SlideShare uma empresa Scribd logo
1 de 30
Radiciação
Ao final dessa aula
                   você saberá:
 Identificar os elementos envolvidos em na
  radiciação
 Relacionar potências e raízes
 Calcular uma raiz de 2 formas diferentes
 Todas as regras e propriedades da radiciação
 Somar, subtrair, multiplicar e dividir radicais
 Elevar um radical a uma potência e extrair sua
  raiz.
 Racionalizar denominadores
Quais são os elementos
            envolvidos na radiciação?
 Toda operação com raiz apresenta um radical,
 um índice e o radicando.

                      índice         radical
Exemplos:

            3                        5
                216            144       32

                         radicando


        Note que quando indicamos a raiz quadrada,
           não colocamos o 2 no lugar do índice.
Qual é a relação entre
            radiciação e potenciação?

     A radiciação é a operação inversa da
potenciação.

Exemplos:

             32 = 9         9 =3

             5 = 125
                3            3
                                 125 = 5
Por que não existe raiz com
               índice par de um número
              negativo no conjunto real?

  Porque não existe um número que, elevado
a expoente par, tenha como resultado um
número negativo.

Veja:   −9
                   Não existe um número que
                   elevado ao quadrado dá -9,
                      pois -3 e 3 elevado ao
                          quadrado dá 9.
Como calculamos raiz de
                     um número grande?
Usando a decomposição em fatores primos.
Exemplos:          448             3
                                       3375
            448     2   2          3375    3
            224     2               1125   3   3
             112    2                375   3
                        2
              56    2                125   5
              28    2                 25   5   5
                        2
              14    2                  5   5
               7    7                  1
               1


             448 = 8 7        3
                                  50625 = 3 x5 = 15
Como simplificamos o
                      radicando com o índice?
Basta dividir o expoente do radicando pelo índice.
Exemplos:


    3
        7 =7
         18       6



       54 = 52                      Note que no último
                                         exemplo foi
        2500 = 2 2.54 = 2.52 = 50   necessário decompor
                                      o número para
                                     simplificar. Essa é
                                       outra forma de
                                      calcular uma raiz.
E se o resultado da
                             divisão não for exato?

    Só sai da raiz se o resultado for exato, caso
    contrário, continua lá dentro.
Exemplos:
        125 = 5 = 5 .5
                     3         2



    5    35
         b .c   42
                     = b c c =b c
                         5    35 40 2   7 85
                                               c   2
E se o índice for
                          maior que o expoente
                             do radicando?
    Podemos apenas dividir pelo mesmo número,
    mas sem tirar de dentro da raiz.
Exemplos:
    9
         1,7 6 = 3 1,7 2

   15
         ( a + 1)   5
                        = 3 ( a + 1)
Tente fazer sozinho

Simplifique o radical:


                  3 12 6
            6
                8x y z
Solução

6
    8x y z = 2 x y z =
      3   12 6    6       3   3 12 6




y z 2 x =y z 2 x
    2 6   3   3       2
Como indicamos uma raiz
                     sem usar o radical?

    Trocando o índice e o expoente do radicando
    por um expoente fracionário.
Exemplos:
                                   O expoente do
        2 = ( 2)
                   5
    3    5             3           radicando vira

                                   numerador e o
                                     índice vira
        23 = ( 23)
                           1
                               2
                                  denominador.
O que são radicais
                 semelhantes?
  São os radicais que apresentam o mesmo
índice e o mesmo radicando.
Exemplo:

5 2e3 2            são semelhantes

5 2e5 24               não são semelhantes
           4
       5 2e7 2     4
                             são semelhantes
      3        3
           9e 12           não são semelhantes
Como somamos e
             subtraímos radicais?
Basta somar ou subtrair a quantidade de radicais
                  semelhantes.

Exemplo:
         3 7 + 7 − 6 7 = −2 7

    Caso fosse 3 2 + 5 − 6 7 nada
 poderíamos fazer, pois os radicais não são
                   semelhantes.
Como multiplicamos
                    e dividimos radicais
                     de mesmo índice?
Basta juntar os radicandos dentro de um radical.

Exemplo:

                              6.11 5
           5
               6 . 11 : 3 = 5
                5      5
                                  = 22
                               3
E se os índices forem
                 diferentes?
Basta igualar os índices e juntar os radicandos.

