SlideShare uma empresa Scribd logo
1 de 2
Exercícios de Recuperação – 1º Bimestre
Matemática Básica – Professor Rafael
Números Inteiros
Adição e Subtração:
A adição de dois números inteiros obedece às seguintes
regras:
a ) números de mesmo sinal : somam-se os módulos e
conserva-se o sinal comum.
Exemplos:
(-3) + (-5) + (-2) = - 10
(-7) + (-6) = - 13
b) números de sinais opostos: subtraem-se os módulos e
conserva-se o sinal do maior em módulo.
Exemplos:
(-3) + (+7) = + 4
(-12) + (+5) = -7
10 – (-3) = 10 + 3 = 13
(-5) – (- 10) = (-5) +10 = +5 = 5
(-3) – (+7) = (-3) -7 = - 10
Multiplicação
A multiplicação de números inteiros, dar-se-á segundo a
seguinte regra de sinais:
(+) x (+) = +
(+) x (-) = -
(-) x (+) = -
(-) x (-) = +
Exemplos:
(-3) x (-4) = +12 = 12
(-4) x (+3) = -12
Potenciação
É um caso particular da multiplicação, onde os fatores são
iguais. Por exemplo, 5
3
= 5.5.5 = 125, 7
1
= 7, 4
3
= 4.4.4 =
64, etc.
Exemplos:
(-2)
4
= +16 = 16
(-3)
2
= +9 = 9
(-5)
4
= +625 = 625
(-1)
4
= + 1 = 1
(-2)
3
= - 8
(-5)
3
= - 125
(-1)
13
= - 1
Divisão
A divisão de números inteiros, no que concerne à regra de
sinais, obedece às mesmas regras vistas para a
multiplicação, ou seja:
Exemplos:
(–10) : (– 2) = + 5 = 5
(– 30) : (+ 5) = – 6
Expressões Numéricas
Nas expressões, as operações se realizam obedecendo à
seguinte ordem:
1º) multiplicações e divisões ( X ÷ )
2º) adições e subtrações ( + - )
Se houver sinais de associação (parênteses, colchetes e
chaves) devemos proceder da seguinte maneira:
1º) As contas dentro dos parênteses seguindo a ordem
acima colocada
2º) As contas dentro dos colchetes seguindo a ordem
acima colocada
3º) As contas dentro das chaves seguindo a ordem
acima colocada
1) Calcule as adições:
a) (+20) + (-18) b) (+21) + (-30)
c) (-81) + (-17) d) (+37) + (+62)
2) Calcule as subtrações:
a) (-9) – (+15) b) (+16) – (+20)
c) (-1) – (-18)d) (-72) – (-81)
3) Calcule as multiplicações:
a) (-20) . (+4) b) (-8) . (-7)
c) (+23) . (+3) d) (+2) . (-27)
4) Resolva as divisões:
a) (-40) : (+2) b) (+20) : (-4)
c) (-18) : (-3) d) (+36) : (+4)
5) Calcule as Potências:
a) (-11)² b) (+5)³
c) ( -7)¹ d) 0²
6) Calcule o valor das expressões:
a) 16+[10-(18:3+2)+5]
