SlideShare uma empresa Scribd logo
1 de 72
Baixar para ler offline
MATEMÁTICA


NÚMEROS INTEIROS, RACIONAIS E REAIS
1.1. CONJUNTO DOS NÚMEROS NATURAIS (N)
No dia-a-dia, utilizamo-nos de conceitos matemáticos sem mesmo perceber. Sempre que podemos
contar as unidades de um conjunto de coisas, por exemplo, quando contamos o dinheiro que temos
na carteira, ou o número de gols que o centroavante de nosso time marcou no último campeonato,
ou ainda o número de votos que o Presidente Lula recebeu nas últimas eleições, obtemos como
resposta um resultado que denomina-se número natural.
Portanto, qualquer número que seja resultado ou conseqüência de uma contagem de unidades
é denominado de número natural e é representado por N.
N = {0, 1, 2, 3, 4, 5,...}
Um subconjunto importante de N é o conjunto N*:




                                                  N* = {1, 2, 3, 4, 5,...}
Como podemos ver, o zero foi excluído do conjunto N.
Podemos visualizar o conjunto dos números naturais ordenados sobre uma reta, como mostrado
abaixo:




                                                                                            1
Dentro do conjunto dos números naturais podemos afirmar que todas as operações envolvendo
adição (+) e multiplicação (x) SEMPRE dará como resultado outro número natural.
Já não podemos dizer o mesmo quanto às operações inversas da adição – a subtração ( — ), e da
multiplicação – a divisão ( ÷ ), pois nem sempre podemos representar a diferença entre dois
números naturais por outro número natural, o mesmo acontecendo com a divisão. Por exemplo,
a diferença 5 – 8 ou a divisão 7 ÷ 5.
Por este motivo, foi criado um novo conjunto numérico, chamado de números inteiros e indicado
por Z, para se expressar o resultado de algumas subtrações.


1.2.      CONJUNTO DOS NÚMEROS INTEIROS (Z)

No nosso exemplo anterior vimos que dentro do conjunto dos números naturais a diferença 5 –
8 não podia ser representada por um número natural. Já no conjunto dos números inteiros esta
diferença pode ser expressada, pois o resultado ( -3 ) é um número inteiro.



Z= {..., -3, -2, -1, 0, 1, 2,...} 3,...}




O conjunto N é subconjunto de Z, ou seja, está contido em Z.

Outros subconjuntos de Z:
    Z* = Z- {0}
Z+ = conjunto dos inteiros não negativos = {0,1,2,3,4,5,...}
Z_ = conjunto dos inteiros não positivos = {0,-1,-2,-3,-4,-5,...}
Observe que Z+= N.
Podemos considerar os números inteiros ordenados sobre uma reta, conforme mostra o gráfico
abaixo:




Da mesma maneira que foi criado o conjunto dos números inteiros para que pudéssemos expressar
o resultado de algumas subtrações ou diferenças numéricas, o mesmo ocorreu quanto à
impossibilidade de expressar o resultado de uma divisão de dois números inteiros. Assim, foi
criado o conjunto dos números racionais, que é indicado por Q.
                                                                                           2
1.3.  CONJUNTO DOS NÚMEROS RACIONAIS (Q)
Os números racionais são todos aqueles que podem ser colocados na forma de fração (com o
numerador e denominador pertencentes ao conjunto dos números inteiros). Ou seja, o conjunto dos
números racionais é a união do conjunto dos números inteiros com as frações positivas e negativas.




                                                    2  4 7
                                                    3  5 9 por exemplo são
                                                    números racionais.




Demonstrando:
a) os números inteiros -6; 0; -9; 4 são números racionais, pois podem serescritos como:

-6     0       -9

b) uma decimal exata finita como 0,6 ou 4,8 também é considerada uma número racional, pois pode
ser escrita em forma de fração:

3     24            respectivamente:
5     5


Assim, podemos escrever:
             a
 Q {
0} x | x 
b

Onde podemos ler:
“O conjunto dos números racionais ( Q ) é composto por todo e qualquer número (x) tal que (|)
este número (x) seja resultado de uma divisão de um número inteiro (a Є Z), numerador (a), por
outro número inteiro (a Є Z), denominador (b), desde que o denominador (b) seja diferente de zero.”
É interessante considerar a representação decimal de um número racional, que se obtém dividindo a
por b. a
           b



                                                                                                 3
Exemplos referentes às decimais exatas ou finitas:
1 = 0,5                5 = 1,25            75 = 3,75
2                      4                   20

Exemplos referentes às decimais periódicas ou infinitas:
1
    = 333
        ,....
3
Toda decimal exata ou periódica pode ser representada na forma de número racional.



1.4.      CONJUNTO DOS NÚMEROS IRRACIONAIS (Q’)

Os números irracionais são decimais infinitas não periódicas, ou seja, os números que não podem
ser escritos na forma de fração (divisão de dois inteiros). Como exemplo de números irracionais,
temos a raiz quadrada de 2 e a raiz quadrada de 3:
,14142135 ...
3=1
7320
50,8
Um número irracional bastante conhecido é o número π=3,1415926535... (Pi)




1.5.      CONJUNTO DOS NÚMEROS REAIS ®

Chama-se número real todo número racional ou irracional e representa-se por   R
R= Q ∪ {irracionais} = {x|x é racional ou x é irracional}

ATENÇÃO:




                                                                                              4
As relações entre os conjuntos numéricos apresentados podem ser resumidas pelo diagrama a
seguir:




Portanto,       os                                                        números          naturais,
inteiros, racionais                                                       e irracionais são todos
números      REAIS.                                                       Como         subconjuntos
importantes de R                                                          temos:

R* = IR - {0}

R+ = conjunto dos números reais não negativos

R_ = conjunto dos números reais não positivos


Obs: entre dois números inteiros existem infinitos números reais. Por exemplo:

Entre os números 0 e 1 existem infinitos números reais:
0,01 ; 0,003 ; 0,0009 ; 0,12 ; 0,35 ; 0,81 ; 0,99 ; 0,999 ; 0,9999 ...


Entre os números 8 e 9 existem infinitos números reais:
8,01 ; 8,02 ; 8,05 ; 8,1 ; 8,2 ; 8,5 ; 8,99 ; 8,999 ; 8,9999 ...




1.6.     NÚMEROS FRACIONÁRIOS

O símbolo a significa a ÷ b, sendo a e b números naturais e b diferente de zero.
b
Chamamos:
a               a = numerador
b               b = denominador

Se a é múltiplo de b, então é um número natural.
                           b

Veja um exemplo:
A fração 6 é igual a 6 ÷ 3. Neste caso, 6 é o numerador e 3 é o denominador.
3                    Efetuando a divisão de 6 por 3, obtemos o quociente 2.
Assim, 6 é um número natural e 6 é múltiplo de 3.



                                                                                                  5
Durante muito tempo, os números naturais foram os únicos conhecidos e usados pelos homens.
Depois começaram a surgir questões que não poderiam ser resolvidas com números naturais. Então
surgiu o conceito de número fracionário.


O significado de uma fração
Uma fração envolve a seguinte idéia: dividir algo em partes iguais. Dentre essas partes,
consideramos uma ou algumas, conforme nosso interesse.


Potenciação no Conjunto dos Números Inteiros - Z
Podemos expressar o produto de quatro fatores iguais a 2.
2.2.2.2. por meio de uma potência de base 2 e expoente 4:
2.2.2.2 = 24
Temos, dois elevado à Quarta ou dois à Quarta.
Do mesmo modo, podemos representar um produto de quatro fatores iguais a –2.
(-2). (-2). (-2). (-2)
por meio de uma potência de base –2 e expoente 4:
(-2). (-2). (-2). (-2) = (-2)4
Para todos os números a e n,. com n > 1, a potência an é o produto de n fatores
iguais a a. .
Se n = 1, a1 = a , sen = 0 , a0 = 1


Exemplo: Se a = -8 e b = 3, calcule o valor da expressão algébrica ab.
Exercícios:
01 –     Calcule cada potência abaixo.
       2
a) (-3) =                                       d) (-8)2 =
b) (–5)3 =                            e) (-1)5 =
c) (+10)4 =                                        f) (-1)4 =


02 –     Escreva cada expressão na forma de potência.
a) (-6) . (-6) . (-6) =
b) (+7) . (+7) . (+7) . (+7) =
c) (-9) . (-9) . (-9) =
d) (-1) . (-1) . (-1) . (-1) . (-1) . (-1) . (-1)
e) 4.4.4.4.4 =



Propriedade da Potenciação
Veja como simplificamos o produto (-5)3.(-5)4:
(-5)3.(-5)4 = (-5).(-5).(-5).(-5).(-5).(-5).(-5) = (-5)7 = (-5)3+4
   Se a é um número inteiro e m e n são números naturais, am. an = a m+n

                                                                                            6
O quociente de duas potências também pode ser expresso de um modo mais simples. Por exemplo,
             5
         2                                     2 2 2 2 2
                                               . . . .
             2   = (-2)5          (-2)2 =               = (-2)3
         2                                        2 2
                                                  .
     Se b é um número inteiro diferente de 0 e m e n são números naturais, como m   n,
     m
b
  n
    = bm                     bn = b m-n
b
  Se c é um elemento do conjunto dos números inteiros
 1
C =C           e      C0 = 1
Para elevar uma potência a um novo expoente, basta conservar a base e multiplicar os expoentes.
Veja:
             3 2
         2           = (-2)3 (-2)3 =(-2)3+3 = (-2)6 = (-2)3.2

   Se d é um número inteiro e m e n são números naturais,
(dm)n = d m.n


Exercícios
1 – Verifique o máximo que puder:
a) (- a)5 .(- a)3 =
b) (-10)100 .(-10)105.(-10)0 =
                     4
                 5
c)                  =
                  5
                     4
             8
d)                   4   =
             8
                     8 3
                 3
e)                       7
                             =
                 3
                     10           5
                 3               3
f)                           25
                                      =
                         3

2 - Sabendo que a = -4 e b = 2, qual é o valor da expressão algébrica.
OBS:
1º. Todo número elevado ao expoente zero é igual a 1.
2º. Todo número negativo elevado ao expoente par é positivo.
3º. Todo número negativo elevado ao expoente ímpar é negativo.