         Como igualamos os índices?
Basta achar o mmc entre os índices e ajustar os
expoentes dos radicandos.
           3    2 4
Exemplo:       5 . 7
  mmc (3,4) =12. Assim, temos:         12    8 12
                                            5 . 7   3


           Juntando no mesmo radical, temos:
                       12    8     3
                            5 .7
Tente fazer
                    sozinho
(Vunesp) O valor da expressão
                       3
                               4
                  16   4
                            2
                      1
                           : 2      é igual a:
                            8
                  8   3



a) 2-1    b) 20           c) 21/2    d) 24       e) 26
Solução

                                        (2 )
     3
         4    4   3     4           4     4 3     4
16  24
          16   2                                 2
   : 2 = 3   :                  =               : 6 =
 1
83
    8      8 23       ( )   2
                                         2       2


         4   12   4    3        6
             2 2    2 2
               : 6 = ⋅ 4 =2 4

             2 2    2 2
Como elevamos um
                  radical a uma
                    potência?
Basta elevar o radicando a essa potência.
Exemplos:

   ( 3 ) = 3 = 27
    4
        3       4   3       4



   (2 5 ) = 8 5 = 8 125
            3           3
Como extraímos a
                   raiz de um
                    radical?
           Basta multiplicar os índices.

Exemplos:

    3
          5 = 2 x3 5 = 6 5
   4 3
            6 =   4 x3x 2
                            6=   24
                                      6
Tente fazer sozinho


Sabendo que a = 2 e b = 4 2 ,

        calcule   3
                      ab .
Solução

          3
               ab =   3
                           2 2=
                              4

                 mmc (2,4) = 4.
      Logo, igualando os índices, temos:


3 4
      2   24
               2=   3 4
                          4.2 =   3 4
                                        8= 8
                                           12
O que é
             racionalização?
  É o cálculo que usamos para tirar um
radical do denominador de uma fração.


Como racionalizamos um denominador?
    Existem 3 procedimentos, que serão
             descritos a seguir.
1º) Quando o denominador é um produto e o
índice do radical é 2.
  Basta multiplicar o numerador e o denominador
por 2 .
Exemplos:
  5    5. 2     5 2
      =        =
    2     2. 2    2

    3  3. 2    3 2 3 2
     =       =    =
 4 2 4 2 . 2 4.2   8
2º) Quando o denominador é um produto
e o índice do radical é diferente 2.
  Basta multiplicar o numerador e o denominador
  pelo fator racionalizante.

      O que é o fator racionalizante?
 É o radical mais conveniente para eliminar o radical
                    do denominador.
Veja:
            3
                7. 7 = 7 = 7
                3  2   3  3


                           Fatores racionalizantes
            5
                32 .5 33 = 5 35 = 3
Exemplo:
                      7   3             7    3      7   3
   18           18. 3              18. 3           18. 3
            =                  =                 =       =6 3
                                                           7 3
   7
       34       7
                    34 .7 33        7
                                        37            3


            Tente fazer sozinho
                Indique o valor da expressão:

                           3   1 5
            5
                     243 +   +  −  3
                           4   3 6
Solução
           3   1 5
5
     243 +   +  −  3=
           4   3 6
         3 1 5 3 10 5     3    3 5 3
5
     3 +
      5
           +   −   = 3 +    +   −    =
         4   3   6       2    3   6
        3    3 5 3 6 3 +3 3 + 2 3 −5 3
    3+    +   −     =                  =
       2    3    6          6
                   6 3
                =      = 3
                    6
3º) O denominador é uma soma ou subtração.
Basta multiplicar numerador e denominador pelo
  conjugado.
Veja:      2 − 3 é conjugado de 2 + 3 .

           7 + 5 é conjugado de        7 − 5.