b) 25-[12-(3x2+1)]
c) 90-[25+(5x2-1)+3]
d) 45+[(8x5-10:2)+(18:6-2)]
e) 50-2x{7+8:2-[9-3x(5-4)]}
f) 100-3x{5+8:2-[3x(7-6)]}
g) 1000 - [(2 . 4 - 6) + ( 2 + 6 . 4)]
h) 60 + 2 . {[ 4 . ( 6 + 2 ) - 10 ] + 12}
i) [( 4 + 16 . 2) . 5 - 10] . 100
j) { 10 + [ 5 . ( 4 + 2 . 5) - 8] . 2 } - 100
k) 80 - 5 . ( 28 - 6 . 4 ) + 6 - 3 . 4
Números Racionais
1ª condição: denominadores iguais.
Quando os denominadores são iguais, os numeradores
devem ser somados ou subtraídos de acordo com os sinais
operatórios e o valor do denominador mantido.
Observe os exemplos:
2º condição: denominadores diferentes.
Nas operações da adição ou subtração envolvendo
números na forma de fração com denominadores diferentes,
devemos criar um novo denominador através do cálculo do
mínimo múltiplo comum – MMC dos denominadores
fornecidos. O novo denominador deverá ser dividido pelos
denominadores atuais, multiplicando o quociente pelo
numerador correspondente, constituindo novas frações
proporcionalmente iguais as anteriores e com
denominadores iguais. Observe os cálculos:
Realizar o MMC entre 3 e 4.
Multiplicação
A multiplicação de frações é muito simples, basta
multiplicarmos numerador por numerador e denominador
por denominador, respeitando suas posições. Observe:
Divisão
A divisão deve ser efetuada aplicando uma regra prática e
de fácil assimilação, que diz: “repetir a primeira fração e
multiplicar pelo inverso da segunda”.
7) Calcule:
a)
5
2
3
1
b)
3
2
2
7
c)
4
1
2 d)
5
3
2
5
1
3
e)
3
2
2
3
f)
4
3
6
7
2
g)
3
1
2
11
5
2
2 = h)
2
1
6
5
4
3
i)
18
5
12
7
= j)
10
7
3
2
1
5
4
1
k)
3
2
4
5
6
1
m)
4
3
6
5
3
1
2
1
8) Efetue as multiplicações:
a)
2
1
.
4
3
b)
5
8
.
4
1
.
3
2
c)
2
9
.
3
25
.
5
6
d)
4
3
.
7
9
e)
6
49
.
7
2
.
5
14
f)
8
5
.
14
7
.
15
16
g)
8
7
.
5
8
h)
16
45
.
3
1
.
15
8
i)
9
22
.
28
2
.
12
18
9) Efetue as divisões:
a)
3
2
:
5
4
b) 2:
5
4
c)
14
39
:
49
13
d)
25
27
:
5
81
e)
3
14
:
9
7
f)
9
5
:
3
10
g)
81
128
:
27
64
h)
3
1
2:
3
14
i)
8
3
:
4
3
10) Calcule o valor das expressões numéricas:
a)
3
2
4
5
5
2
2
3
b)
8
7
7
8
.
3
4
4
3
c)
9
7
9
8
6
5
8
7
d)
3
7
.
2
3
5
2
.
3
1
5
3
.
2
1
=
e)
4
5
4
7
5
1
2
1
1
f)
5
1
2
1
.
4
13
2
11
7 =
g)
6
1
2
1
2
4
1
3
1
h)
5
1
.
2
1
6
1
.
5
1
3
1
.
2
1
5
1
.
2
1
=

