
Problemas
 
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
 
Mat equacoes do 1 grau 003
Mat equacoes do 1 grau  003Mat equacoes do 1 grau  003
Mat equacoes do 1 grau 003
 
Erivaldo e Baiano. UFSC.pdf
Erivaldo e Baiano. UFSC.pdfErivaldo e Baiano. UFSC.pdf
Erivaldo e Baiano. UFSC.pdf
 
1 f 1a semana 32 cópias
1 f 1a semana   32 cópias1 f 1a semana   32 cópias
1 f 1a semana 32 cópias
 
Sistemas De EquaçõEs
Sistemas De EquaçõEsSistemas De EquaçõEs
Sistemas De EquaçõEs
 
1657629096172.pdf
1657629096172.pdf1657629096172.pdf
1657629096172.pdf
 
Equacao do 1_grau
Equacao do 1_grauEquacao do 1_grau
Equacao do 1_grau
 
Resolvendo sistemas
Resolvendo sistemasResolvendo sistemas
Resolvendo sistemas
 
Matematica 2015
Matematica 2015Matematica 2015
Matematica 2015
 
Matemática 2012 quarta manhã 22 08 12
Matemática  2012 quarta manhã  22 08 12Matemática  2012 quarta manhã  22 08 12
Matemática 2012 quarta manhã 22 08 12
 
Multiplicao alt
Multiplicao altMultiplicao alt
Multiplicao alt
 
Matemática basica
Matemática basicaMatemática basica
Matemática basica
 

Mais de Aulas De Matemática Apoio

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - LogaritmoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações AlgébricasAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração ConceitualAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - RadiciaçãoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - ProbabilidadeAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - PotenciaçãoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e PontosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números ComplexosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - MatrizesAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função AfimAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - DeterminanteAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos NuméricosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e CilindrosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - PolinômiosAulas De Matemática Apoio
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo TrigonométricoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - ÂngulosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números InteirosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação ExponêncialAulas De Matemática Apoio
 

Mais de Aulas De Matemática Apoio (20)

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - Determinante
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
 

Último

Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?MrciaRocha48
 
Orientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxOrientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxJMTCS
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLaseVasconcelos1
 
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptxQUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptxAntonioVieira539017
 
Free-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptxFree-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptxkarinasantiago54
 
atividades diversas 1° ano alfabetização
atividades diversas 1° ano alfabetizaçãoatividades diversas 1° ano alfabetização
atividades diversas 1° ano alfabetizaçãodanielagracia9
 
A população Brasileira e diferença de populoso e povoado
A população Brasileira e diferença de populoso e povoadoA população Brasileira e diferença de populoso e povoado
A população Brasileira e diferença de populoso e povoadodanieligomes4
 
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.HildegardeAngel
 
Revolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptxRevolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptxHlioMachado1
 
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdforganizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdfCarlosRodrigues832670
 
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdfDemetrio Ccesa Rayme
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoCelianeOliveira8
 
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptxEVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptxHenriqueLuciano2
 
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...LuizHenriquedeAlmeid6
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas BrasileirosMary Alvarenga
 
Dança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parteDança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira partecoletivoddois
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptxpamelacastro71
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxGislaineDuresCruz
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptAlineSilvaPotuk
 

Último (20)

Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?
 
Orientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxOrientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptx
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdf
 
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptxQUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
 
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
“O AMANHÃ EXIGE O MELHOR DE HOJE”       _“O AMANHÃ EXIGE O MELHOR DE HOJE”       _
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
 
Free-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptxFree-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptx
 
atividades diversas 1° ano alfabetização
atividades diversas 1° ano alfabetizaçãoatividades diversas 1° ano alfabetização
atividades diversas 1° ano alfabetização
 
A população Brasileira e diferença de populoso e povoado
A população Brasileira e diferença de populoso e povoadoA população Brasileira e diferença de populoso e povoado
A população Brasileira e diferença de populoso e povoado
 
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
 
Revolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptxRevolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptx
 
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdforganizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
 
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e feminino
 
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptxEVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
 