Exemplo:       2
                   =
                           (
                       2. 7 + 3
                                  =
                                       )
              7− 3             (
                     7 − 3. 7 + 3          )
             (       ) (
            2 7+ 3 2 7+ 3
                  =       =
                            7+ 3   )
              7−3     4      2
Tente fazer
                sozinho

(UFSE) Racionalizando-se o denominador de
            3
                    obtém-se:
           2+ 5
Solução

  3
      =
                       (
                   3. 2 + 5
                            =
                                    )
 2+ 5         (   2+ 5 2+ 5)(           )
 (        )
3. 2 + 5 3. 2 + 5
        =
                   (
                  =− 2+ 5
                                )
   2−5      −3

Mais conteúdo relacionado

Mais procurados

Lista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauLista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauManoel Silva
 
Propriedades da potenciação
Propriedades da potenciaçãoPropriedades da potenciação
Propriedades da potenciaçãojulio2012souto
 
Expressões algébricas e valor numérico de expressões algébricas
Expressões algébricas e valor numérico de expressões algébricasExpressões algébricas e valor numérico de expressões algébricas
Expressões algébricas e valor numérico de expressões algébricasDalila Cristina Reis
 
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOSAVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOSVyeyra Santos
 
Aula De Matemática - Prisma
Aula De Matemática - Prisma Aula De Matemática - Prisma
Aula De Matemática - Prisma Aulas Apoio
 
Função Afim e Linear.ppt
Função Afim e Linear.pptFunção Afim e Linear.ppt
Função Afim e Linear.pptRildo Borges
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grauLSKY
 
Potenciação - Propriedades das potências
Potenciação - Propriedades das potênciasPotenciação - Propriedades das potências
Potenciação - Propriedades das potênciasJosé Antônio Silva
 
Exercícios do Teorema de Pitágoras
Exercícios do Teorema de PitágorasExercícios do Teorema de Pitágoras
Exercícios do Teorema de PitágorasAjudar Pessoas
 
Exercicios função
 Exercicios função Exercicios função
Exercicios funçãoRobson S
 
Potências - Regras e exercícios
Potências - Regras e exercíciosPotências - Regras e exercícios
Potências - Regras e exercíciosAna Tapadinhas
 
Prova do 8º ano do auzanir
Prova do 8º ano do auzanirProva do 8º ano do auzanir
Prova do 8º ano do auzaniralunosderoberto
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricasLarissa Souza
 
Geometria espacial de posição
Geometria espacial de posiçãoGeometria espacial de posição
Geometria espacial de posiçãoELIZEU GODOY JR
 

Mais procurados (20)

1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
Quadrilateros.Ppt
Quadrilateros.PptQuadrilateros.Ppt
Quadrilateros.Ppt
 
Lista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauLista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grau
 
Propriedades da potenciação
Propriedades da potenciaçãoPropriedades da potenciação
Propriedades da potenciação
 
Expressões algébricas e valor numérico de expressões algébricas
Expressões algébricas e valor numérico de expressões algébricasExpressões algébricas e valor numérico de expressões algébricas
Expressões algébricas e valor numérico de expressões algébricas
 
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOSAVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
 
Aula De Matemática - Prisma
Aula De Matemática - Prisma Aula De Matemática - Prisma
Aula De Matemática - Prisma
 
Função Afim e Linear.ppt
Função Afim e Linear.pptFunção Afim e Linear.ppt
Função Afim e Linear.ppt
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
 
Radiciação
RadiciaçãoRadiciação
Radiciação
 
Potenciação - Propriedades das potências
Potenciação - Propriedades das potênciasPotenciação - Propriedades das potências
Potenciação - Propriedades das potências
 
Exercícios do Teorema de Pitágoras
Exercícios do Teorema de PitágorasExercícios do Teorema de Pitágoras
Exercícios do Teorema de Pitágoras
 
Exercicios função
 Exercicios função Exercicios função
Exercicios função
 
Potências - Regras e exercícios
Potências - Regras e exercíciosPotências - Regras e exercícios
Potências - Regras e exercícios
 
Prova do 8º ano do auzanir
Prova do 8º ano do auzanirProva do 8º ano do auzanir
Prova do 8º ano do auzanir
 
Aula 09 05_multiplicaçao
Aula 09 05_multiplicaçaoAula 09 05_multiplicaçao
Aula 09 05_multiplicaçao
 
Trigonometria 2
Trigonometria  2Trigonometria  2
Trigonometria 2
 
Radiciaçâo
RadiciaçâoRadiciaçâo
Radiciaçâo
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
Geometria espacial de posição
Geometria espacial de posiçãoGeometria espacial de posição
Geometria espacial de posição
 

Destaque

Radiciação slideshare 2010
Radiciação slideshare 2010Radiciação slideshare 2010
Radiciação slideshare 2010Nanmate
 