Propriedade da Potenciação dos números Racionais (Q)
Para todo número racional b e para todos os números naturais m e n, temos:
bm. bn = b m+n ;
             2               3            23    5
     1 1                             1         1
     2 2                             2         2

                                                                                               7
(bm)n = b m-n ;
          24                      2
                                  .4           8
     1                       1             1
     2                       2             2


Se b é um número racional diferente de 0 e m n;
bm
     n
         = b m-n :
b
         5
 1
                             52            3
 2                   1                 1
         2
     1               2                 2
     2


Uma Quarta propriedade é muito útil para simples cálculos com potências:
             3                                                 3
         3333 3 3
             3 3  27
                3
         55555.
              5 5
              .
              5   125


Para todos os números racionais b e c, com c       0, e para todo o número natural n:
         n        n
     b           b
     c           cn


Exercícios
1 – Calcule cada potência
                     2
             1
a)
             2
                     3
             4
b)
             3
                     1
             7
c)
             12
                     0
          37
d)                       =
         100
                 2
          3
e)
         10

2 - Simplifique as expressões numéricas.

                                                                                        8
1                2
              1                    3
a)
              2                    2
                           0           3
              17 2                             1
b)                                         2
              21 3
                      3                2       1
              1                    3       2
c)
              2                    2       3



3 - Simplifique usando as propriedades de potenciação
              2                6
          1                1
a)
          2                2
                      15
              1
              3
b)                    6
              1
              3
                  5            8
          2                2
          3                3
c)                         3
                  2
                  3
              5
          1
d)
          4
                  6
e) 0,4 =



Expoente Inteiro Negativo
Qualquer número elevado ao número inteiro negativo para podermos efetuar tal potência devemos:
                                   3       3
              3                1           1       1
     2                                     3
                               2           2       8
          2                    2       2
     2                     3       3 9
                                    2
     3                     2       2 4


Expoente Racional Fracionário

                      3                                      2

     23       22                                   5
                                                       32   35



                                                                                             9
Lembrando que a multiplicação de raízes pode ser expressa:

     a.b a b
                               22
3 2 2 3 23 2
     ab a b a 3
            3
             .b




e o quociente:

     ab         a      b
                                2 2
52          2 52 5 2            5 5
     a b a b ab


Base 10


Sem dúvida como estamos nos relacionando com Eletrotécnica e Eletrônica é importante que
saibamos trabalhar com a base dez , não esquecendo que são válidas as propriedades da
potenciação.
Exercícios
Resolva
a) (-10)3 =
b) (+100)2.(1000)1. (+10)2 =
            37        2    3
       101010
c)         2       3       27
      1010 10
           5
      10
d)         23
      10
           23       25
      10 10
e)         35       32
      10 10

Resumo de Potenciação
1)
     am .an = a m+n
2)   am
       n
         = a m-n
     a
      m
3) a n = n a m
4) a0 = 1
5) a1 = a
                      2
           2     1        1
6) a                      2
                 a        a




                                                                                     10
Leitura de uma Fração
As frações recebem nomes especiais quando os denominadores são 2, 3, 4, 5, 6, 7, 8, 9 e também




quando os denominadores são 10, 100, 1000, ...



Frações equivalentes
Frações equivalentes são frações que representam a mesma parte do todo.



Exemplo:                      são equivalentes
Para encontrar frações equivalentes devemos multiplicar o numerador e o denominador por um
mesmo número natural, diferente de zero.



Simplificação de frações


Uma fração equivalente a      , com termos menores, é    . A fração     foi obtida

dividindo-se ambos os termos da fração pelo fator comum 3. Dizemos que a


fração     é uma fração simplificada de   .


A fração    não pode ser simplificada, por isso é chamada de fração irredutível.


A fração      não pode ser simplificada porque 3 e 4 não possuem nenhum fator comum.


Números fracionários
Seria possível substituir a letra X por um número natural que torne a sentença abaixo verdadeira?
3*X=1
Substituindo X, temos:
X por 0 temos: 3 * 0 = 0

                                                                                                    11
X por 1 temos: 3 * 1 = 3.

Portanto, substituindo X por qualquer número natural jamais encontraremos o produto 1. Para
resolver esse problema temos que criar novos números. Assim, surgem os números fracionários.
“Toda fração equivalente representa o mesmo número fracionário.”
Portanto, uma fração (b diferente de zero) e todas frações equivalentes a ela representam o mesmo
número fracionário.

Resolvendo agora o problema inicial, concluímos que X = 1 ,        pois 3 *       = 1.
                                                     3                        3


2. SISTEMA LEGAL DE MEDIDAS


2.1.    MEDIDA E UNIDADE DE MEDIDA

Medir uma grandeza significa compará-la com outra grandeza de mesma espécie, que
doravante denominaremos de unidade ou padrão, e verificar quantas vezes esta grandeza cabe na
grandeza a ser medida.

Metro Linear
Os povos antigos utilizaram durante muito tempo partes de seu corpo para medir comprimento, o
que gerou muita confusão devido a pés e mãos serem de tamanhos diferentes.
Para resolver esta confusão, cientistas franceses, no final do século XVIII, estabeleceram o metro
como unidade fundamental (padrão) para medir o comprimento.

2.2.    AS UNIDADES DE MEDIDA DE COMPRIMENTO

Como unidade padrão para medida de comprimento ficou estabelecido o
metro, cujo símbolo ficou sendo o m.
Quando desejamos medir grandes extensões ou distâncias, fica difícil utilizar o metro como unidade.
Temos, portanto, que utilizar os múltiplos do metro, que são:
decâmetro = dam             equivalente a 10 m

hectômetro = hm             equivalente a 100 m

quilômetro = km             equivalente a 1000 m


Já, para medirmos pequenas extensões ou distâncias, nos utilizamos dos submúltiplos do metro:
decímetro = dm              equivalente a 0,1 m

centímetro = cm             equivalente a 0,01 m

milímetro = mm              equivalente a 0,001 m


                                                                                                12
2.3.   MUDANÇA DE UNIDADE

Conversão para unidade menor: desloca-se a vírgula para direita, tantas casas decimais
quantos forem os espaços que separam as duas unidades na escala.

Exemplo: Transformar:

a) 3,5 hm m

Neste caso, devemos deslocar a vírgula 2 casas à direita, achando 350 m


b) 62,18 m dm

Agora, deslocamos a vírgula uma casa à direita, encontrando 621,8 m


Conversão para unidade maior: desloca-se a vírgula para a esquerda, tantas casas decimais
quantos forem os espaços que separam as duas unidades na escala.

Exemplo: Transformar

a) 84,4 dm m

Fazendo uso da regra, deslocamos a vírgula uma casa à esquerda, e encontramos 8,44 m

b) 341,75 mm dm

Neste exemplo, devemos deslocar a vírgula 2 casas à esquerda, encontrando 3,4175 dm


2.4.   POLÍGONOS, PERÍMETROS E ÁREAS

Perímetro nada mais é que a soma das medidas de todos os lados de um polígono de n lados, e é
representado pela letra P.




                                                                                          13
14
2.5.   MEDIDAS DE SUPERFÍCIE

Medir uma superfície é simplesmente compará-la com uma superfície tomada com unidade padrão.
                                                                  2
A unidade fundamental para medir superfícies é o metro quadrado (m ). Esta medida de superfície
também é denominada ÁREA da superfície.
                                                                                            15
O metro quadrado é a área de um quadrado de lado 1 m.
1m2 = 1m x 1m




Mudança de Unidade - Qualquer unidade é sempre 100 vezes maior que a unidade imediatamente
inferior ou 100 vezes menor que a unidade imediatamente superior.
Como os múltiplos e submúltiplos do metro quadrado variam de 100 em 100, a conversão de
unidade é feita deslocando-se a vírgula de 2 em 2 casas, para a direita ou para a esquerda.
Unidades Agrárias - Quando queremos medir grandes extensões de terra, utilizamos as unidades
agrárias que são: are, hectare e centiare.




2.6.   ÁREAS DAS PRINCIPAIS FIGURAS PLANAS




                                                                                         16
17
2.7.   VOLUMES DE SÓLIDOS
                                                                           3
Para medirmos o Volume de um corpo utilizamo-nos do metro cúbico (m ) como unidade
fundamental, que corresponde ao volume de um cubo de 1 m de aresta (lado).




Cada unidade é 1000 vezes maior que a unidade imediatamente inferior ou 1000 vezes menor que a
unidade imediatamente superior.
Mudança de Unidade - A conversão de unidade é feita deslocando-se a vírgula de 3 em 3 casas
decimais para a direita ou para a esquerda.




                                                                                           18
19
20
2.8. MEDIDAS DE CAPACIDADE
Para medirmos o volume de um recipiente que contém líquidos ou gases, usamos como unidade
fundamental o litro. O litro é o volume de um cubo de 1 dm de aresta.
Símbolo= l
1 l = 1 dm 3        1 dm x 1 dm x 1 dm



Unidades de Capacidade

quilolitro hectolitro decalitro litro           decilitro centilitro mililitro

kl             hl        dal        l           dl              cl      ml
1.000 l    100 l         10 l    1l          0,1 l           0,01 l   0,001 l


Conforme observamos no quadro acima, cada unidade de capacidade é 10 vezes maior que a
unidade imediatamente inferior e 10 vezes menor que a unidade imediatamente superior.



Mudança de Unidade
Na conversão de uma unidade em outra inferior, devemos deslocar a vírgula para a direita de uma
em uma casa decimal.

Exemplo: 4,71 l - 471 l         e        0,008 dal - 0,08 hl



Na conversão de uma unidade em outra superior, devemos deslocar a vírgula para a esquerda de
uma em uma casa decimal.

Exemplo: 4,36 cl - 0,0436 l              e           1,5 l      - 0,015 hl




2.9. MEDIDA DE MASSA
A unidade fundamental de massa é o quilograma (kg) que corresponde a massa aproximada de
    3
1dm de água destilada a uma temperatura de 4º C.

Não devemos confundir PESO e MASSA.

PESO - é a força com que a Terra atrai os corpos para o seu centro.

MASSA - é a quantidade de matéria que um corpo possui.




                                                                                            21
Mudança de Unidade

Na mudança de unidade de medidas de massa observamos que cada unidade é
10 vezes maior que a imediatamente inferior ou 10 vezes menor que imediatamente superior.

