O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
FraçõesFrações
AlgébricasAlgébricas
Matemática - ÁlgebraMatemática - Álgebra

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

O que são fraçõesO que são frações
algébricas?algébricas?
 São frações que tem variáveis no denominador.São frações que t...

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

Próximos SlideShares
Matematica Basica
Matematica Basica
Carregando em…3
×

Confira estes a seguir

1 de 63 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas (20)

Anúncio

Mais de Aulas De Matemática Apoio (20)

Mais recentes (20)

Anúncio

www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas

  1. 1. FraçõesFrações AlgébricasAlgébricas Matemática - ÁlgebraMatemática - Álgebra
  2. 2. O que são fraçõesO que são frações algébricas?algébricas?  São frações que tem variáveis no denominador.São frações que tem variáveis no denominador. Ex.:Ex.: xy a 2 7 ) 5 4 ) + − y yx b 12 5 ) 2 +− aa x c
  3. 3. O que são fraçõesO que são frações algébricas?algébricas?  São frações que temSão frações que tem variáveis no denominadorvariáveis no denominador.. Ex.:Ex.: xy a 2 7 ) 5 4 ) + − y yx b 12 5 ) 2 +− aa x c
  4. 4. O que são? Frações com variável no denominador Resumindo...Resumindo...
  5. 5. Denominador sempreDenominador sempre diferente de 0diferente de 0  O denominador de uma fração nunca pode serO denominador de uma fração nunca pode ser zero.zero.  Assim, deve-se excluir os valores das variáveisAssim, deve-se excluir os valores das variáveis que anulam o denominador.que anulam o denominador. 0 5 ) ≠→ x x a a 3 62 8 ) ≠→ − + x x x d7 7 1 ) ≠→ − + y y x b 5 5 2 ) −≠→ + a a x c 7 07 ≠ ≠− y y 5 05 −≠ ≠+ a a 3 2 6 62 062 ≠ ≠ ≠ ≠− x x x x
  6. 6. Denominador sempreDenominador sempre diferente de 0diferente de 0  OO denominadordenominador de uma fraçãode uma fração nunca pode sernunca pode ser zerozero..  Assim, deve-seAssim, deve-se excluir os valoresexcluir os valores das variáveisdas variáveis que anulam o denominadorque anulam o denominador.. 0 5 ) ≠→ x x a a 3 62 8 ) ≠→ − + x x x d7 7 1 ) ≠→ − + y y x b 5 5 2 ) −≠→ + a a x c 7 07 ≠ ≠− y y 5 05 −≠ ≠+ a a 3 2 6 62 062 ≠ ≠ ≠ ≠− x x x x
  7. 7. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Resumindo...Resumindo...
  8. 8. Simplificação de fraçõesSimplificação de frações algébricasalgébricas  Para simplificar uma fração, fatoramos oPara simplificar uma fração, fatoramos o numerador e o denominador.numerador e o denominador. Ex.:Ex.: b a bbbba bbbaa ab ba a 3 2 .....3.2 .....2.2 6 4 ) 4 32 == ( )( ) ( ) 5 3 35 33 155 9 ) 2 − = + −+ = + − a a aa a a b
  9. 9. Simplificação de fraçõesSimplificação de frações algébricasalgébricas  Para simplificar uma fração,Para simplificar uma fração, fatoramos ofatoramos o numerador e o denominadornumerador e o denominador.. Ex.:Ex.: b a bbbba bbbaa ab ba a 3 2 .....3.2 .....2.2 6 4 ) 4 32 == ( )( ) ( ) 5 3 35 33 155 9 ) 2 − = + −+ = + − a a aa a a b
  10. 10. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Resumindo...Resumindo... Dividir numerador e denominador pelo divisor comum
  11. 11. Tente fazer sozinhTente fazer sozinh 1- Simplifique:1- Simplifique: = − = = x x c x x b yx xy a 15 3 ) 20 2 ) ) 2 2 2 = = − = 22 43 2 33 22 ) 16 4 ) 48 18 ) yzx yzx f ab ab e rs sr d
  12. 12. Tente fazer sozinhoTente fazer sozinho 1- Simplifique:1- Simplifique: 5 1 .5.3 .3 15 3 ) 10 1 ..10.2 .2 20 2 ) .. .. ) 2 2 2 −=−= − == == x x x x c xxx x x x b x y yxx yyx yx xy a 3 2 .....11.3 ........11.2 33 22 ) 4 1 ..4.4 ..4 16 4 ) 8 3 ..8.6 ...6.3 48 18 ) 2 22 43 2 xz zzyxx zzzzyxxx yzx yzx f ba ba ab ab e r sr srr rs sr d == −=−= − ==