Radiciação 2015 (professora Simone)
Radiciação 2015 (professora Simone)Radiciação 2015 (professora Simone)
Radiciação 2015 (professora Simone)Elivelton Pontes
 
Potenciação radiciação e fatoração aula 1
Potenciação radiciação e fatoração aula 1Potenciação radiciação e fatoração aula 1
Potenciação radiciação e fatoração aula 1Daniela F Almenara
 
BINGO MATEMÁTICO-RADICIAÇÃO
BINGO MATEMÁTICO-RADICIAÇÃOBINGO MATEMÁTICO-RADICIAÇÃO
BINGO MATEMÁTICO-RADICIAÇÃOEdimar Santos
 
Jogo Potências e Raizes
Jogo Potências e RaizesJogo Potências e Raizes
Jogo Potências e Raizesguest75ad01
 
GINCANA MATEMÁTICA RADICIAÇÃO, POTENCIAÇÃO E NOTAÇÃO CIENTÍFICA.
GINCANA MATEMÁTICA RADICIAÇÃO, POTENCIAÇÃO E NOTAÇÃO CIENTÍFICA.GINCANA MATEMÁTICA RADICIAÇÃO, POTENCIAÇÃO E NOTAÇÃO CIENTÍFICA.
GINCANA MATEMÁTICA RADICIAÇÃO, POTENCIAÇÃO E NOTAÇÃO CIENTÍFICA.Edimar Santos
 
Racionalização
RacionalizaçãoRacionalização
Racionalizaçãoleilamaluf
 
Gincana:Matemática-Ensino Fundamental(6º ao 9º ano)
Gincana:Matemática-Ensino Fundamental(6º ao 9º ano)Gincana:Matemática-Ensino Fundamental(6º ao 9º ano)
Gincana:Matemática-Ensino Fundamental(6º ao 9º ano)Edimar Santos
 
www.CentroApoio.com - Matemática - Radiciação - Vídeo Aulas
www.CentroApoio.com - Matemática - Radiciação - Vídeo Aulas www.CentroApoio.com - Matemática - Radiciação - Vídeo Aulas
www.CentroApoio.com - Matemática - Radiciação - Vídeo Aulas Vídeo Aulas Apoio
 
Propriedades da potenciação
Propriedades da potenciaçãoPropriedades da potenciação
Propriedades da potenciaçãowagneregiselly10
 
Notação científica
Notação científicaNotação científica
Notação científicaRegininha55
 
Lista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicaisLista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicaisalunosderoberto
 

Destaque (20)

Radiciação slideshare 2010
Radiciação slideshare 2010Radiciação slideshare 2010
Radiciação slideshare 2010
 
Radiciação
RadiciaçãoRadiciação
Radiciação
 
Radiciação 2015 (professora Simone)
Radiciação 2015 (professora Simone)Radiciação 2015 (professora Simone)
Radiciação 2015 (professora Simone)
 
Potenciação radiciação e fatoração aula 1
Potenciação radiciação e fatoração aula 1Potenciação radiciação e fatoração aula 1
Potenciação radiciação e fatoração aula 1
 
BINGO MATEMÁTICO-RADICIAÇÃO
BINGO MATEMÁTICO-RADICIAÇÃOBINGO MATEMÁTICO-RADICIAÇÃO
BINGO MATEMÁTICO-RADICIAÇÃO
 
Radiciação
RadiciaçãoRadiciação
Radiciação
 
Baralho de potência e raiz quadrada.embed
Baralho de potência e raiz quadrada.embedBaralho de potência e raiz quadrada.embed
Baralho de potência e raiz quadrada.embed
 
Jogo Potências e Raizes
Jogo Potências e RaizesJogo Potências e Raizes
Jogo Potências e Raizes
 
GINCANA MATEMÁTICA RADICIAÇÃO, POTENCIAÇÃO E NOTAÇÃO CIENTÍFICA.
GINCANA MATEMÁTICA RADICIAÇÃO, POTENCIAÇÃO E NOTAÇÃO CIENTÍFICA.GINCANA MATEMÁTICA RADICIAÇÃO, POTENCIAÇÃO E NOTAÇÃO CIENTÍFICA.
GINCANA MATEMÁTICA RADICIAÇÃO, POTENCIAÇÃO E NOTAÇÃO CIENTÍFICA.
 