Exemplos: 1,57 hg - 157 g          e      41,3 mg - 4,13 cg

        75 dg - 0,75 dag       e       5,5414 dag - 554,14dg


Outras Medidas de Massa




Relações Importantes
Então podemos estabelecer uma correspondência entre as unidades de volume, capacidade e
massa conforme pode ser mostrado na tabela abaixo:




                                                                                       22
2.10. MEDIDAS DE TEMPO
Por não pertencerem ao sistema métrico decimal, daremos uma rápida pincelada nas medidas
de tempo. A unidade legal para a medida de tempo é o segundo. Os seus múltiplos são
apresentados como segue:


Unidade                       Múltiplos
Nome            Segundo         Minuto          Hora               dia
Símbolo             s             min             h                 d
valor               1s            60 s         6 0 min = 3600 s   24 h = 1440 min = 86.400s


As medidas de tempo inferiores ao segundo não têm designação própria, sendo utilizados os
submúltiplos decimais.  Assim dizemos:    décimos de segundo, centésimos de segundo, ou
milésimos de segundo.

Utilizam-se também as unidades de tempo estabelecidas pelas convenções usuais do calendário civil
e da Astronomia, como, por exemplo, 1 mês, o ano, o século, etc. Para efetuar a mudança de uma
unidade para outra, devemos multiplicá-la (ou dividi-la) pelo valor desta unidade.




3. RAZÕES E PROPORÇÕES

3.1. RAZÃO ENTRE DUAS GRANDEZAS

Para entendermos o significado da razão entre dois números ou grandezas, analisaremos algumas
situações do dia-a-dia.
1º caso: Marlene receberá visitas para uma festa no final de semana e resolveu
preparar um batida de frutas. A receita diz que devem ser colocadas 9 frutas em
cada receita, sendo 6 laranjas e 3 maças. Comparemos os números envolvidos nesta
situação.

Sabemos que:
9, 6 e 3 são os números envolvidos nesta hipotética situação;
para cada 6 laranjas, devemos colocar 3 maças.

Escrevemos assim:
6                         6
ou 6 : 3                  é a razão entre os números 6 e 3, nesta ordem.
3                         3


Como 6 é o dobro de 3, para fazer o mesmo tipo de batida de frutas, a quantidade de laranjas deve
ser sempre igual ao dobro da quantidade de maças.


                                                                                              23
“Se a e b são dois números e b é diferente de zero, dizemos que
a: b é a razão entre a e b, nessa ordem”
ou a

    b


2º caso: Para ir à escola, Lucas gasta 30 minutos indo à pé. Já, Matheus utiliza-se de
sua moto e faz o mesmo percurso em 10 minutos. Qual a razão entre os tempos gastos
por Matheus e Lucas para chegarem até a escola, sabendo-se que o espaço percorrido é
o mesmo ?
tempo gasto por Matheus .................. 10 minutos
tempo gasto por Lucas ...................... 30 minutos
10
    =
30
1
    ou 1 : 3    a razão entre os tempos gastos por Lucas e
1

Matheus significa que para cada minuto gasto por Matheus, e Lucas gasta três vezes mais tempo
para percorrer o mesmo percurso.

“A razão entre grandezas de mesma natureza é a razão entre os números que expressam as
medidas destas grandezas.”
Atenção: Quando comparamos grandezas de mesma natureza, as medidas devem estar
expressas na mesma unidade.


Observações:
1) A razão entre dois números racionais pode ser apresentada de três formas. Exemplo:


Razão entre 1 e 4:    1:4 ou        ou 0,25.
2) A razão entre dois números racionais pode ser expressa com sinal negativo, desde que seus
termos tenham sinais contrários. Exemplo:



A razão entre –1 e 8 é          .



Termos de uma razão
Observe a razão:




                   (lê-se “a está para b” ou “a para b”).
                                                                                          24
Na razão a:b ou      , o número a é denominado antecedente e o número b é denominado
conseqüente. Veja o exemplo:




3 : 5 =

Leitura da razão: 3 está para 5 ou 3 para 5.




Razões inversas


Considere as razões.



Observe que o produto dessas duas razões é igual a 1, ou seja,           Nesse caso, podemos



afirmar que             são razões inversas.



Duas razões são inversas entre si quando o produto delas é igual a 1.


Exemplo:



           são razões inversas, pois               .

Podemos verificar que nas razões inversas o antecedente de uma é o
consequente da outra, e vice-versa.


Observações:
1) Uma razão de antecedente zero não possui inversa.


2) Para determinar a razão inversa de uma razão dada, devemos permutar
(trocar) os seus termos.



Exemplo: O inverso de                 .

                                                                                         25
Razões equivalentes
Dada uma razão entre dois números, obtemos uma razão equivalente da seguinte maneira:
Multiplicando-se ou dividindo-se os termos de uma razão por um mesmo número racional (diferente
de zero), obtemos uma razão equivalente.
Exemplos:




                                 são razões equivalentes.




                                   são razões equivalentes.




Razão entre grandezas da mesma espécie
O conceito é o seguinte:
Denomina-se razão entre grandezas de mesma espécie o quociente entre os números que expressam
as medidas dessas grandezas numa mesma unidade.




Exemplos:
1) Calcular a razão entre a altura de dois vasos de flores, sabendo que o primeiro possui uma altura
h1= 1,20m e o segundo possui uma altura h2=
1,50m. A razão entre as alturas h1 e h2 é dada por:




2) Num certo intervalo de tempo, um carro percorre 2 km enquanto Alexandre caminha 50 metros.
Qual é a razão entre os espaços percorridos pelo carro e por Alexandre, durante este intervalo de
tempo?

                                                                                                 26
Quando temos unidades de medida diferentes, devemos transforma-las para a mesma base. Neste
caso, transformaremos a distância percorrida pelo carro em metros. ( 2 km = 2.000 m )
2000 = 40
 50         1    significa que o carro percorre 40 m enquanto Alexandre percorre 1 m.


Razões entre grandezas de espécies diferentes
O conceito é o seguinte:
Para determinar a razão entre duas grandezas de espécies diferentes, determina-se o quociente
entre as medidas dessas grandezas.



Exemplos:
1) Consumo médio:
Marlene foi de Rio Preto a Uberlândia (298 Km) no seu carro, realizar uma visita à sua mãe.
Foram gastos nesse percurso 26 litros de combustível. Qual a razão entre a distância e o
combustível consumido? O que significa essa razão?
Solução:
Razão = 298
           26                1
                             , 1 46 km / l
1
, 1 46 km / l (lê-se “11,46 quilômetros por litro”).

Essa razão significa que a cada litro consumido foram percorridos em média
11,46 km.


2) Velocidade média:

Na mesma viagem Rio Preto/Uberlândia, Marlene fez o percurso (298Km) em 4 horas. Qual a razão
entre a medida dessas grandezas? O que significa essa razão?

Solução:


Razão =         298
                      74 5
                         ,        km / h
                 4


Razão = 74,5 km/h (lê-se “74,5 quilômetros por hora”).
Essa razão significa que a cada hora foram percorridos em média 74,5 km.




                                                                                          27
3) Densidade demográfica:

A cidade de São José do Rio Preto no último censo teve uma população avaliada em 367.512
habitantes. Sua área é de 434,10 km2. Determine a razão entre o número de habitantes e a área da
cidade. O que significa essa razão?




                                                                                             28
Solução:



Razão =




           29
367 512.
434 10
     ,                            2
                   846 hab / km


Razão = 846 hab/km2 (lê-se “846 habitantes por quilômetro quadrado”)

Essa razão significa que em cada quilômetro quadrado existem em média 846
habitantes.




4) Densidade absoluta ou massa específica:

Um cubo de concreto de 10 cm de aresta tem massa igual a 17,8 kg. Determine a razão entre a
massa e o volume desse corpo. O que significa essa razão?

Solução:

Volume = 10 cm . 10 cm . 10 cm = 1.000cm3

Massa = 17,8 kg = 17.800

                        3
Razão =17800 = 17 8g/ cm
                  ,
       1000


Razão = 17,8 g/cm3 (lê-se “17,8 gramas por centímetro cúbico”).

Essa razão significa que 1000 cm3 de concreto pesa 17,8g.




                                                                                        30
3.2.      CONCEITO DE PROPORÇÃO


1º Caso: Uma escola tem 800 alunos e freqüentemente realiza pesquisas com o intuito de saber o
índice de satisfação de seus alunos. A última pesquisa realizada teve por objetivo saber qual o
esporte preferido de seus alunos. Os números levantados foram os seguintes:




De posse dos dados, podemos analisa-los utilizando alguns quocientes:

1.     total de alunos que praticam natação ................... 160
       total de alunos da escola .................................... 800

160
8
500
Constatamos, portanto, que de cada 5 alunos matriculados na escola, 1 pratica natação.


2.     total de alunos que praticam Basquete .................  40
       total de alunos que jogam futebol de salão ............ 240

4
10
2
640
O número de alunos que pratica futebol de salão é 6 vezes maior que o número de alunos que
pratica basquete.




2º Caso: Gabriel e Inês resolvem pintar a parede da sala de sua casa. Eles sabem que
para conseguir uma tonalidade rosa, devem misturar 2 litros de vermelho e 3 de branco.
Mas esta receita só dá certo para pequenas dimensões a serem pintadas. Como a
parede é muito grande, Inês está em dúvida se pode misturar 10 litros de vermelho
com 15 litros de branco. E aí ? O que fazer para resolver este problema ?


E você o que acha ? Basta misturar as tintas para ver o que acontece ?

                                                                                            31
O problema é que se der errado o prejuízo será dobrado: o tempo gasto e o custo da tinta.
Para resolver esta questão vamos usar razões para ter uma maior probabilidade de
acerto.

2
receita diz =    2 vermelhos com 3 brancos - a mistura é de 2
                                                            3

Inês quer ... 10 vermelhos com 15 brancos - a mistura é de 10
                 10
As razões 2 e          são iguais                               15
           3      15
A igualdade 2 = 10 é uma proporção entre os números 2, 3, 10 e 15, nessa ordem.
            3 15
Lê-se: 2 está para 3 assim como 10 está para 15


Assim:

Proporção é uma igualdade entre duas razões.
Uma Proporção envolve quatro números no mínimo: a, b, c e d. Nesta ordem, temos a proporção 
a : b = c : d, sendo b e d ≠ zero


Elementos de uma proporção
Dados quatro números racionais a, b, c, d, não-nulos, nessa ordem, dizemos que eles formam uma
proporção quando a razão do 1º para o 2º for igual à razão do 3º para o 4º. Assim:




                ou a :b = c :d

(lê-se “a está para b assim como c está para d”)



Os números a, b, c e d são os termos da proporção, sendo:

b e c os meios da proporção.

a e d os extremos da proporção.