  13. 13. Tente fazer sozinhoTente fazer sozinho 2- Simplifique:2- Simplifique: = + + = − = + bybx ayax c a b yx a ) 21 714 ) 6 33 ) = + + = − = + + 17 214 ) 23 ) 1 ) 2 23 2 x xx f xx x e cac a d
  14. 14. Tente fazer sozinhoTente fazer sozinho 2- Simplifique:2- Simplifique: ( ) ( ) ( ) ( ) b a yxb yxa bybx ayax c aaa b yxyxyx a = + + = + + − = − = − + = + = + ) 3 2 7.3 27 21 714 ) 23.2 3 6 33 ) ( ) ( ) ( ) ( ) x x xx x xx f xxx x xx x e cac a cac a d 2 17 172 17 214 ) 23 1 2323 ) 1 1 11 ) 2 2 2 23 2 = + + = + + − = − = − = + + = + +
  15. 15. Tente fazer sozinhoTente fazer sozinho 3- Simplifique:3- Simplifique: ( ) = + − = − − = +− − 33 1 ) 7 49 ) 44 25 ) 2 2 2 x x c x x b mm m a
  16. 16. Tente fazer sozinhTente fazer sozinh 3- Simplifique:3- Simplifique: ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) 3 1 13 11 13 1 33 1 ) 7 7 77 7 7 7 49 ) 2 5 22 25 2 25 44 25 ) 222 222 22 − = + +− + − = + − += − +− = − − = − − − = −− − = − − = +− − x x xx x x x x c x x xx x x x x b mmm m m m mm m a
  17. 17. Tente fazer sozinhTente fazer sozinh 3- Simplifique (continuação):3- Simplifique (continuação): = +− − = + − = − +− 96 62 ) 36 4 ) 14 144 ) 2 2 2 2 xx x f x x e x xx d
  18. 18. Tente fazer sozinhTente fazer sozinh 3- Simplifique (continuação):3- Simplifique (continuação): ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )3 2 3 32 96 62 ) 3 2 23 22 23 2 36 4 ) 12 1 1212 12 12 12 14 144 ) 22 222 222 2 − = − − = +− − − = + −+ = + − = + − + = −+ − = − − = − +− xx x xx x f x x xx x x x x e xxx x x x x xx d
  19. 19. Adição e Subtração deAdição e Subtração de frações algébricasfrações algébricas Utilizamos as mesmas regras das fraçõesUtilizamos as mesmas regras das frações numéricas.numéricas.  Frações comFrações com denominadores iguaisdenominadores iguais:: Ex.:Ex.: ( ) xx mm x mm x m x m b a c a cc a c a c a 2 9 2 18 2 18 2 1 2 8 ) 3753125312 ) = +−+ = −−+ = − − + + = −+ = − +
  20. 20. Adição e Subtração deAdição e Subtração de frações algébricasfrações algébricas Utilizamos asUtilizamos as mesmas regras das fraçõesmesmas regras das frações numéricasnuméricas..  Frações comFrações com denominadores iguaisdenominadores iguais:: Ex.:Ex.: ( ) xx mm x mm x m x m b a c a cc a c a c a 2 9 2 18 2 18 2 1 2 8 ) 3753125312 ) = +−+ = −−+ = − − + + = −+ = − +
  21. 21. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Resumindo...Resumindo... Denominadores iguais Trabalhar os numeradores e manter o denominador Dividir numerador e denominador pelo divisor comum
  22. 22. Tente fazer sozinhoTente fazer sozinho 1- Calcule e simplifique, se possível, os resultados:1- Calcule e simplifique, se possível, os resultados: = + + + = − − − − − = + − + + + 1 1 1 ) 3 54 3 14 ) 1 9 1 9 ) aa a c x x x x b x a x a a
  23. 23. Tente fazer sozinhTente fazer sozinh 1- Calcule e simplifique, se possível, os resultados:1- Calcule e simplifique, se possível, os resultados: 1 1 1 1 1 1 ) 3 4 3 5414 3 54 3 14 ) 1 2 1 99 1 9 1 9 ) = + + = + + + − = − +−− = − − − − − + = + −++ = + − + + + a a aa a c xx xx x x x x b x a x aa x a x a a
  24. 24. Adição e SubtraçãoAdição e Subtração d frações algébricasfrações algébricas  Frações comFrações com denominadores diferentesdenominadores diferentes:: Devemos tirar o m.m.c dos denominadores.Devemos tirar o m.m.c dos denominadores. Ex.:Ex.: ( ) x x x x x x x x x b x m x mm x m x m a 6 313 6 3310 6 1310 2 1 3 5 ) 2 13 2 310 2 35 ) − = +− = −− = − − = + =+