Mais conteúdo relacionado

Mais procurados

Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Olicio Silva
 
Mat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciosMat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exercicios
trigono_metria
 
Exercicios de-radiciacao
Exercicios de-radiciacaoExercicios de-radiciacao
Exercicios de-radiciacao
Ronaldoii
 
1 atividade 9 ano 21 conjunto dos numeros reais
1 atividade 9 ano 21 conjunto dos numeros reais1 atividade 9 ano 21 conjunto dos numeros reais
1 atividade 9 ano 21 conjunto dos numeros reais
Washington Rocha
 
Mat utfrs 18. semelhanca de triangulos exercicios
Mat utfrs 18. semelhanca de triangulos exerciciosMat utfrs 18. semelhanca de triangulos exercicios
Mat utfrs 18. semelhanca de triangulos exercicios
trigono_metria
 
Equações 1º grau simples e com parenteses
Equações 1º grau   simples e com parentesesEquações 1º grau   simples e com parenteses
Equações 1º grau simples e com parenteses
Rita Sousa
 
3 exercícios - potenciação de números naturais[1]
3   exercícios - potenciação de números naturais[1]3   exercícios - potenciação de números naturais[1]
3 exercícios - potenciação de números naturais[1]
Rejane Zancanaro
 
Mat utfrs 19. triangulos exercicios
Mat utfrs 19. triangulos exerciciosMat utfrs 19. triangulos exercicios
Mat utfrs 19. triangulos exercicios
trigono_metria
 
Microsoft word exercicio matemática com gabarito equações do 2º grau
Microsoft word   exercicio matemática com  gabarito equações do 2º grauMicrosoft word   exercicio matemática com  gabarito equações do 2º grau
Microsoft word exercicio matemática com gabarito equações do 2º grau
Betão Betão
 

Mais procurados (20)

Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
 
Mat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciosMat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exercicios
 
Exercicios de-radiciacao
Exercicios de-radiciacaoExercicios de-radiciacao
Exercicios de-radiciacao
 
1 atividade 9 ano 21 conjunto dos numeros reais
1 atividade 9 ano 21 conjunto dos numeros reais1 atividade 9 ano 21 conjunto dos numeros reais
1 atividade 9 ano 21 conjunto dos numeros reais
 
Mat utfrs 18. semelhanca de triangulos exercicios
Mat utfrs 18. semelhanca de triangulos exerciciosMat utfrs 18. semelhanca de triangulos exercicios
Mat utfrs 18. semelhanca de triangulos exercicios
 
Equações 1º grau simples e com parenteses
Equações 1º grau   simples e com parentesesEquações 1º grau   simples e com parenteses
Equações 1º grau simples e com parenteses
 
3 exercícios - potenciação de números naturais[1]
3   exercícios - potenciação de números naturais[1]3   exercícios - potenciação de números naturais[1]
3 exercícios - potenciação de números naturais[1]
 
1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton bruno1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton bruno
 
Mat utfrs 19. triangulos exercicios
Mat utfrs 19. triangulos exerciciosMat utfrs 19. triangulos exercicios
Mat utfrs 19. triangulos exercicios
 
Lista frações 6º ano
Lista frações 6º anoLista frações 6º ano
Lista frações 6º ano
 
Atividades 1 - 2o Ano - Teorema de Pitágoras e Trigonometria
Atividades 1  - 2o Ano - Teorema de Pitágoras e TrigonometriaAtividades 1  - 2o Ano - Teorema de Pitágoras e Trigonometria
Atividades 1 - 2o Ano - Teorema de Pitágoras e Trigonometria
 
Atividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 anoAtividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 ano
 
Retas paralelas transversal
Retas paralelas transversalRetas paralelas transversal
Retas paralelas transversal
 
Microsoft word exercicio matemática com gabarito equações do 2º grau
Microsoft word   exercicio matemática com  gabarito equações do 2º grauMicrosoft word   exercicio matemática com  gabarito equações do 2º grau
Microsoft word exercicio matemática com gabarito equações do 2º grau
 
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
 
lista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponenciallista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponencial
 
Lista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauLista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grau
 
Lista de exercicios fracoes ii
Lista de exercicios fracoes iiLista de exercicios fracoes ii
Lista de exercicios fracoes ii
 
Atividade de matemática plano cartesiano
Atividade de matemática   plano cartesianoAtividade de matemática   plano cartesiano
Atividade de matemática plano cartesiano
 
Atividades números inteiros
Atividades números inteirosAtividades números inteiros
Atividades números inteiros
 

Semelhante a Recuperação lista exercicios 7º ano 1º bimestre

Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestre
Rafael Marques
 
Apostila matemática básica 2
Apostila matemática básica 2Apostila matemática básica 2
Apostila matemática básica 2
waynemarques
 
Material complementarpdf
Material complementarpdfMaterial complementarpdf
Material complementarpdf
oliveiradr
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursos
educacao f
 