                                                                                            32
Exemplo:



Dada a proporção                , temos:

Leitura: 3 está para 4 assim como 27 está para 36.

Meios: 4 e 27      Extremos: 3 e 36




Propriedade fundamental das proporções

Observe as seguintes proporções:




De modo geral, temos que:
a cb       d ⇔a . d

b.c



Nasce daí a propriedade fundamental das proporções:

Em toda proporção, o produto dos meios é igual ao produto dos extremos.



Aplicações da propriedade fundamental

Determinação do termo desconhecido de uma proporção

Exemplos:

Determine o valor de x na proporção:



                                                                          33
x 21

3 9

Solução: Fazendo uso da Propriedade Fundamental das Proporções, temos que:

9 . x = 3 . 21      (aplicando a propriedade fundamental)
9 . x = 63


63
9

x = 7

Logo, o valor de x é 7.




 Determine o valor de x na proporção:
7 1
x
5x 2
3


Solução:

5 . (x-1) = 7 . (3x+2)    (aplicando a propriedade fundamental)
5x - 5 = 21x + 14
5x - 21x = 14 + 5
-16x = 19

  19
x
16



Quarta proporcional
Dados três números racionais a, b e c, não-nulos, denomina-se quarta proporcional desses
números um número x tal que:




Exemplo:
                                                                                     34
 Determine a quarta proporcional dos números 7, 3 e 21.

Solução: Indicamos por x a quarta proporcional e armamos a proporção:




                                                                        35
7 21

3 x
(aplicando a propriedade fundamental)

7 . x = 3 . 21
7 . x = 63


63

7

x = 9

Logo, a quarta proporcional é 9.



4. REGRA DE TRÊS

4.1. REGRA DE TRÊS SIMPLES
Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores
dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já
conhecidos.
A Regra de três simples é utilizada para resolver problemas que envolvem proporcionalidade entre
duas grandezas.


Passos utilizados numa regra de três simples
Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma
linha as grandezas de espécies diferentes em correspondência.
Identificar se as grandezas são diretamente ou inversamente proporcionais.
Montar a proporção e resolver a equação.

Exemplos:
1. Em 3 minutos uma torneira despeja 6 litros de água numa caixa d´água. Se a
caixa ficou cheia em 6 horas, qual será a capacidade desta caixa d´água ?


Tempo                                          Capacidade da Caixa


3 minutos                                             6 litros
6 h = 6 * 60 minutos                                  X litros
360 minutos



                                                                                             36
Resolvendo, temos:

3 . x = 6 . 360
3 x = 2160 litros

x = 2.160/3         x = 720 litros


b) Um motociclista viaja de S.J.do Rio Preto até Mirassol, à velocidade de
80km/h, fazendo o percurso em 10 minutos. Se a velocidade da moto fossede 100km/h, em quantos
minutos seria feito o mesmo percurso?




                                                                                          37
Velocidade (Km/h)           Tempo (minutos)
80                               10 min

100                                X min



Observe que as grandezas são inversamente proporcionais, aumentando a velocidade o tempo
diminui na razão inversa.

Resolução:

X/10 = 80/100  = 10*80/100 x = 800/100  x = 8 minutos
               x

Observe que o exercício foi montado respeitando os sentidos das setas.


4.2. REGRA DE TRÊS COMPOSTA

Algumas situações envolvem mais de duas grandezas. A análise e a resolução de problemas desta
natureza podem envolver uma regra de três composta.

Exemplo:
a) 20 pintores trabalhando 6 horas por dia, pintam um edifício em 4 dias. Quantos dias serão
necessários para que 6 pintores, trabalhando 8 horas por dia, pintem o mesmo edifício?
1. Para facilitar a resolução, vamos separar as grandezas e números envolvidos:
Quantidade de pintores: 20, 6
Horas por dia : 6, 8
Número de dias: 4 , x

2. supondo que o número de horas por dia não varie:

Pintores     Horas p/ dia     Nº de dias
20            6               4
6             8               x


Grandezas inversamente proporcionais

* Menos pintores, mais dias para pintar


3. Supondo que a quantidade de pintores não varie:

Pintores     Horas p/ dia Nº de dias
20             6           4
6             8           x

                                                                                          38
Grandezas inversamente proporcionais
Nesta situação, o tempo (dias) é inversamente proporcional à quantidade de pintores e ao tempo de
trabalho por dia, portanto o produto 20 . 6 . 4 é igual ao produto 6 . 8 . x

20 . 6 . 4 = 6 . 8 . x    480 = 48 . x     x = 480 / 48

x = 10 Serão necessários 10 dias para pintar o edifício.


Como foi visto, existe um método prático para se montar o esquema e resolver o problema. O
Método Prático consiste em:

escrever em uma coluna as variáveis do mesmo tipo, ou seja, aquelas expressas na mesma unidade
de medida.
 Identificar aquelas que variam num mesmo sentido (grandezas diretamente proporcionais) e
 aquelas que variam em sentidos opostos
 (grandezas inversamente proporcionais), marcando-as com setas no mesmo sentido ou sentidos
 opostos, conforme o caso.
 A incógnita x será obtida da forma sugerida no esquema abaixo, dada como exemplo de caráter
 geral.


Imaginemos as grandezas A, B, C e D, que assumem os valores literais mostrados a seguir.
Suponhamos, por exemplo, que a grandeza A seja diretamente proporcional à grandeza B,
inversamente proporcional à grandeza C e inversamente proporcional à grandeza D. Após termos
executado este procedimento, montamos o esquema mostrado abaixo:




Neste caso, o valor da incógnita x será dado por:


x
 a.
             p c d           a. p.c.d
             .  .            
                             
             b r s           b.r . s




                                                                                              39
Observem que para as grandezas diretamente proporcionais, multiplicamos             x    pelos
valores invertidos e para as grandezas inversamente proporcionais, multiplicamos pelos valores
como aparecem no esquema.



Exemplo:
STA CASA – SP – Sabe-se que 4 máquinas, operando 4 horas por dia, durante 4 dias, produzem 4
toneladas de certo produto. Quantas toneladas do mesmo produto seriam produzidas por 6
máquinas daquele tipo, operando 6 horas por dia, durante 6 dias?

a) 8 b) 15 c) 10,5 d) 13,5

Solução:
Observe que a produção em toneladas é diretamente proporcional ao número de máquinas, ao
número de dias e ao número de horas/dia.

Portanto:




Portanto, seriam produzidas 13,5 toneladas do produto, sendo D a alternativa correta.


Exercícios resolvidos e propostos
1. Vinte e cinco costureiras, trabalhando oito horas por dia, durante 10 dias, fizeram 800 calças.
Vinte costureiras trabalhando nove horas por dia durante dezoito dias, produzirão quantas calças
iguais às já produzidas?

SOLUÇÃO:

Nº Costureiras   dias    Horas/dia   calças
25          10       8       800
20          18       9        x


Observe que o número de calças é diretamente proporcional ao número de costureiras, ao número
de dias e ao número de horas/dia.
                                                                                           40
Portanto:
                                     9 18 20
                                 8
                               x 00. . .                     1 .
                                                              296
                                               25 10
                                                8
Resposta: 1296 calças


2. Em uma escola, vinte e cinco estudantes resolvem 150 exercícios de matemática em doze
dias, estudando 10 horas por dia. Quantas horas por dia, deverão estudar 30 estudantes,
para resolverem 180 exercícios em 15 dias?

Solução:
                Estudantes    dias       Horas/dia   Exercícios
                25       12          10          150
                30       15          x          180




                                                                                     41
Observe que:
Aumentando o número de horas/dia, aumenta o número de exercícios, diminui o número de dias
necessários e diminui o número de estudantes necessárias.

Portanto:


X = 10 * 180 * 12 * 25 / 150 * 15 * 30 x = 540000/67500

Resposta: 8 h




3. Certo trabalho é executado por 15 operários, em 12 dias de 10 horas. Se três operários forem
demitidos do serviço, quantos dias de 8 horas deverão trabalhar os demais, para realizar o dobro do
trabalho anterior?

Solução:

Aumentando o número de dias, diminui o número de horas/dia necessários e diminui o número de
operários necessários. Podemos também dizer que para realizar o dobro do trabalho, o número de
dias deve.aumentar.

Portanto, podemos montar o seguinte esquema:




Operários        dias    Horas/dia       Trabalho
15          12          10           T
12          x           8        2T


Logo,

                                          15 10 2T
                                       1
                                     x 2. . .                3 ,
                                                              7 5




                                                                                                42
1
T2 8


Resposta: 37,5 dias




Agora resolva estes dois:
1 - Em uma residência, no mês de fevereiro de um ano não bissexto, ficaram acesas, em média, 16
lâmpadas elétricas durante 5 horas por dia e houve uma despesa de R$ 14,00. Qual foi a despesa em
março, quando 20 lâmpadas iguais às anteriores ficaram acesas durante 4 horas por dia, supondo-se
que a tarifa de energia não teve aumento?

Resposta : R$15,50




2 - Um livro está impresso em 285 páginas de 34 linhas cada uma com 56 letras em cada linha.
Quantas páginas seriam necessárias para reimprimir esse livro com 38 linhas por página, cada uma
com 60 letras?

Resposta: 238 páginas




5. PORCENTAGENS
Toda fração de denominador 100, representa uma porcentagem, como diz o próprio nome, por cem.

Exemplo:

                   12                     5                      36
                   100                           5
                                                  %,            100
                            1
                            2 %,         100                           3
                                                                        6 %




                                                                                              43
Observe que o símbolo % que aparece nos exemplos acima significa por cento.
Se repararmos em nossa volta, vamos perceber que este símbolo % aparece com muita freqüência
em jornais, revistas, televisão e anúncios de liquidação, etc.

Exemplos:

 A
 cesta básica teve um reajuste de 6,2 % no último bimestre;

  Os
 rendimentos da caderneta de poupança que vencem hoje, são de 3,1 %;


 A
 taxa de desemprego no Brasil cresceu 19% neste ano.

 Desconto de 25% nas compras à vista.