  25. 25. Adição e Subtração deAdição e Subtração de frações algébricasfrações algébricas  Frações comFrações com denominadores diferentesdenominadores diferentes:: Devemos tirar oDevemos tirar o m.m.c dos denominadoresm.m.c dos denominadores.. Ex.:Ex.: ( ) x x x x x x x x x b x m x mm x m x m a 6 313 6 3310 6 1310 2 1 3 5 ) 2 13 2 310 2 35 ) − = +− = −− = − − = + =+
  26. 26. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Resumindo...Resumindo... Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum
  27. 27. Tente fazer sozinhoTente fazer sozinho 2- Calcule e simplifique, se possível, os resultados:2- Calcule e simplifique, se possível, os resultados: =+ + − − =− =+ xx x x x c a m a m b yx a 10 1 5 53 6 4 ) 3 2 6 5 ) 11 )
  28. 28. Tente fazer sozinhoTente fazer sozinho 2- Calcule e simplifique, se possível, os resultados:2- Calcule e simplifique, se possível, os resultados: ( ) ( ) x x x x x x x xx xx x x x xx x x x c a m a mm a m a m b xy xy yx a 6 75 .6.5 755 30 3525 30 33018205 30 3 30 3018 30 205 10 1 5 53 6 4 ) 66 45 3 2 6 5 ) 11 ) +− = +− = −− = +−−− = =+ + − − =+ + − − = − =− + =+
  29. 29. Tente fazer sozinhoTente fazer sozinho 2- Calcule e simplifique (continuação):2- Calcule e simplifique (continuação): = + − − + = − − − =+ + 2 4 4 17 ) 3 2 25 ) 4 3 1 ) 2 2 2 xx x f x xx x x e x x d
  30. 30. Tente fazer sozinhoTente fazer sozinho 2- Calcule e simplifique (continuação):2- Calcule e simplifique (continuação): ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) 4 93 4 8417 22 2417 2 4 22 17 2 4 4 17 ) 2 43 2 43 2 43 2 6225 2 32253 2 25 ) 14 37 14 33 14 4 4 3 1 ) 22 2 22 2 2 22 2 2 2 2 − + = − +−+ = −+ −−+ = + − −+ + = + − − + + = + = + = +−− = = −−− = − − − + + = + + + + =+ + x x x xx xx xx xxx x xx x f x x x xx x xx x xxxx x xxxx x xx x x e x x x x x x x x d
  31. 31. Multiplicação de fraçõesMultiplicação de frações algébricasalgébricas  Multiplicamos da mesma maneira queMultiplicamos da mesma maneira que multiplicamos os números fracionários:multiplicamos os números fracionários: Numerador x numeradorNumerador x numerador Denominador x denominadorDenominador x denominador Ex.:Ex.: ( ) ( ) x m a m x a c am yx ma yxyx m yx a yx b xy a y a x a a 2 3 1 3 . 2 1 ) 7.7 . . 7 ) 10 3 2 . 5 3 ) 22 2 = + + − = −+ = −+ =
  32. 32. Multiplicação de fraçõesMultiplicação de frações algébricasalgébricas  Multiplicamos da mesma maneira queMultiplicamos da mesma maneira que multiplicamos os números fracionários:multiplicamos os números fracionários: Numerador x numeradorNumerador x numerador Denominador x denominadorDenominador x denominador Ex.:Ex.: ( ) ( ) x m a m x a c am yx ma yxyx m yx a yx b xy a y a x a a 2 3 1 3 . 2 1 ) 7.7 . . 7 ) 10 3 2 . 5 3 ) 22 2 = + + − = −+ = −+ =
  33. 33. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Resumindo...Resumindo... DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum
  34. 34. Tente fazer sozinhoTente fazer sozinho 1- Efetue as multiplicações.1- Efetue as multiplicações. = −+ =      − = 5 . 5 ) 2 . 3 5 ) 3 . 2 7 ) 3 2 yxyx c b yx a xy b c x a x a
  35. 35. Tente fazer sozinhoTente fazer sozinho 1- Efetue as multiplicações.1- Efetue as multiplicações. 255 . 5 ) 3 102 . 3 5 ) 6 7 3 . 2 7 ) 22 3 23 3 2 2 yxyxyx c ab yx b yx a xy b ac x c x a x a − = −+ −=      − =