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas Brasileiros
 
Dança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parteDança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parte
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptx
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
 

www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações

  • 2. Para aproveitar 100% dessa aula você precisa saber:  O Conjuntos dos Números Inteiros e todas as operações  O Conjuntos dos Números Racionais e todas as operações  Equações do 1º grau
  • 3. 1) Ler o problema 2) Ler novamente e destacar as informações importantes. 3) Ler pela 3ª vez, montando um esquema e definir a variável. 4) Ler outra vez e montar a equação 5) Resolver a equação 6) Ler pela última vez para lembrar a pergunta 7) Responder o problema Para resolver um problema através de uma equação, devemos seguir 7 passos:
  • 4. 1) Um número é somado com 10. Multiplica-se essa soma por 3 e o resultado é 72. Qual é esse número? A variável é o número, que chamaremos de x. Montando a equação: Número somado com 10 x + 10 Multiplica-se soma por 3 3 (x + 10) O resultado é 72 3 (x + 10) = 72
  • 5. Resolvendo a equação: 3 (x + 10) = 72 3x + 30 = 72 3x = 72 – 30 3x = 42 x = 14 A pergunta é: Qual é o número? A resposta é: O número é 14.
  • 6. 2) Maria tem o dobro da idade de Lúcia. Se Maria tivesse 8 a menos e Lúcia 4 anos a mais, teriam a mesma idade. Qual é a idade de Maria? Lúcia : x Maria : 2x Montando a equação: Se Maria tivesse 8 a menos: 2x – 8 e Lúcia 4 a mais: x + 4 teriam mesma idade: 2x – 8 = x + 4
  • 7. Resolvendo a equação: 2x – 8 = x + 4 2x – x = 4 + 8 x = 12 A pergunta é: Qual é a idade de Maria? Maria: 2x  2 . 12 = 24. Logo Maria tem 24 anos.
  • 8. 3) No dia que Rodrigo faltou a aula, o quádruplo do número de meninos presentes foi igual a 28. Se Rodrigo tivesse comparecido, quantos seriam os meninos dessa aula? Meninos: x Rodrigo faltou: x – 1 Montando a equação: O quádruplo de meninos presentes: 4 (x – 1) igual a 28: 4 (x – 1) = 28
  • 9. Resolvendo a equação: 4 (x – 1) = 28 4x – 4 = 28 4x = 28 + 4 4x = 32 x = 8 Pergunta: Se Rodrigo tivesse comparecido, quantos seriam os meninos dessa aula? Resposta: 8 meninos.
  • 10. 4) Num estacionamento encontram-se 15 carros e x motos, fazendo um total de 100 rodas. Quantas motos estão estacionadas? carros: 15 motos: x rodas: 100 Montando a equação: Para cada carro, 4 rodas: 4.15 = 60 Para cada moto, 2 rodas: 2x Total de rodas: 60 + 2x = 100
  • 11. Resolvendo a equação: 60 + 2x = 100 2x = 100 – 60 2x = 40 x = 20 Pergunta: Quantas motos estão estacionadas? Resposta: 20 motos
  • 12. 5) Carmem tinha o mesmo número de moedas de 5, 10, 25 e 50 centavos. Com elas, comprou um livro que custava R$ 15,30. Quantas moedas Carmem tinha ao todo? número de moedas de cada valor: x Montando a equação: Somando todo o dinheiro que tinha 0,05x + 0,10x + 0,25x + 0,50x Livro custava 15, 30 0,05x + 0,10x + 0,25x + 0,50x = 15,30
  • 13. Resolvendo a equação: 0,05x + 0,10x + 0,25x + 0,50x = 15,30 0,90x = 15,30 x = 17 A pergunta é : Quantas moedas Carmem tinha ao todo? x + x + x + x = 4x = 4 . 17 = 68 A resposta é: 68 moedas.
  • 14. 6) Somando a metade de um número a sua terça parte, obtemos 85. Que número é esse? número: x Montando a equação: A metade de um número Terça parte do número: Metade do número + terça parte dele = 85 2 x 3 x 85 32 =+ xx