Radiciação
RadiciaçãoRadiciação
Radiciação
 
Racionalização
RacionalizaçãoRacionalização
Racionalização
 
Gincana:Matemática-Ensino Fundamental(6º ao 9º ano)
Gincana:Matemática-Ensino Fundamental(6º ao 9º ano)Gincana:Matemática-Ensino Fundamental(6º ao 9º ano)
Gincana:Matemática-Ensino Fundamental(6º ao 9º ano)
 
www.CentroApoio.com - Matemática - Radiciação - Vídeo Aulas
www.CentroApoio.com - Matemática - Radiciação - Vídeo Aulas www.CentroApoio.com - Matemática - Radiciação - Vídeo Aulas
www.CentroApoio.com - Matemática - Radiciação - Vídeo Aulas
 
Radiciação
RadiciaçãoRadiciação
Radiciação
 
Racionalização
RacionalizaçãoRacionalização
Racionalização
 
Propriedades da potenciação
Propriedades da potenciaçãoPropriedades da potenciação
Propriedades da potenciação
 
Potenciação
PotenciaçãoPotenciação
Potenciação
 
Notação científica
Notação científicaNotação científica
Notação científica
 
Jogo de perguntas e respostas
Jogo de perguntas e respostasJogo de perguntas e respostas
Jogo de perguntas e respostas
 
Lista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicaisLista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicais
 

Semelhante a Radiciação básica

www.AulasDeMatematicaApoio.com.br - Matemática - Radiciação
 www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com.br - Matemática - RadiciaçãoBeatriz Góes
 
www.TutoresEscolares.Com.Br - Matemática - Radiciação
www.TutoresEscolares.Com.Br - Matemática -  Radiciaçãowww.TutoresEscolares.Com.Br - Matemática -  Radiciação
www.TutoresEscolares.Com.Br - Matemática - RadiciaçãoTuotes Escolares
 
www.explicadoraescolar.com.br - Matemática - Radiciação
www.explicadoraescolar.com.br - Matemática -  Radiciaçãowww.explicadoraescolar.com.br - Matemática -  Radiciação
www.explicadoraescolar.com.br - Matemática - RadiciaçãoMárcia De Bianci
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - RadiciaçãoClarice Leclaire
 
Passar um factor para dentro e para fora do radical
Passar um factor para dentro e para fora do radicalPassar um factor para dentro e para fora do radical
Passar um factor para dentro e para fora do radicalJeremias Manhica
 
Operacoes com radicais. expressoes numericas envolvendo todas as operacoes e ...
Operacoes com radicais. expressoes numericas envolvendo todas as operacoes e ...Operacoes com radicais. expressoes numericas envolvendo todas as operacoes e ...
Operacoes com radicais. expressoes numericas envolvendo todas as operacoes e ...Jeremias Manhica
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimaisErasmo lopes
 
Radicais e-racionalizacao-v1-3
Radicais e-racionalizacao-v1-3Radicais e-racionalizacao-v1-3
Radicais e-racionalizacao-v1-3Claudemar Chirnev
 
Porques na-matematica-basica-4 (1)
Porques na-matematica-basica-4 (1)Porques na-matematica-basica-4 (1)
Porques na-matematica-basica-4 (1)claudinei rangelc
 
Aula 1 Mat. Básica
Aula 1 Mat. BásicaAula 1 Mat. Básica
Aula 1 Mat. BásicaEloy Santana
 
Mat utfrs 05. radiciacao
Mat utfrs 05. radiciacaoMat utfrs 05. radiciacao
Mat utfrs 05. radiciacaotrigono_metria
 
Raiz%20quadrada
Raiz%20quadradaRaiz%20quadrada
Raiz%20quadradaAmillima
 
Potenciação i
Potenciação iPotenciação i
Potenciação ileilamaluf
 
4º ano_MAT_Alfa Fichas de Reforço.pdf
4º ano_MAT_Alfa Fichas de Reforço.pdf4º ano_MAT_Alfa Fichas de Reforço.pdf
4º ano_MAT_Alfa Fichas de Reforço.pdfElisabete Cunha
 
Razão e proporção
Razão e proporçãoRazão e proporção
Razão e proporçãowalissongbs
 