  36. 36. Tente fazer sozinhoTente fazer sozinho 1- Efetue as multiplicações (continuação).1- Efetue as multiplicações (continuação). = + − = − + + =      − x ca ca x f x x x x e xx xd 3 .) 7 53 . 7 ) 8 . 2 .7) 22 2
  37. 37. Tente fazer sozinhoTente fazer sozinho 1- Efetue as multiplicações (continuação).1- Efetue as multiplicações (continuação). ( ) ( ) ( )( ) ( )cacaca ca ca ca x ca ca x f x xx x x x x e xxx xd − = −+ + = − + = + − − + = − + + −=      − 3 1 33.3 .) 49 53 7 53 . 7 ) 16 7 8 . 2 .7) 2222 2 2 42
  38. 38. Divisão de fraçõesDivisão de frações algébricasalgébricas  Procedemos da mesma forma como dividimos asProcedemos da mesma forma como dividimos as frações numéricas:frações numéricas: Multiplicar a primeira fração pelo inverso da segundaMultiplicar a primeira fração pelo inverso da segunda fração.fração. Ex.:Ex.: m a m x x a x m x a c x aa x a ax a b cn am n m c a m n c a a = + + = ++ == == 1 . 11 : 1 ) 10 21 2 7 . 5 3 7 2 : 5 3 ) .:) 2
  39. 39. Divisão de fraçõesDivisão de frações algébricasalgébricas  Procedemos da mesma forma como dividimos asProcedemos da mesma forma como dividimos as frações numéricas:frações numéricas: Multiplicar a primeira fração pelo inverso da segundaMultiplicar a primeira fração pelo inverso da segunda fraçãofração.. Ex.:Ex.: m a m x x a x m x a c x aa x a ax a b cn am n m c a m n c a a = + + = ++ == == 1 . 11 : 1 ) 10 21 2 7 . 5 3 7 2 : 5 3 ) .:) 2
  40. 40. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Divisão Resumindo...Resumindo... C D B A D C B A .: = DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum
  41. 41. Tente fazer sozinhoTente fazer sozinho 1- Efetue as divisões.1- Efetue as divisões. = = = 3 2 2 32 6 : 2 3 ) 3 : 3 5 ) 4 :) y x y x c qppq a b a c c a a
  42. 42. 1- Efetue as divisões.1- Efetue as divisões. 46 . 2 36 : 2 3 ) 9 5 3 . 3 53 : 3 5 ) 44 . 4 :) 2 2 321 3 2 2 2 4 3 3 232 xy x y y x y x y x c apqp pq a qppq a b c a c a c a a c c a a == == == Tente fazer sozinhoTente fazer sozinho
  43. 43. Tente fazer sozinhoTente fazer sozinho 1- Efetue as divisões (continuação).1- Efetue as divisões (continuação). = − + = = 1 : 7 1 ) 7 4 :8) 3: 5 9 ) 2 2 x a x x f a ae x x d
  44. 44. 1- Efetue as divisões (continuação).1- Efetue as divisões (continuação). xa x a x x x x a x x f aa a a ae x x x x x d 7 11 . 7 1 1 : 7 1 ) 14 4 7 .8 7 4 :8) 5 3 3 1 . 5 9 3: 5 9 ) 2 21 2 2 1 232 − = −+ = − + == == Tente fazer sozinhoTente fazer sozinho
  45. 45. Potenciação de fraçõesPotenciação de frações algébricasalgébricas  Faz-se da mesma forma como nas fraçõesFaz-se da mesma forma como nas frações numéricas:numéricas: Elevamos numerador e denominador à mesmaElevamos numerador e denominador à mesma potência.potência. Ex.:Ex.: ( ) ( ) ( ) ( ) 2 2 2 22 9 3 33 33 3 16 49 4 7 4 7 ) 8 27 2 3 2 3 ) m a m a m a b a x a x a x a = − =      − ==     
  46. 46. Potenciação de fraçõesPotenciação de frações algébricasalgébricas  Faz-se da mesma forma como nas fraçõesFaz-se da mesma forma como nas frações numéricas:numéricas: Elevamos numerador e denominador à mesmaElevamos numerador e denominador à mesma potência.potência. Ex.:Ex.: ( ) ( ) ( ) ( ) 2 2 2 22 9 3 33 33 3 16 49 4 7 4 7 ) 8 27 2 3 2 3 ) m a m a m a b a x a x a x a = − =      − ==     
  47. 47. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Divisão Potenciação Resumindo...Resumindo... C D B A D C B A .: = n nn B A B A =      DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum Expoente positivo