Devemos lembrar que a porcentagem também pode ser representada na forma de números
decimais. Vejam os exemplos:
12 = 0 12
        ,                      81= 0 81
                                      ,
100                            100



Trabalhando com Porcentagem

Vamos fazer alguns cálculos envolvendo porcentagens.

Exemplos:
1.   Uma geladeira custa 800 reais. Pagando à vista você ganha um desconto de 10%. Quanto
pagarei se comprar esta geladeira à vista?


                               10 % 
 10
100
(primeiro representamos na forma de fração decimal)
10% de 100  10% x 100 

10     8000
100    100           x 800    8
                              0


800 – 80 = 720

Logo, pagarei 720 reais.




                                                                                         44
2.   Pedro usou 32% de um rolo de mangueira de 100m. Determine quantos metros de mangueira
Pedro usou.

       32% = 32


32 % de 100 ⇒ 32

                  100     x 100 ⇒    3200 = 32

                                     100
Logo, Pedro gastou 32 m de mangueira.


3.   Comprei uma mercadoria por 2000 reais. Por quanto devo vende-la, se quero obter um lucro
de 25% sobre o preço de custo.

25% = 25
       100


25 % de 2000 ⇒ 25
               10          x 2000 ⇒ 50000
                                     100           = 500


O preço de venda é o preço de custo somado com o lucro.

Então, 2000 + 500 = 2500 reais.

Logo, devo vender a mercadoria por 2500 reais.




4. Comprei um objeto por 20 000 reais e o vendi por 25 000 reais. Quantos por cento
eu obtive de lucro?

Lucro: 25 000 – 20 000 = 5 000 ( preço de venda menos o preço de custo)


5000
20000 = 444 = 0 25


25
100 = 25 %




                                                                                          45
(resultado da divisão do lucro pelo preço de custo)


5.    O preço de uma casa sofreu um aumento de 20%, passando a ser vendida por 35 000 reais.
Qual era o preço desta casa antes deste aumento?

Porcentagem               Preço
120                      35 000
100                      x


120 x 00 x 35000 ⇒120 x 500000 = , 9166 67
      1                   3        2

Logo, o preço anterior era R$ 29.166,67




6. FUNÇÕES E GRÁFICOS

6.1.      FUNÇÕES

A idéia de função sempre está associada a uma relação de dependência entre dois conjuntos. Para
chegar à definição de uma função, vamos lembrar alguns conceitos importantes.


Produto Cartesiano: A x B

A x B = { (a, b)/a ∈ A e b ∈ B }

Exemplo:
Sejam os conjuntos A = { -1, 0, 1 } e B = { 0, 1, 4 }.
A x B = { (-1,0); (-1,1); (-1,4); (0,0); (0,1); (0,4); (1,0); (1,1); (1,4) } Multiplicamos cada termo do
conjunto A por cada termo do conjunto B.




Relação

Uma relação R é qualquer subconjunto de A x B




                                                                                                     46
Exemplo:
Determine os pares das relações:

a) R1 = { (x,y) ∈ A x B | y = x + 1 }
R1

A        B
-1       0

0        1
1        4


R1 = {(-1,0);(0,1)}
b) R2 = {(x,y) ∈ A x B y = x

R2

A        B

-1       0

0        1
1        4


R2 = {(-1,1); (0,0); (1,1)}
Observe que na Relação R2 todos os elementos do primeiro conjunto se corresponderam com algum
elemento do segundo conjunto, e uma só vez. A este tipo de Relação chamamos de função de A em
B

Então:

Diz-se que f é uma função (ou aplicação) de A em B ( f: A  B) se, e somente se, para todo
elemento x ∈ A, existir um único elemento y ∈ B, tal que (x,y) ∈ f.

TODOS os elementos de A devem enviar flecha a algum elemento de B;
CADA elemento de A deve mandar uma única flecha para algum elemento de B.


Domínio D(f) : é o conjunto da partida das flechas (A)

Contradomínio CD(f):          é o conjunto da chegada das flechas (B)

Imagem Im(f) :       é um subconjunto do contradomínio e é formada pelos elementos
do CD(f), que são, de fato, imagens de elementos do domínio

.y = f(x)

                                                                                          47
Tipos Fundamentais de Funções

Função Injetora:      Uma função f definida de A em B é injetora quando cada
elemento de B (que é imagem), é imagem de um único elemento de A


Função Bijetora:   Uma função f definida de A em B, quando injetora e
sobrejetora ao mesmo tempo, recebe o nome de função bijetora.

Exemplo:

É sobrejetora  Im(f) = B

É injetora  cada elemento da imagem em B tem um único correspondente
em A


Função Inversa:     Seja f uma função bijetora definida de A em B, com x ∈ A e y ∈
R, sendo (x,y) ∈ f. Chamaremos de função inversa de f, e indicaremos por f-1, o
conjunto dos pares ordenados (y,x) ∈ f-1 com y ∈ B e x ∈ A

Exemplo:

.f é definida de R em R, sendo y = 2 x.

Para determinarmos f-1, basta trocarmos x por y e y por x

Observe:

Y = 2 x x = 2 y

Isolando y em função de x resulta: y = x/2
Exemplo:

Achar a função inversa de y = 2x

Solução:
a) troquemos x por y e y por x: teremos x = 2 y
b) expressemos o novo y em função do novo x; teremos, então, y = x/2 e finalmente,

f-1(x) = x/2



Paridade das funções
1. Função par

A função y = f(x) é PAR, quando x ∈ D(f), f(-x) = f(x) , ou seja, para todo elemento do seu domínio,
f(x) = f (-x). Portanto , numa função par, elementos simétricos possuem a mesma imagem. Uma
                                                                                                 48
conseqüência desse fato é que os gráficos cartesianos das funções pares são curvas simétricas em
relação ao eixo dos y ou eixo das ordenadas.




Exemplo:

z = x4 + 2 é uma função par, pois f(x) = f(-x), para todo x. Por exemplo, f(2) = 24 + 2 = 18 e f(- 2) = (-
2)4 + 2 = 18
O gráfico abaixo, é de uma função par.




2. Função ímpar

A função y = f(x) é ímpar , quando x ∈ D(f) , f (- x) = - f (x) , ou seja, para todo elemento do seu
domínio, f (-x) = - f (x). Portanto, numa função ímpar, elementos simétricos possuem imagens
simétricas. Uma conseqüência desse fato é que os gráficos cartesianos das funções ímpares, são
curvas simétricas em relação ao ponto (0,0), origem do sistema de eixos cartesianos.
Exemplo:

y = x3 é uma função ímpar pois para todo x, teremos f(-x) = - f(x).

Por exemplo, f(- 3) = (- 3)3 = - 278e - f( x) = - ( 33 ) = - 27.
O gráfico abaixo é de uma função ímpar:




                                                                                                       49
Observação:   se uma função y = f(x) não é par nem ímpar, dizemos que ela não possui paridade.


Exemplo:
O gráfico abaixo, representa uma função que não possui paridade, pois a curva não é simétrica em
relação ao eixo dos x e também não é simétrica em relação à origem.




FUNÇÃO DE 1º GRAU
Definição
Chama-se função polinomial do 1º grau, ou função afim, qualquer função f de R em R dada pela
expressão f(x) = ax + b, onde a e b são números reais dados e a ≠ 0.
Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo
constante.




                                                                                                 50
Veja alguns exemplos de funções polinomiais do 1º grau:

f(x) = 6z - 4, onde a = 6 e b = - 4
f(x) = -3y + 2,    onde a = -3 e b = 2
f(x) = 8x,         onde a = 8 e b = 0


6.2.    GRÁFICOS


Sistema Cartesiano Ortogonal
O Sistema Cartesiano ortogonal é composto por dois eixos perpendiculares com origem comum e
uma unidade de medida.


No eixo horizontal, chamado eixo das abscissas, representamos os primeiros elementos do par
 ordenado de números reais.
No eixo vertical, chamado de eixo das ordenadas, são representados os segundos elementos do par
 ordenado de números reais.

Observações:
a todo par ordenado de números reais corresponde um só ponto do plano, e a cada ponto
corresponde um só par ordenado de números reais;


O gráfico de uma função polinomial do 1º grau, y = ax + b, com a ≠ 0, é uma reta oblíqua aos eixos
Ox e Oy.

Exemplo:

Vamos construir o gráfico da função y = 4x + 2:
Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:

Quando x = 0, temos y = 4 · 0 + 2 = 2; portanto, um ponto é (0, 2).

Quando y = 0, temos 0 = 4x +2; portanto, x = ½ e outro ponto é
(1/2,0).
Marcamos os pontos (0, 2) e (1/2,0) no plano cartesiano e ligamos os dois com uma reta.
Já vimos que o gráfico da função afim y = ax + b é uma reta.
    coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está
ligado à inclinação da reta em relação ao eixo Ox.


O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b.
Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.

Análise de Gráficos
O comportamento de uma função pode ser obtido através de um gráfico, onde

                                                                                                    51
podemos tirar informações acerca de: crescimento, decrescimento, domínio, imagem,
valores máximos e mínimos, se é função positiva ou negativa, etc.

       3x 1
f (x)   e o seu gráfico, podemos analisar o seu
       
Dada uma função
5
comportamento da seguinte maneira:
Zero da Função:       graficamente, encontramos o zero da função no ponto de encontro da reta com
o eixo dos x: f(x) = 0 3x/5 + 1/5 = 0 x =-1/3


Domínio: projetando o gráfico sobre o eixo dos x: D = [-2,3]


Imagem: projetando o gráfico sobre o eixo dos y: Im = [-1,2]


Podemos observar que para:
-2 < 3 temos    f ( -2) < f (3) dizemos que a função é crescente.


Sinais:

X ∈ [ –2, –1/3 [ f (x) < 0
          X ∈ ] –1/3, 3 ] f (x) > 0



Valor Mínimo: –1 é o menor valor assumido por y = f (x) Ymin = – 1



Valor Máximo: 2 é o maior valor assumido por y = f (x) Ymáx = – 2



Como reconhecer se um gráfico representa ou não uma Função
Quando quisermos saber se um gráfico de uma relação representa ou não uma função, aplicamos a
seguinte técnica:


Traçamos qualquer reta paralela ao eixo dos y; qualquer que seja a reta traçada, se o gráfico da
relação for interceptado em um único ponto, e somente em um ponto, então o gráfico
representa uma função. Caso contrário não representa uma função.