[Dass] apostila cdf - matematica basica para concursos publicos - 2014
[Dass]   apostila cdf - matematica basica para concursos publicos - 2014[Dass]   apostila cdf - matematica basica para concursos publicos - 2014
[Dass] apostila cdf - matematica basica para concursos publicos - 2014
Davidson Alves
 
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
Elaine Chica
 

Semelhante a Recuperação lista exercicios 7º ano 1º bimestre (20)

Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestre
 
Fin a01
Fin a01Fin a01
Fin a01
 
Fin a01
Fin a01Fin a01
Fin a01
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Apostila revisao de matematica
Apostila    revisao de matematicaApostila    revisao de matematica
Apostila revisao de matematica
 
Matemática do GENTE - 7º ano
Matemática do GENTE - 7º anoMatemática do GENTE - 7º ano
Matemática do GENTE - 7º ano
 
Matemática básica engenharias
Matemática básica   engenhariasMatemática básica   engenharias
Matemática básica engenharias
 
matemticabsica-111113222216-phpapp02.pptx
matemticabsica-111113222216-phpapp02.pptxmatemticabsica-111113222216-phpapp02.pptx
matemticabsica-111113222216-phpapp02.pptx
 
Matemática Básica
Matemática BásicaMatemática Básica
Matemática Básica
 
Apostila matemática básica 2
Apostila matemática básica 2Apostila matemática básica 2
Apostila matemática básica 2
 
Material complementarpdf
Material complementarpdfMaterial complementarpdf
Material complementarpdf
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursos
 
Matematica
MatematicaMatematica
Matematica
 
Matematica eja
Matematica ejaMatematica eja
Matematica eja
 
Expressão numérica
Expressão numéricaExpressão numérica
Expressão numérica
 
F6 apa
F6 apaF6 apa
F6 apa
 
[Dass] apostila cdf - matematica basica para concursos publicos - 2014
[Dass]   apostila cdf - matematica basica para concursos publicos - 2014[Dass]   apostila cdf - matematica basica para concursos publicos - 2014
[Dass] apostila cdf - matematica basica para concursos publicos - 2014
 
Matemática 7ºs-anos1
Matemática 7ºs-anos1Matemática 7ºs-anos1
Matemática 7ºs-anos1
 
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
 
Apostila eja-matematica-basica-medio-2012
Apostila eja-matematica-basica-medio-2012Apostila eja-matematica-basica-medio-2012
Apostila eja-matematica-basica-medio-2012
 

Mais de Rafael Marques

Can and can't revision
Can and can't   revisionCan and can't   revision
Can and can't revision
Rafael Marques
 
Formação do território brasileiro
Formação do território brasileiroFormação do território brasileiro
Formação do território brasileiro
Rafael Marques
 
Fotos feira alimentação saudável
Fotos feira alimentação saudávelFotos feira alimentação saudável
Fotos feira alimentação saudável
Rafael Marques
 
Alimentacaosaudavel un b
Alimentacaosaudavel un bAlimentacaosaudavel un b
Alimentacaosaudavel un b
Rafael Marques
 
Revision answers 6th grade laura canto
Revision answers 6th grade   laura cantoRevision answers 6th grade   laura canto
Revision answers 6th grade laura canto
Rafael Marques
 

Mais de Rafael Marques (20)

Dinamica demográfica
Dinamica demográficaDinamica demográfica
Dinamica demográfica
 
Geofísica da terra
Geofísica da terraGeofísica da terra
Geofísica da terra
 
Brasil rural x urbano
Brasil   rural x urbanoBrasil   rural x urbano
Brasil rural x urbano
 
Can and can't revision
Can and can't   revisionCan and can't   revision
Can and can't revision
 
Formação do território brasileiro
Formação do território brasileiroFormação do território brasileiro
Formação do território brasileiro
 