Semelhante a Radiciação básica (20)

www.AulasDeMatematicaApoio.com.br - Matemática - Radiciação
 www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com.br - Matemática - Radiciação
 
www.TutoresEscolares.Com.Br - Matemática - Radiciação
www.TutoresEscolares.Com.Br - Matemática -  Radiciaçãowww.TutoresEscolares.Com.Br - Matemática -  Radiciação
www.TutoresEscolares.Com.Br - Matemática - Radiciação
 
www.explicadoraescolar.com.br - Matemática - Radiciação
www.explicadoraescolar.com.br - Matemática -  Radiciaçãowww.explicadoraescolar.com.br - Matemática -  Radiciação
www.explicadoraescolar.com.br - Matemática - Radiciação
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
 
Passar um factor para dentro e para fora do radical
Passar um factor para dentro e para fora do radicalPassar um factor para dentro e para fora do radical
Passar um factor para dentro e para fora do radical
 
Operacoes com radicais. expressoes numericas envolvendo todas as operacoes e ...
Operacoes com radicais. expressoes numericas envolvendo todas as operacoes e ...Operacoes com radicais. expressoes numericas envolvendo todas as operacoes e ...
Operacoes com radicais. expressoes numericas envolvendo todas as operacoes e ...
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimais
 
Radicais e-racionalizacao-v1-3
Radicais e-racionalizacao-v1-3Radicais e-racionalizacao-v1-3
Radicais e-racionalizacao-v1-3
 
Painel 21
Painel 21Painel 21
Painel 21
 
Raiz quadrada
Raiz quadradaRaiz quadrada
Raiz quadrada
 
Mat radiciacao
Mat radiciacaoMat radiciacao
Mat radiciacao
 
Porques na-matematica-basica-4 (1)
Porques na-matematica-basica-4 (1)Porques na-matematica-basica-4 (1)
Porques na-matematica-basica-4 (1)
 
Aula 1 Mat. Básica
Aula 1 Mat. BásicaAula 1 Mat. Básica
Aula 1 Mat. Básica
 
Mat utfrs 05. radiciacao
Mat utfrs 05. radiciacaoMat utfrs 05. radiciacao
Mat utfrs 05. radiciacao
 
Raiz%20quadrada
Raiz%20quadradaRaiz%20quadrada
Raiz%20quadrada
 
Potenciação i
Potenciação iPotenciação i
Potenciação i
 
Potenciação e radiciação
Potenciação e radiciaçãoPotenciação e radiciação
Potenciação e radiciação
 
Mat71a
Mat71aMat71a
Mat71a
 
4º ano_MAT_Alfa Fichas de Reforço.pdf
4º ano_MAT_Alfa Fichas de Reforço.pdf4º ano_MAT_Alfa Fichas de Reforço.pdf
4º ano_MAT_Alfa Fichas de Reforço.pdf
 
Razão e proporção
Razão e proporçãoRazão e proporção
Razão e proporção
 

Mais de Aulas De Matemática Apoio

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com EquaçõesAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - LogaritmoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações AlgébricasAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração ConceitualAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - ProbabilidadeAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - PotenciaçãoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e PontosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números ComplexosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - MatrizesAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função AfimAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - DeterminanteAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos NuméricosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e CilindrosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - PolinômiosAulas De Matemática Apoio
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo TrigonométricoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - ÂngulosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números InteirosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação ExponêncialAulas De Matemática Apoio
 

Mais de Aulas De Matemática Apoio (20)

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - Determinante
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
 

Último

Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosAntnyoAllysson
 
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNASQUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNASEdinardo Aguiar
 
A galinha ruiva sequencia didatica 3 ano
A  galinha ruiva sequencia didatica 3 anoA  galinha ruiva sequencia didatica 3 ano
A galinha ruiva sequencia didatica 3 anoandrealeitetorres
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxacaciocarmo1
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfaulasgege
 
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...LuizHenriquedeAlmeid6
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxIsabellaGomes58
 
O guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfO guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfErasmo Portavoz
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Atividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu AbrigoAtividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu AbrigoMary Alvarenga
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfIedaGoethe
 
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSOVALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSOBiatrizGomes1
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfHenrique Pontes
 
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdfDemetrio Ccesa Rayme
 
As Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAs Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAlexandreFrana33
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxconcelhovdragons
 
Doutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptxDoutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptxThye Oliver
 

Último (20)

Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteiros
 
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNASQUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
 
A galinha ruiva sequencia didatica 3 ano
A  galinha ruiva sequencia didatica 3 anoA  galinha ruiva sequencia didatica 3 ano
A galinha ruiva sequencia didatica 3 ano
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptx
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdf
 
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
 
treinamento brigada incendio 2024 no.ppt
treinamento brigada incendio 2024 no.ppttreinamento brigada incendio 2024 no.ppt
treinamento brigada incendio 2024 no.ppt
 
O guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfO guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdf
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
 
Atividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu AbrigoAtividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu Abrigo
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
 
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSOVALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
 
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
 
As Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAs Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptx
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
 
Doutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptxDoutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptx
 

Radiciação básica

  • 2. Ao final dessa aula você saberá:  Identificar os elementos envolvidos em na radiciação  Relacionar potências e raízes  Calcular uma raiz de 2 formas diferentes  Todas as regras e propriedades da radiciação  Somar, subtrair, multiplicar e dividir radicais  Elevar um radical a uma potência e extrair sua raiz.  Racionalizar denominadores
  • 3. Quais são os elementos envolvidos na radiciação? Toda operação com raiz apresenta um radical, um índice e o radicando. índice radical Exemplos: 3 5 216 144 32 radicando Note que quando indicamos a raiz quadrada, não colocamos o 2 no lugar do índice.
  • 4. Qual é a relação entre radiciação e potenciação? A radiciação é a operação inversa da potenciação. Exemplos: 32 = 9 9 =3 5 = 125 3 3 125 = 5
  • 5. Por que não existe raiz com índice par de um número negativo no conjunto real? Porque não existe um número que, elevado a expoente par, tenha como resultado um número negativo. Veja: −9 Não existe um número que elevado ao quadrado dá -9, pois -3 e 3 elevado ao quadrado dá 9.
  • 6. Como calculamos raiz de um número grande? Usando a decomposição em fatores primos. Exemplos: 448 3 3375 448 2 2 3375 3 224 2 1125 3 3 112 2 375 3 2 56 2 125 5 28 2 25 5 5 2 14 2 5 5 7 7 1 1 448 = 8 7 3 50625 = 3 x5 = 15
  • 7. Como simplificamos o radicando com o índice? Basta dividir o expoente do radicando pelo índice. Exemplos:  3 7 =7 18 6  54 = 52 Note que no último exemplo foi 2500 = 2 2.54 = 2.52 = 50 necessário decompor  o número para simplificar. Essa é outra forma de calcular uma raiz.
  • 8. E se o resultado da divisão não for exato? Só sai da raiz se o resultado for exato, caso contrário, continua lá dentro. Exemplos:  125 = 5 = 5 .5 3 2  5 35 b .c 42 = b c c =b c 5 35 40 2 7 85 c 2
  • 9. E se o índice for maior que o expoente do radicando? Podemos apenas dividir pelo mesmo número, mas sem tirar de dentro da raiz. Exemplos:  9 1,7 6 = 3 1,7 2  15 ( a + 1) 5 = 3 ( a + 1)