Gráfico de Função Crescente
Tomando por base a função y = 2 x, definida de R em R. Se formos atribuindo valores para x, iremos
obtendo valores correspondentes para y e representado-os no plano cartesiano, ficamos com:

                                                                                               52
Y
9 y = 2x
                    8
                    7
                    6
                    5
                    4
                    3
                    2
X                   1

         -4 -3 -2 0 1 2 3 4

                   -1
                   -2
                   -3
                   -4



Observe que à medida que os valores de x aumentam, os valores de y também aumentam; neste
caso podemos afirmar que a função é crescente.


Função Constante
Chamamos de Função Constante toda função definida de R em R e representada por
f (x) = c ( c = constante )


Exemplos: f (x) = 5;         f (x) = - 5;       f (x) = ¾

Seu gráfico é uma reta paralela ao eixo dos x, passando pelo par ordenado
(ponto) (0,c). Neste caso, teremos o Domínio D = R, o Contradomínio CD = R e a Imagem Im = {c}


(0,c) y = c
     x




Função Identidade
É a função de R em R definida por : f (x) = x
É dita função identidade quando seu gráfico é uma reta que contém as bissetrizes do 1º e 3º
quadrantes. Ou seja, os valores de x serão sempre iguais aos valores de y.

D = R;        CD = R;   Im = R
y

                                                                                                 53
Função Afim

É toda função f de R em R definida por f (x) = ax + b, sendo a; b ∈ R e a ≠ 0

Observações:

Quando b = 0 a função é denominada de função linear;
D = R;
Im = R;
Seu gráfico é uma reta do plano cartesiano.

Função Quadrática
                                                   2
É toda a função f de R em R definida por f (x) = ax + bx + c, e tendo que
a; b; c ∈ R e a ≠ 0.


                              2                          4                   2
Exemplos:          f (x) = 3 x + 5 x - 7;       f (x) = x + 4;   f (x) = x

   gráfico de uma função quadrática é uma PARÁBOLA que terá sua concavidade voltada para
cima se a > 0 ou voltada para baixo se a < 0.

Exemplos:
         2
f (x) = x – 6x + 8 (a = 1 > 0
          2
f (x) = -x + 6x – 8 (a = -1 < 0 )


7. SEQÜÊNCIAS NÚMERICAS

Alguns acontecimentos repetem-se periodicamente em nosso cotidiano. Eles possuem estreita
relação com a matemática, no que se refere à sucessão de percepções diversas, tais como o passar
do tempo, a rotina diária de trabalho e até mesmo os fatos menos perceptíveis como a nossa
respiração, o batimento de nosso coração e assim sucessivamente.
Assim, a seqüência (ocorrência periódica) de fatos em nosso cotidiano nos conduz, principalmente à
idéia de ordem. Seja, por exemplo, a seqüência de números, a seguir:

1    2    3    4       5   6    7    8      9   ....

Esta sucessão de números compõe o conjunto dos números Inteiros.

Este exemplo mostra-nos que:

Seqüência ou sucessão é qualquer conjunto onde seus elementos estão dispostos
numa certa ordem.



                                                                                               54
Seqüências Numéricas
É todo o conjunto de números, que estão dispostos ordenadamente, de uma maneira que possamos
indicar quais são os elementos desse conjunto.

Exemplo: A seqüência de Fibonacci
Nesta seqüência, cada elemento é formado pela soma dos dois elementos anteriores, ou seja: 1, 2, 3,
5, 8, 13, 21, .........


Representação de uma seqüência
Representamos a seqüência numérica colocando os termos entre parênteses e separando-os por
virgulas.
Exemplo:
(a1, a2, a3, ......., an, .... ) onde n ∈ N*



Estas seqüências poderão ser:

Finitas – quando o último termo é conhecido. Ex: (2, 8, 14).

Infinitas – quando o último termo não é conhecido. Ex : (3, 13, 23, ...)




Leis de Formação
Existem seqüências numéricas em que os elementos ou termos estão dispostos de tal forma que não
é possível relacioná-los com uma das leis de formação.


Um dos exemplos mais recorrentes desta situação é a seqüência dos números primos: (2, 3, 5, 7, ...)
Para a continuação dos nossos estudo de seqüências vamos supor sempre a possibilidade de
relacionarmos as seqüências com uma lei de formação. Podemos destacar dois tipos de leis de
formação de uma seqüência.


1º. Fórmula do Termo Geral

Permite calcular um termo de ordem n em qualquer seqüência.

Exemplo:
Dado an = 1 – 1/(n+1) para n ∈ N*, pede-se calcular o produto dos 99
primeiros termos da seqüência.

Solução:
Temos que: an = n / (n+1), calculando os termos, a seguir:
                                                                                                  55
Quando       n = 1, então a1 = ½
 n=2,           a2 = 2/3
 n=3,           a3 = ¾
  ...          ...
 n = 98,        a98 = 98/99
 n = 99         a99 = 99/100




Efetuando o produto dos termos da seqüência, temos que:

½ . 2/3. ¾. 4/5. ..... . 98/99. 99/100 =




Como o denominador de um termo é igual ao numerador do termo seguinte, fazendo as
simplificações, temos que:

1 2
    .
3 4
.    . ... . 51 52
               .

1 2 3 4     51 52 98 99
 . . . ..... . ..... .  

2     4 5      52 53      99 100


Então, o produto dos 99 primeiros termos desta seqüência é igual a 0,01.


2º. Lei de recorrência

 Neste caso, é necessário recorrer a outros termos conhecidos
(geralmente o primeiro) para se obter qualquer outro elemento da seqüência,
através de uma fórmula que forneça esta relação.

Exemplo.

Dado an+1= an (2n-1 + 1). Se a3= 3, calcule a5.

Temos a3 = 3, logo

n = 4  3+1 = a3 (23-1 + 1)
       a

a4 = a3 (22+ 1)

a4 = a3.5 a4 = 15

                                                                               56
Como queremos a5, temos então:

a4+1 = a4 (24-1 + 1)
a5 = a4(23 + 1)

a5 = 15.9      a5 = 135




Seqüência como função

Seja a sucessão de números pares (2, 4, 6, 8, 10, ....)
Essa seqüência de números pares é formada de acordo com uma regra ou lei de correspondência, na
qual é possível estabelecer uma expressão f(n) que contenha a variável n e tal que para cada
numeral natural {1, 2, 3, 4, 5, .....} atribuído a n se tenha a relação:
an = f(n)

Neste caso, dizemos que f(n) é o termo geral da seqüência


A lei de formação do conjunto de números pares é dada através do termo geral

an = 2n ou por f(n) = 2n



Neste caso, podemos dizer que:

Seqüência é uma função cujo domínio é o conjunto dos naturais diferente de zero {1, 2,
3, ....} e cujas imagens formam o conjunto dos números reais, ou seja
F : N*    R




Séries
São expressões numéricas que resultam quando substituímos as vírgulas por sinais de adição entre
os termos sucessivos de uma seqüência.


Exemplo:
A seqüência dos números triangulares 1, 3, 6, 10,..... pode ser decomposta assim:
a1 = 1
a2 = 1 + 2 = 3
a3 = 1 + 2 + 3 = 6
a4 = 1 + 2 + 3 + 4 = 10 ..........


                                                                                             57
Assim, para encontrarmos o enésimo número triangular, devemos somar os termos de uma
seqüência finita, de 1 até o número desejado, ou seja:

an = 1 + 2 + 3 + 4 + 5 + 6 + ....... + n

Exemplo.

Determinar o décimo primeiro número triangular

a11 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = 64


Desta forma, podemos dizer que dada uma única seqüência numérica (a1, a2, a3, a4, a5,... , an)
formamos a seqüência de somas (S1, S2, S3, S4, ....., Sn)

Podemos, então, observar que :

S1 = a1
S2 = a1 + a2
S3 = a1 + a2 + a3
............................
Sn =a1 + a2 + a3 ..... + an


Fica, portanto, caracterizado o que chamamos de Série
As séries também podem ser finitas (quando se conhece o último termo da série) ou infinitas
(quando não se conhece o último termo).
A representação de uma série é dada pelo símbolo ∑ (somatório)

Para a série finita temos a representação




Exemplo prático de série

E, para a série infinita é usada a representação




                                                                                           58
Uma pessoa A, chega às 14 horas para um encontro com uma pessoa B. Como
B não chegou, ainda, A resolveu esperar um tempo t1 = ½ hora, e após, t2 =
½ t1, e após, t3 = ½ t2, e assim sucessivamente. Se B não veio quanto tempo
A esperou até ir embora?

Pelos dados temos a seguinte seqüência infinita:

(30min, 15min, 7,5min, 3,75min, .........)
Para obter o valor da soma desta seqüência, basta calcular o valor da série, ou seja:

Sn = 30 + 15 + 7,5 + 3,75 + ........

Observamos que:

S1 = 30min
S2 = 30 + 15 = 45min

S3 = 30 + 15 + 7,5 = 52,5min
S4 = 30 + 15 + 7,5 + 3,75 = 56,25min
................................... S8 = 59,765625min


Podemos constatar que, conforme o número de termos vai aumentando, o valor de cada termo
acrescentado vai diminuindo, aproximando-se cada vez mais de 60 minutos. Dizemos, neste caso,
que a seqüência converge para 60 minutos.

Logo, a pessoa terá que esperar 60 minutos até ir embora.


Exercícios resolvidos

1) A partir das seqüências


a) 12 = 1
22 = 1+2+1
32 = 1+2+3+2+1
..................


b) 12 = 1
112 = 121
1112
...................




                                                                                          59
Calcule o valor de A
A= (55555 x 55555) / 1+2+3+4+5+4+3+2+1 - 1000

Solução:
Ora, pela seqüência b, temos que:

1+2+3+4+5+4+3+2+1 = 52

e, pela seqüência a, temos que:

111112 = 123454321

Então, aplicando estes resultados na expressão A, temos que :

a= (52 x 123454321 ) / 52 – 10000

Logo, A=123453321




2) Uma seqüência numérica é definida por:
a1 = 1
an = an-1 + (-1)n para n >= 2
Determine a soma dos 6 primeiros termos.