  • 15. Resolvendo a equação: A pergunta é: Que número é esse? A resposta é: O número é 102. 102 5105 51023 85 32 = = =+ =+ x x xx xx 3 2 6
  • 16. 7) Lara e seus irmão comeram , depois e finalmente das rosquinhas que sua mãe fez, sobrando no prato 3 rosquinhas. Quantas rosquinhas a mãe de Lara fez? número de rosquinhas : x Montando a equação: Quanto eles comeram Quantas empadas rosquinhas foram feitas 6 1 2 1 xxx 6 1 4 1 2 1 ++ 4 1 xxxx =+++ 3 6 1 4 1 2 1
  • 17. Resolvendo a equação: A pergunta é: quantas rosquinhas foram feitas? A resposta é: 36 rosquinhas 36 36 3612236 1236236 3 6 1 4 1 2 1 = −=− −=−++ =+++ =+++ x x xxxx xxxx xxxx 6 3 2 12 12
  • 18. 8) Uma batedeira e um liquidificador custam juntos 151 reais. A batedeira custa 21 reais a mais que o liquidificador. Qual o preço da batedeira? Liquidificador: x Batedeira: x + 21 Montando a equação: Custam juntos 151 x + x + 21 = 151
  • 19. Resolvendo a equação: x + x + 21 = 151 2x = 151- 21 2x = 130 x = 65 A pergunta é: Qual o preço da batedeira? Batedeira: x + 21  65 + 21 = 86 A resposta é: A batedeira custa 86 reais.
  • 20. 9) Quando André nasceu, o pai dele tinha 28 anos. Hoje, a soma da idade de André com a de seu pai é 44 anos. Qual a idade atual do pai de André? André: x Pai: x + 28 Montando a equação: A soma das idades é 44 anos x + x + 28 = 44 Resolvendo a equação: x + x + 28 = 44 2x = 44 – 28 2x = 16 x = 8
  • 21. A pergunta é: Qual é a idade do pai de André? Pai de André: x + 28  8 + 28 = 36 A resposta é: O pai de André tem 36 anos.
  • 22. 10) Num jogo de basquete foram assinalados 118 pontos. A equipe vencedora ganhou por uma diferença de 12 pontos. Quantos pontos marcou a equipe vencedora? Equipe perdedora: x Equipe vencedora: x + 12 Montando a equação: Soma dos pontos das equipes é 118. x + x + 12 = 118 Resolvendo a equação: x + x + 12 = 118 2x = 118 – 12 2x = 106 x = 53
  • 23. A pergunta é: Quantos pontos marcou a equipe vencedora? Equipe vencedora: x + 12  53 + 12 = 65 A resposta é: 65 pontos
  • 24. 11) Gabriel, Giovana e Gláucia são irmãos. Hoje, a idade de Giovana é o triplo da idade de Gabriel e a idade de Gláucia é o quíntuplo da idade de Gabriel. Qual é a idade de cada irmão, sabendo que juntos eles tem 27 anos? Gabriel: x Giovana: 3x Gláucia: 5x Montando a equação: Juntos tem 27 anos x + 3x + 5x = 27
  • 25. Resolvendo a equação: x + 3x + 5x = 27 9x = 27 x = 3 A pergunta é: Qual é a idade de cada irmão? Gabriel: x = 3 Giovana: 3x = 3 . 3 = 9 Gláucia: 5x = 5 . 3 = 15 A resposta é: Gabriel tem 3 anos, Giovana tem 9 anos e Gláucia tem 15 anos.
  • 26. 12) A base de um retângulo tem 8 cm a mais que a largura. Seu perímetro é igual ao perímetro de um quadrado com 19 cm de lado. Quanto mede a base desse retângulo? Largura: x Base: x + 8 Logo, o perímetro do quadrado é 19 x 4 = 76 xx x + 8 x + 8 O perímetro de uma figura geométrica igual a soma de todos os lados dessa figura. 19 19 19 19
  • 27. Montando a equação: O perímetro do retângulo é igual ao perímetro do quarado. x + x + 8 + x + x + 8 = 76 Resolvendo a equação: x + x + 8 + x + x + 8 = 76 4x + 16 = 76 4x = 60 x = 15 A pergunta é: Qual é a base desse retângulo? Base: x + 8  15 + 8 = 23 A resposta é: A base mede 23 cm
  • 28. Bibliografia • Bianchini, Edwaldo – Matemática 6ª série (7º ano), 6ª edição – 1998, Editora Moderna. Páginas: 82 até 117. • Silveira, Ênio; Marques, Cláudio – Matemática 6ª série, 1ª edição – 2002, Editora Moderna. Páginas: 64 até 87.
  • 29. Objetivos  Montar equações do 1º grau, a partir de um problema.  Resolver as equações montadas.