  • 10. Tente fazer sozinho Simplifique o radical: 3 12 6 6 8x y z
  • 11. Solução 6 8x y z = 2 x y z = 3 12 6 6 3 3 12 6 y z 2 x =y z 2 x 2 6 3 3 2
  • 12. Como indicamos uma raiz sem usar o radical? Trocando o índice e o expoente do radicando por um expoente fracionário. Exemplos: O expoente do 2 = ( 2) 5 3 5 3 radicando vira  numerador e o índice vira 23 = ( 23) 1 2  denominador.
  • 13. O que são radicais semelhantes? São os radicais que apresentam o mesmo índice e o mesmo radicando. Exemplo: 5 2e3 2 são semelhantes 5 2e5 24 não são semelhantes 4 5 2e7 2 4 são semelhantes 3 3 9e 12 não são semelhantes
  • 14. Como somamos e subtraímos radicais? Basta somar ou subtrair a quantidade de radicais semelhantes. Exemplo: 3 7 + 7 − 6 7 = −2 7 Caso fosse 3 2 + 5 − 6 7 nada poderíamos fazer, pois os radicais não são semelhantes.
  • 15. Como multiplicamos e dividimos radicais de mesmo índice? Basta juntar os radicandos dentro de um radical. Exemplo: 6.11 5 5 6 . 11 : 3 = 5 5 5 = 22 3
  • 16. E se os índices forem diferentes? Basta igualar os índices e juntar os radicandos. Como igualamos os índices? Basta achar o mmc entre os índices e ajustar os expoentes dos radicandos. 3 2 4 Exemplo: 5 . 7 mmc (3,4) =12. Assim, temos: 12 8 12 5 . 7 3 Juntando no mesmo radical, temos: 12 8 3 5 .7
  • 17. Tente fazer sozinho (Vunesp) O valor da expressão 3 4 16 4 2 1 : 2 é igual a: 8 8 3 a) 2-1 b) 20 c) 21/2 d) 24 e) 26
  • 18. Solução (2 ) 3 4 4 3 4 4 4 3 4 16 24 16 2 2 : 2 = 3 : = : 6 = 1 83 8 8 23 ( ) 2 2 2 4 12 4 3 6 2 2 2 2 : 6 = ⋅ 4 =2 4 2 2 2 2
  • 19. Como elevamos um radical a uma potência? Basta elevar o radicando a essa potência. Exemplos:  ( 3 ) = 3 = 27 4 3 4 3 4  (2 5 ) = 8 5 = 8 125 3 3
  • 20. Como extraímos a raiz de um radical? Basta multiplicar os índices. Exemplos:  3 5 = 2 x3 5 = 6 5  4 3 6 = 4 x3x 2 6= 24 6
  • 21. Tente fazer sozinho Sabendo que a = 2 e b = 4 2 , calcule 3 ab .
  • 22. Solução 3 ab = 3 2 2= 4 mmc (2,4) = 4. Logo, igualando os índices, temos: 3 4 2 24 2= 3 4 4.2 = 3 4 8= 8 12
  • 23. O que é racionalização? É o cálculo que usamos para tirar um radical do denominador de uma fração. Como racionalizamos um denominador? Existem 3 procedimentos, que serão descritos a seguir.
  • 24. 1º) Quando o denominador é um produto e o índice do radical é 2. Basta multiplicar o numerador e o denominador por 2 . Exemplos:  5 5. 2 5 2 = = 2 2. 2 2 3 3. 2 3 2 3 2 = = =  4 2 4 2 . 2 4.2 8
  • 25. 2º) Quando o denominador é um produto e o índice do radical é diferente 2. Basta multiplicar o numerador e o denominador pelo fator racionalizante. O que é o fator racionalizante? É o radical mais conveniente para eliminar o radical do denominador. Veja: 3 7. 7 = 7 = 7 3 2 3 3 Fatores racionalizantes 5 32 .5 33 = 5 35 = 3
  • 26. Exemplo: 7 3 7 3 7 3 18 18. 3 18. 3 18. 3 = = = =6 3 7 3 7 34 7 34 .7 33 7 37 3 Tente fazer sozinho Indique o valor da expressão: 3 1 5 5 243 + + − 3 4 3 6
  • 27. Solução 3 1 5 5 243 + + − 3= 4 3 6 3 1 5 3 10 5 3 3 5 3 5 3 + 5 + − = 3 + + − = 4 3 6 2 3 6 3 3 5 3 6 3 +3 3 + 2 3 −5 3 3+ + − = = 2 3 6 6 6 3 = = 3 6
  • 28. 3º) O denominador é uma soma ou subtração. Basta multiplicar numerador e denominador pelo conjugado. Veja: 2 − 3 é conjugado de 2 + 3 . 7 + 5 é conjugado de 7 − 5. Exemplo: 2 = ( 2. 7 + 3 = ) 7− 3 ( 7 − 3. 7 + 3 ) ( ) ( 2 7+ 3 2 7+ 3 = = 7+ 3 ) 7−3 4 2
  • 29. Tente fazer sozinho (UFSE) Racionalizando-se o denominador de 3 obtém-se: 2+ 5
  • 30. Solução 3 = ( 3. 2 + 5 = ) 2+ 5 ( 2+ 5 2+ 5)( ) ( ) 3. 2 + 5 3. 2 + 5 = ( =− 2+ 5 ) 2−5 −3