Solução:

Pelos dados temos que:

a2 = 1 + (-1)2 = 2 a3 = 2 + (-1)3 = 1 a4 = 1 + (-1)4 = 2 a5= 2 + (-1)5 = 1 a6 = 1 + (-1)6 = 2

Logo S6 = 1+2+1+2+1+2 = 9




3) Qual é a soma da série:

n = 1 ==> a1 = -1 n = 2 ==> a2 = 1 n = 3 ==> a3 = -1
Então, se n é par a soma é zero e se n é impar a soma é igual a –1




                                                                                                60
8. JUROS SIMPLES E COMPOSTOS

8.1. JUROS SIMPLES
Conceito: é aquele pago unicamente sobre o capital inicial ou principal

J= C x i x n

Onde:

J = juros
C = capital inicial
i = taxa unitária de juros
n = número de períodos que o capital ficou aplicado


Observações:

a taxa i e o número de períodos n devem referir-se à mesma unidade de tempo, isto é, se a taxa for
anual, o tempo deverá ser expresso em anos; se for mensal, o tempo deverá ser expresso em meses,
e assim sucessivamente;
 em todas as fórmulas matemáticas utiliza-se a taxa de juros na forma unitária (taxa percentual ou
 centesimal, dividida por 100)


Juro Comercial - para operações envolvendo valores elevados e períodos pequenos (1
dia ou alguns dias) pode haver diferença na escolha do tipo de juros a ser utilizado. O
juro Comercial considera o ano comercial com 360 dias e o mês comercial com 30 dias.

Juro Exato -no cálculo do juro exato, utiliza-se o ano civil, com 365 dias (ou 366 dias se
o ano for bissexto) e os meses com o número real de dias.

sempre que nada for especificado, considera-se a taxa de juros sob o conceito comercial


Taxa Nominal - é a taxa usada na linguagem normal, expressa nos contratos ou informada nos
exercícios; a taxa nominal é uma taxa de juros simples e se refere a um determinado período
de capitalização.
Taxa Proporcional   duas taxas são denominadas proporcionais quando existe entre elas a mesma
relação verificada para os períodos de tempo a que se referem.

i1        =    t1


i2             t2


Taxa Equivalente - duas taxas são equivalentes se fizerem com que um mesmo capital
produza o mesmo montante no fim do mesmo prazo de aplicação.
                                                                                                61
no regime de juros simples, duas taxas equivalentes também são proporcionais;



CAPITAL, TAXA E PRAZO MÉDIOS
em alguns casos podemos ter situações em que diversos capitais são aplicados, em
épocas diferentes, a uma mesma taxa de juros, desejando-se determinar os
rendimentos produzidos ao fim de um certo período. Em outras situações, podemos ter
o mesmo capital aplicado a diferentes taxas de juros, ou ainda, diversos capitais
aplicados a diversas taxas por períodos distintos de tempo.


Capital Médio (juros de diversos Capitais) é o mesmo valor de diversos capitais
aplicados   a      taxas diferentes por prazos diferentes que produzem a MESMA
QUANTIA DE JUROS.


Cmd = C1 i1 n1 + C2 i2 n2 + C3 i3 n3 + ... + Cn in nn
i1 n1 + i2 n2 + i3 n3 + ... + in nn




Taxa Média - é a taxa à qual a soma de diversos capitais deve ser aplicada, durante um certo
período de tempo, para produzir juros iguais à soma dos juros que seriam produzidos por
diversos capitais.


Taxamd = C1 i1 n1 + C2 i2 n2 + C3 i3 n3 + ... + Cn in nn
C1 n1 + C2 n2+ C3 n3 + ... + Cn nn




Prazo Médio - é o período de tempo que a soma de diversos capitais deve ser aplicado, a uma certa
taxa de juros, para produzir juros iguais aos que seriam obtidos pelos diversos capitais.

Prazomd = C1 i1 n1 + C2 i2 n2 + C3 i3 n3 + ... + Cn in nn
C1 i1 + C2 i2+ C3 i3 + ... + Cn in



Montante - é o CAPITAL acrescido dos seus JUROS.
M = C(1+ixn)


a fórmula requer que a taxa i seja expressa na forma unitária;


                                                                                              62
a taxa de juros i e o período de aplicação n devem estar expressos na mesma unidade de tempo;


Desconto Simples - quando um título de crédito (letra de cambio, promissória,
duplicata) ou uma aplicação financeira é resgatada antes de seu vencimento, o título
sofre um ABATIMENTO, que é chamado de Desconto.



Valor Nominal: valor que corresponde ao seu valor no dia do seu vencimento. Antes
do vencimento, o título pode ser resgatado por um valor menor que o nominal, valor este
denominado de valor Atual ou valor de Resgate.



Desconto Comercial - também conhecido como Desconto Bancário ou
“por fora”, é quando o desconto é calculado sobre o VALOR NOMINAL de um título.
- pode ser entendido como sendo o juro simples calculado sobre o valor nominal do título;


Dc = N x i x n


Onde:

Dc = Desconto Comercial
N   = Valor Nominal
i    = Taxa de juros
n   = Período considerado

Ex.: Uma promissória de valor nominal de $ 500 foi resgatada 4 meses antes de seu
vencimento, à taxa de
8 % a.a.. Qual o valor do Desconto ?
N = $ 500
i = 8 % a.a. = 0.08          Dc = N . i . n
n = 4 meses = 4/12            Dc = 500 . 0.08 . 4/12
Dc = ?

Dc = $ 13,33


Valor Atual - o Valor Atual (ou presente) de um título é aquele efetivamente pago (recebido)
por este título, na data de seu resgate, ou seja, o valor atual de um título é igual ao valor nominal
menos o desconto. O Valor Atual é obtido pela diferença entre seu valor nominal e o desconto
comercial aplicado.


Vc = N - Dc

                                                                                                  63
Ex.:       Um título de crédito no valor de $ 2000, com vencimento para 65 dias, é
descontado à taxa de 130 % a.a. de desconto simples comercial. Determine o valor de
resgate (valor atual) do título.



N = $ 2000                    Dc = N . i . n = $ 2000 . 1.30 .
65/360
n = 65 dias = 65/360           Dc = $ 469,44
i = 130 a.a. = 1.30
Dc = ?                 Vc = N – Dc = $ 2000 - $ 469,44
Vc = ?                 Vc = $ 1.530,56


Desconto Racional  desconto racional ou “por dentro” corresponde ao juro simples calculado
                     o
sobre o valor atual (ou presente) do título. Note-se que no caso do desconto comercial, o desconto
correspondia aos juros simples calculado sobre o valor nominal do título.


Dr = N x i x n
(1+ixn)


Ex.:    Qual o desconto racional de um título com valor de face de $
270, quitado 2 meses antes de seu vencimento a 3 % a.m. ? N = $ 270
Dr = N . i . n / (1 + i . n)

n = 2 meses              Dr = $ 270 . 0.03 . 2 / (1 + 0.03 . 2)

i = 3 a.m. = 0.03 a.m.         Dr = $ 16,20 / 1.06

Dr = ?                 Dr = $ 15,28




Valor Atual Racional - é determinado pela diferença entre o valor nominal N e o
desconto racional Dr

Vr = N - Dr




EQUIVALÊNCIA DE CAPITAIS


Capitais Diferidos quando 2 ou mais capitais (ou títulos de crédito, certificados de
empréstimos,etc), forem exigíveis em datas diferentes, estes capitais são denominados
DIFERIDOS.

                                                                                               64
Capitais Equivalentes  por sua vez, 2 ou mais capitais diferidos serão EQUIVALENTES, em uma
certa data se, nesta data, seus valores atuais forem iguais.


Equivalência de Capitais p/ Desconto Comercial 
 Chamando-se de Vc o valor atual do desconto comercial de um título num instante
n’ e de V’c o de outro título no instante n’, o valor atual destes títulos pode ser expresso
como segue:

Vc = N ( 1 – i.n )    e    V’c = N’ ( 1 – i . n’ )

Para que os títulos sejam equivalentes, Vc deve ser igual a V’c, então:

onde:

N’ = N ( 1 – i x n)
1 – i x n’


N’ = Capital Equivalente

N = Valor Nominal

n = período inicial

n’ = período subseqüente

i   = taxa de juros




Ex.: Uma promissória de valor nominal $ 2000, vencível em 2 meses, vai ser substituída
por outra, com vencimento para 5 meses. Sabendo-se que estes títulos podem ser
descontados à taxa de 2 % a.m., qual o valor de face da nova promissória ?




$ 2.000                                 N’      N’ = ?
N = $ 2.000     0      1               2             3       4            5
n’ = 5 meses n = 2 meses
I = 2 % a.m. = 0,02 a.m.


N’ = N (1 – i . n) / 1 – i . n’ = 2.000 (1 – 0.02 . 2) / (1 – 0.02 . 5)
N’ = $ 2.133



                                                                                               65
Equivalência de Capitais p/ Desconto Racional 
 Para se estabelecer a equivalência de capitais diferidos em se tratando de desconto
racional, basta lembrar que os valores atuais racionais dos respectivos capitais devem
ser iguais numa certa data.

     Chamando-se de Vr o valor atual do desconto comercial de um título na data n’ e
de N o valor nominal deste título na data n, e de V’r o valor racional atual de outro título
na data n’, e de N’ o valor nominal do outro título na data n’, temos:

Vr = N / ( 1 + i.n ) e      V’r = N’ / ( 1 + i . n’ )


logo:

Para que se estabeleça a equivalência de capitais devemos ter Vr = V’r,

N’ = N ( 1 + i x n’ )
1+ixn


onde:


N’ = Capital Equivalente

N = Valor Nominal

n = período inicial

n’ = período subseqüente

i   = taxa de juros



Ex.: qual o valor do capital disponível em 120 dias, equivalente a $ 600, disponível em 75 dias, ‘a
taxa de 80 % a.a. de desconto racional simples
?


                   N $ 600                  N’ = ?
]         ]             ]        ]
 0          75                  120
Vr 75
Vr 120
Vr 75 = ? Vr 120 = ? n = 75 dias
n’ = 120 dias
i = 80 % a.a. = 0.80 a.a. = 0.80/360 a.d.

                                                                                                66
Como Vr 75 = Vr 120, temos  N’ = 600 . ( 1 + 0.80/360 . 120) / (1 +
0.80/360 . 75)
N’ = $ 651,28



8.2.       JUROS COMPOSTOS


Conceito: No regime de Juros Compostos, no fim de cada período de tempo a que se refere a taxa de
juros considerada, os juros devidos ao capital inicial são incorporados a este capital. Diz-se que os
juros são capitalizados, passando este montante, capital mais juros, a render novos juros no
período seguinte.