Fotos feira alimentação saudável
Fotos feira alimentação saudávelFotos feira alimentação saudável
Fotos feira alimentação saudável
 
Teatro lambe lambe
Teatro lambe lambeTeatro lambe lambe
Teatro lambe lambe
 
Confecção carrinho fabiano
Confecção carrinho fabianoConfecção carrinho fabiano
Confecção carrinho fabiano
 
Construção vilmar 2
Construção vilmar 2Construção vilmar 2
Construção vilmar 2
 
Obra 2 banheiro
Obra 2 banheiroObra 2 banheiro
Obra 2 banheiro
 
Obra 1 entrelagos
Obra 1 entrelagosObra 1 entrelagos
Obra 1 entrelagos
 
Pitiguari 2013/2014
Pitiguari 2013/2014Pitiguari 2013/2014
Pitiguari 2013/2014
 
Guia alimentar populacao_brasileira
Guia alimentar populacao_brasileiraGuia alimentar populacao_brasileira
Guia alimentar populacao_brasileira
 
Dicas e horario de estudo 2015
Dicas e horario de estudo   2015Dicas e horario de estudo   2015
Dicas e horario de estudo 2015
 
Alimentacaosaudavel un b
Alimentacaosaudavel un bAlimentacaosaudavel un b
Alimentacaosaudavel un b
 
Cont e procedimentos 7 ano 2º bimestre
Cont e procedimentos 7 ano   2º  bimestreCont e procedimentos 7 ano   2º  bimestre
Cont e procedimentos 7 ano 2º bimestre
 
Cont e procedimentos 6 ano 2º bimestre
Cont e procedimentos 6 ano   2º  bimestreCont e procedimentos 6 ano   2º  bimestre
Cont e procedimentos 6 ano 2º bimestre
 
Revision answers 7th grade
Revision answers   7th gradeRevision answers   7th grade
Revision answers 7th grade
 
Revision answers 6th grade laura canto
Revision answers 6th grade   laura cantoRevision answers 6th grade   laura canto
Revision answers 6th grade laura canto
 
Escala marcos
Escala marcosEscala marcos
Escala marcos
 

Último

História concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdfHistória concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdf
GisellySobral
 
472037515-Coelho-Nelly-Novaes-Literatura-Infantil-teoria-analise-e-didatica-p...
472037515-Coelho-Nelly-Novaes-Literatura-Infantil-teoria-analise-e-didatica-p...472037515-Coelho-Nelly-Novaes-Literatura-Infantil-teoria-analise-e-didatica-p...
472037515-Coelho-Nelly-Novaes-Literatura-Infantil-teoria-analise-e-didatica-p...
GisellySobral
 
Gramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdfGramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdf
Kelly Mendes
 
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
aulasgege
 

Último (20)

História concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdfHistória concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdf
 
Livro infantil: A onda da raiva. pdf-crianças
Livro infantil: A onda da raiva. pdf-criançasLivro infantil: A onda da raiva. pdf-crianças
Livro infantil: A onda da raiva. pdf-crianças
 
Química-ensino médio ESTEQUIOMETRIA.pptx
Química-ensino médio ESTEQUIOMETRIA.pptxQuímica-ensino médio ESTEQUIOMETRIA.pptx
Química-ensino médio ESTEQUIOMETRIA.pptx
 
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
 
Peça de teatro infantil: A cigarra e as formigas
Peça de teatro infantil: A cigarra e as formigasPeça de teatro infantil: A cigarra e as formigas
Peça de teatro infantil: A cigarra e as formigas
 
472037515-Coelho-Nelly-Novaes-Literatura-Infantil-teoria-analise-e-didatica-p...
472037515-Coelho-Nelly-Novaes-Literatura-Infantil-teoria-analise-e-didatica-p...472037515-Coelho-Nelly-Novaes-Literatura-Infantil-teoria-analise-e-didatica-p...
472037515-Coelho-Nelly-Novaes-Literatura-Infantil-teoria-analise-e-didatica-p...
 