  48. 48. Tente fazer sozinhoTente fazer sozinho 1- Calcule as potências.1- Calcule as potências. =      − =      − =      3 5 2 42 3 4 2 4 3 ) 3 5 ) ) y x c a b x ba a
  49. 49. Tente fazer sozinhoTente fazer sozinho 1- Calcule as potências.1- Calcule as potências. ( ) ( ) ( ) ( ) ( ) 15 6 35 323 5 2 8 4 4242 12 36 34 323 4 2 64 27 4 3 4 3 ) 81 625 3 5 3 5 ) ) y x y x y x c aaa b x ba x ba x ba a − = − =      − = − =      − ==     
  50. 50. Tente fazer sozinhoTente fazer sozinho 1- Calcule as potências (continuação).1- Calcule as potências (continuação). =      − =      − + =      − 02 2 2 13 5 ) 3 1 ) 5 3 ) x x f x m e n n d
  51. 51. Tente fazer sozinhoTente fazer sozinho 1- Calcule as potências (continuação).1- Calcule as potências (continuação). ( ) ( ) ( ) ( ) 1 13 5 ) 96 12 96 21 33..2 .1.21 3 1 3 1 ) 2510 9 55..2 9 5 3 5 3 ) 02 2 2 2 2 22 22 2 22 2 2 22 2 2 22 =      − +− ++ = +− ++ = +− ++ = − + =      − + +− = +− = − =      − x x f xx mm xx mm xx mm x m x m e nn n nn n n n n n d
  52. 52. Potenciação de fraçõesPotenciação de frações algébricasalgébricas  Expoente negativoExpoente negativo Invertemos a base e depois trocamos o sinal doInvertemos a base e depois trocamos o sinal do expoente.expoente. Ex.:Ex.: 4 62 2 32 3 2 11 ) ) a c a c c a b x y x y y x a =      =      =      =      − −
  53. 53. Potenciação de fraçõesPotenciação de frações algébricasalgébricas  Expoente negativoExpoente negativo Invertemos a base e depois trocamos o sinal doInvertemos a base e depois trocamos o sinal do expoenteexpoente.. Ex.:Ex.: 4 62 2 32 3 2 11 ) ) a c a c c a b x y x y y x a =      =      =      =      − −
  54. 54. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Divisão Potenciação Resumindo...Resumindo... C D B A D C B A .: = n nn B A B A =      DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum Expoente positivo Expoente negativo n nn A B B A =      −
  55. 55. Tente fazer sozinhoTente fazer sozinho 2- Calcule as potências negativas.2- Calcule as potências negativas. =      + − =      =      − − − 1 3 2 3 7 13 ) ) ) x x c m ac b b a a
  56. 56. Tente fazer sozinhoTente fazer sozinho 2- Calcule as potências negativas.2- Calcule as potências negativas. 13 7 7 13 ) ) ) 1 33 333 2 6232 3 − + =      + − =      =      =      =      − − − x x x x c ca m ac m m ac b a b a b b a a
  57. 57. Tente fazer sozinhoTente fazer sozinho 2- Calcule as potências negativas (continuação).2- Calcule as potências negativas (continuação). =      − − =      =      + − − − − 2 3 2 2 3 ) 2 ) 3 1 ) a ba f yx e x x d
  58. 58. Tente fazerTente fazer sozinhosozinho 2- Calcule as potências negativas (continuação).2- Calcule as potências negativas (continuação). 22 222 36323 2 2 2 22 2222 2 93 3 ) 82 2 ) 12 96 11..2 33..2 1 3 3 1 ) baba a ba a a ba f yxyx yx e xx xx xx xx x x x x d +− =      − − =      − − =      =      +− ++ = +− ++ =      − + =      + − − − −
  59. 59. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Divisão Potenciação FRAÇÕES ALGÉBRICASFRAÇÕES ALGÉBRICAS C D B A D C B A .: = n nn B A B A =      DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum Expoente positivo Expoente negativo n nn B A B A =     
  60. 60. BibliografiaBibliografia  NAME, Miguel Assis.NAME, Miguel Assis. Tempo deTempo de Matemática – 7ª sérieMatemática – 7ª série. 1ª edição. SP:. 1ª edição. SP: Editora do Brasil, 1996.Editora do Brasil, 1996.  Site Exatas, acessado em 29/03/2011:Site Exatas, acessado em 29/03/2011: http://www.exatas.mat.br/fracaoalg.htmhttp://www.exatas.mat.br/fracaoalg.htm

×