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptxEB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
 
Acróstico - Maio Laranja
Acróstico  - Maio Laranja Acróstico  - Maio Laranja
Acróstico - Maio Laranja
 
Gramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdfGramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdf
 
O que é, de facto, a Educação de Infância
O que é, de facto, a Educação de InfânciaO que é, de facto, a Educação de Infância
O que é, de facto, a Educação de Infância
 
SQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdfSQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdf
 
APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.
 
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptxEBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
 
Tema de redação - A prática do catfish e seus perigos.pdf
Tema de redação - A prática do catfish e seus perigos.pdfTema de redação - A prática do catfish e seus perigos.pdf
Tema de redação - A prática do catfish e seus perigos.pdf
 
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxSlides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
 
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
 
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptxSlides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
 
Power Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantilPower Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantil
 
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
 
APRENDA COMO USAR CONJUNÇÕES COORDENATIVAS
APRENDA COMO USAR CONJUNÇÕES COORDENATIVASAPRENDA COMO USAR CONJUNÇÕES COORDENATIVAS
APRENDA COMO USAR CONJUNÇÕES COORDENATIVAS
 

Recuperação lista exercicios 7º ano 1º bimestre

  • 1. Exercícios de Recuperação – 1º Bimestre Matemática Básica – Professor Rafael Números Inteiros Adição e Subtração: A adição de dois números inteiros obedece às seguintes regras: a ) números de mesmo sinal : somam-se os módulos e conserva-se o sinal comum. Exemplos: (-3) + (-5) + (-2) = - 10 (-7) + (-6) = - 13 b) números de sinais opostos: subtraem-se os módulos e conserva-se o sinal do maior em módulo. Exemplos: (-3) + (+7) = + 4 (-12) + (+5) = -7 10 – (-3) = 10 + 3 = 13 (-5) – (- 10) = (-5) +10 = +5 = 5 (-3) – (+7) = (-3) -7 = - 10 Multiplicação A multiplicação de números inteiros, dar-se-á segundo a seguinte regra de sinais: (+) x (+) = + (+) x (-) = - (-) x (+) = - (-) x (-) = + Exemplos: (-3) x (-4) = +12 = 12 (-4) x (+3) = -12 Potenciação É um caso particular da multiplicação, onde os fatores são iguais. Por exemplo, 5 3 = 5.5.5 = 125, 7 1 = 7, 4 3 = 4.4.4 = 64, etc. Exemplos: (-2) 4 = +16 = 16 (-3) 2 = +9 = 9 (-5) 4 = +625 = 625 (-1) 4 = + 1 = 1 (-2) 3 = - 8 (-5) 3 = - 125 (-1) 13 = - 1 Divisão A divisão de números inteiros, no que concerne à regra de sinais, obedece às mesmas regras vistas para a multiplicação, ou seja: Exemplos: (–10) : (– 2) = + 5 = 5 (– 30) : (+ 5) = – 6 Expressões Numéricas Nas expressões, as operações se realizam obedecendo à seguinte ordem: 1º) multiplicações e divisões ( X ÷ ) 2º) adições e subtrações ( + - ) Se houver sinais de associação (parênteses, colchetes e chaves) devemos proceder da seguinte maneira: 1º) As contas dentro dos parênteses seguindo a ordem acima colocada 2º) As contas dentro dos colchetes seguindo a ordem acima colocada 3º) As contas dentro das chaves seguindo a ordem acima colocada 1) Calcule as adições: a) (+20) + (-18) b) (+21) + (-30) c) (-81) + (-17) d) (+37) + (+62) 2) Calcule as subtrações: a) (-9) – (+15) b) (+16) – (+20) c) (-1) – (-18)d) (-72) – (-81) 3) Calcule as multiplicações: a) (-20) . (+4) b) (-8) . (-7) c) (+23) . (+3) d) (+2) . (-27) 4) Resolva as divisões: a) (-40) : (+2) b) (+20) : (-4) c) (-18) : (-3) d) (+36) : (+4) 5) Calcule as Potências: a) (-11)² b) (+5)³ c) ( -7)¹ d) 0² 6) Calcule o valor das expressões: a) 16+[10-(18:3+2)+5] b) 25-[12-(3x2+1)] c) 90-[25+(5x2-1)+3] d) 45+[(8x5-10:2)+(18:6-2)] e) 50-2x{7+8:2-[9-3x(5-4)]} f) 100-3x{5+8:2-[3x(7-6)]} g) 1000 - [(2 . 4 - 6) + ( 2 + 6 . 4)] h) 60 + 2 . {[ 4 . ( 6 + 2 ) - 10 ] + 12} i) [( 4 + 16 . 2) . 5 - 10] . 100 j) { 10 + [ 5 . ( 4 + 2 . 5) - 8] . 2 } - 100 k) 80 - 5 . ( 28 - 6 . 4 ) + 6 - 3 . 4
  • 2. Números Racionais 1ª condição: denominadores iguais. Quando os denominadores são iguais, os numeradores devem ser somados ou subtraídos de acordo com os sinais operatórios e o valor do denominador mantido. Observe os exemplos: 2º condição: denominadores diferentes. Nas operações da adição ou subtração envolvendo números na forma de fração com denominadores diferentes, devemos criar um novo denominador através do cálculo do mínimo múltiplo comum – MMC dos denominadores fornecidos. O novo denominador deverá ser dividido pelos denominadores atuais, multiplicando o quociente pelo numerador correspondente, constituindo novas frações proporcionalmente iguais as anteriores e com denominadores iguais. Observe os cálculos: Realizar o MMC entre 3 e 4. Multiplicação A multiplicação de frações é muito simples, basta multiplicarmos numerador por numerador e denominador por denominador, respeitando suas posições. Observe: Divisão A divisão deve ser efetuada aplicando uma regra prática e de fácil assimilação, que diz: “repetir a primeira fração e multiplicar pelo inverso da segunda”. 7) Calcule: a) 5 2 3 1 b) 3 2 2 7 c) 4 1 2 d) 5 3 2 5 1 3 e) 3 2 2 3 f) 4 3 6 7 2 g) 3 1 2 11 5 2 2 = h) 2 1 6 5 4 3 i) 18 5 12 7 = j) 10 7 3 2 1 5 4 1 k) 3 2 4 5 6 1 m) 4 3 6 5 3 1 2 1 8) Efetue as multiplicações: a) 2 1 . 4 3 b) 5 8 . 4 1 . 3 2 c) 2 9 . 3 25 . 5 6 d) 4 3 . 7 9 e) 6 49 . 7 2 . 5 14 f) 8 5 . 14 7 . 15 16 g) 8 7 . 5 8 h) 16 45 . 3 1 . 15 8 i) 9 22 . 28 2 . 12 18 9) Efetue as divisões: a) 3 2 : 5 4 b) 2: 5 4 c) 14 39 : 49 13 d) 25 27 : 5 81 e) 3 14 : 9 7 f) 9 5 : 3 10 g) 81 128 : 27 64 h) 3 1 2: 3 14 i) 8 3 : 4 3 10) Calcule o valor das expressões numéricas: a) 3 2 4 5 5 2 2 3 b) 8 7 7 8 . 3 4 4 3 c) 9 7 9 8 6 5 8 7 d) 3 7 . 2 3 5 2 . 3 1 5 3 . 2 1 = e) 4 5 4 7 5 1 2 1 1 f) 5 1 2 1 . 4 13 2 11 7 = g) 6 1 2 1 2 4 1 3 1 h) 5 1 . 2 1 6 1 . 5 1 3 1 . 2 1 5 1 . 2 1 =