Juros Compostos - são aqueles em que a taxa de juros incide sempre sobre o capital
inicial, acrescidos dos juros acumulados até o período anterior


Cálculo do Montante - vamos supor o cálculo do montante de um capital de $ 1.000,
aplicado à taxa de 10 % a.m., durante 4 meses.


CAPITAL
(C)
Juros ( J )
Montante ( M )

1º Mês            1.000     100       1.100
2º Mês            1.100     110       1.210

3º Mês            1.210     121       1.331

4º Mês            1.331     133       1.464


Pode-se constatar que a cada novo período de incidência de juros, a expressão (1 + i) é elevada à
 potência correspondente.

Onde:

                   n
S = P (1+i)

S      =      Soma dos Montantes
P      =      Principal ou Capital Inicial i   =   taxa de juros
n      =      nº de períodos considerados
a taxa de juros i e o período de aplicação n devem estar expressos na mesma unidade de tempo;

                                                                                                  67
Ex.:    Um investidor quer aplicar a quantia de $ 800 por 3 meses, a uma taxa de 8 %
a.m., para retirar no final deste período. Quanto irá retirar ?
S=?

0 i = 8 % a.m.

$ 800                  n=3

Dados:                     Pede-se: S = ?
P = $ 800
n = 3 meses
i = 8 % a.m. = 0.08 a.m.

3
(1.08)
n
S = P (1 + i )
= 800 x (1 + 0.08)
3
= 800 x
S = $ 800 x 1.08 x 1.08 x 1.08
S = $ 1.007,79


Valor Atual  Considere-se que se deseja determinar a quantia P que deve ser investida à taxa de
juros i para que se tenha o montante S, após n períodos, ou seja, calcular o VALOR ATUAL de S.
- Basta aplicarmos a fórmula do Montante, ou Soma dos
Montantes, para encontrarmos o valor atual
                 n
P = S/(1+i)

Onde:
S     =     Soma dos Montantes
P     =     Principal ( VALOR ATUAL )
i    =     taxa de juros
n     =     nº de períodos considerados

Interpolação Linear  é utilizada para o cálculo do valor de ( 1 + i )n , quando o valor de n ou de i
não constam da tabela financeira disponível para resolver o problema.
a interpolação é muito utilizada quando se trabalha com taxas de juros “quebradas” ou períodos de
tempo “quebrados”. Ex.: taxa de juros de 3.7 % a.m. ou 5 meses e 10 dias
                                                           n
Como a tabela não fornece o valor da expressão ( 1 + i ) para números “quebrados”, devemos

                                                                                                  68
procurar os valores mais próximos, para menos e para mais, e executarmos uma regra de três, deste
modo:

Ex.: Temos que calcular o montante de um principal de $ 1.000 a uma taxa de juros de 3.7 % a.m.,
após 10 meses, a juros compostos.
                                      n
A tabela não fornece o fator ( 1 + i ) correspondente a 3.7 %, mas seu valor aproximado pode ser
calculado por interpolação linear de valores fornecidos na tabela.
Procuramos, então, as taxas mais próximas de 3.7 %, que são 3 % e 4 %. Na linha correspondente a
                                                                   n
10 períodos (n), obtêm-se os fatores correspondentes a ( 1 + i )      que são, respectivamente,
1.343916 e 1.480244. Procedemos, então, a uma regra de três para encontrarmos o fator referente
a 3.7 %:

para um acréscimo de 1 % ( 4% - 3% ) temos um acréscimo de 0.136328
(1.480244 – 1.343916);
                                                     n
para 0.7 % de acréscimo na taxa, o fator ( 1 + i )       terá um acréscimo de x. Portanto:

1 % --------------- 0.136328
0.7% ------------- x

x = 0.09543
                                                                   n
- Somando-se o valor encontrado (0.09543) ao do fator ( 1 + i ) correspondente à taxa de 3 %
(1.343916), teremos o fator (1.439346) correspondente à taxa de 3.7 %.
- Voltando à solução do problema, temos:
S = 1.000 x 1.439346                S = $ 1.439,34




8.3.       TAXAS DE JUROS

TAXAS PROPORCIONAIS
Na formação do montante, os juros podem ser capitalizados mensalmente, trimestralmente,
semestralmente e assim por diante, sendo que, via de regra, quando se refere a período de
capitalização, a taxa de juros é anual. Assim, pode-se falar em:
juros de 30 % a.a., capitalizados semestralmente;
juros de 20 % a.a., capitalizados trimestralmente;
juros de 12 % a.a., capitalizados mensalmente;

                                                                                             n
Quando a taxa for anual, capitalizada em períodos menores, o cálculo de ( 1 + i )                é feito com a

                                                                                                           69
TAXA PROPORCIONAL. Dessa forma:

Para 30 % a.a., capitalizados semestralmente, a taxa semestral proporcional é 15% a.s.
1 ano = 2 semestres  30 % a.a. = 2 x 15 % a.s.
Para 20 % a.a., capitalizadas trimestralmente, a taxa trimestral proporcional é 5 % a.t.
1 ano = 4 trimestres  20 % a.a. = 4 x 5 % a.t.
Para 12 % a.a., capitalizados mensalmente, a taxa mensal proporcional é 1 % a.m.
1 ano = 12 meses            12 % a.a. = 12 x 1 %
a.m.

Ex.: Qual o montante do capital equivalente a $ 1.000, no fim de 3 anos, com juros de 16 %,
capitalizados trimestralmente ?
Dados: P = 1.000
i = 16 % a.a. = 4 % a.t. = 0.04 a.t. n = 3 anos = 12 trimestres
                   n
S= P.(1+i)
                           12
S = 1.000 . ( 1 + 0.04 )
S = 1.000 x (1.601032)  S = $ 1.601,03




TAXAS EQUIVALENTES
São taxas diferentes entre si, expressas em períodos de tempo diferentes, mas que
levam um capital a um mesmo resultado final ao término de um determinado período de
tempo.


Duas taxas são EQUIVALENTES quando, referindo-se a períodos de tempo diferentes,
fazem com que o capital produza o mesmo montante, num mesmo intervalo de
tempo.


Temos, então:
               n
C = ( 1 + ie )         , onde: ie = taxa de juros equivalente
               nk
Ck = ( 1 + ik ) , onde: ik = taxa de juros aplicada
- Como queremos saber a taxa de juros equivalente (ik), para um mesmo capital, temos:

                       n                   nk
C = Ck  ( 1 + ie )         = ( 1 + ik )

                             k
  Então:      ie = ( 1 + ik ) - 1




                                                                                           70
- Esta fórmula é utilizada para, dada uma taxa menor (ex.: dia, mês, trimestre), obter a taxa maior
equivalente (ex.: semestre, ano).


Ex.: Qual a taxa anual equivalente a 10 % a.m. ?
ik = 10 % a.m. = 0.1 a.m.    ie = ?
k = 1 ano = 12 meses

               k                12
ie = ( 1 + ik ) – 1 = (1 + 0.1)    - 1 = 2.138428

ie = 2.138428 ou transformando para taxa percentual

ie = 213,84 %



TAXAS NOMINAL e EFETIVA (ou REAL)
No regime de juros simples, as taxas são sempre EFETIVAS. Para melhor compreensão dos conceitos
de Taxa Nominal e Taxa Efetiva, no sistema de juros compostos, vamos considerar os seguintes
enunciados:
1. Qual o montante de um capital de $ 1.000, colocado no regime de juros compostos à taxa de 10 %
a.a., com capitalização anual, durante 2 anos ?
Solução: Tal enunciado contém uma redundância, pois em se tratando de uma taxa
anual de juros compostos, está implícito que a capitalização (adição de juros ao
Capital), é feita ao fim de cada ano, ou seja, é anual. Elaborado visando o aspecto
didático, este enunciado objetivou enfatizar que a taxa efetivamente considerada é a de
10 % a.a., ou seja, que a taxa de 10 % é uma TAXA EFETIVA.




2. Qual o montante de um capital de $ 1.000, colocado no regime de juros compostos, à
taxa de 10 % a.a., com capitalização semestral, durante 2 anos ?
Solução: Este segundo enunciado também apresenta uma incoerência, pois sendo uma
taxa anual, os juros só são formados ao fim de cada ano e, portanto, decorridos
apenas 1 semestre, não se terão formados ainda nenhum juros e, por conseguinte, não
poderá haver capitalização semestral.
Portanto, na prática costuma-se associar o conceito de TAXA NOMINAL ao de
TAXA PROPORCIONAL
Assim, se a taxa de juros por período de capitalização for i e se houver
N períodos de capitalização, então a TAXA NOMINAL iN será:

IN = N x i




                                                                                                71
O conceito de TAXA EFETIVA está associado ao de taxa equivalente. Assim, a taxa efetiva ie pode
ser determinada por equivalência, isto é, o principal P, aplicado a uma taxa ie, durante um ano, deve
produzir o mesmo montante quando aplicado à taxa i durante n períodos.


                1/n
i = ( 1 + ie)         - 1



Ex.: Vamos supor $ 100 aplicados a 4 % a.m., capitalizados mensalmente, pelo prazo de 1 ano.
Qual a taxa nominal e a taxa efetiva.



a) Taxa Nominal

IN = N x i 12 x 0.04 = 0.48 IN = 48 % a.a. Taxa
Nominal

b) Taxa Efetiva
                                            n
P = $ 100                   S = P (1 + i)
S=?
                                                           12
i = 4 % a.m. = 0.04 a.m.           S = 100 x ( 1 + 0.04)
n = 12 meses                 S = 100 x 1.60103
S = $ 160,10


Logo, J = 160,10 – 100  J = $ 60,10, que foi produzido por $ 100;
então:
ie = 60,10 % a.a.


A taxa equivalente também poderia ser determinada pela fórmula:
                1/n
i = ( 1 + ie)         - 1
             n                12
ie = ( 1 + i) - 1 = (1 + 0.04) – 1 = 1.60103 – 1 =
0.60103
ie = 0.6010 transformando-se para a forma percentual, temos:
ie = 60,10 % a.a.




                                                                                                  72

Mais conteúdo relacionado

Mais procurados

Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4Thomas Willams
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5Alexander Mayer
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricosArtur Aquino
 
Apostila matematica notacao formulas simbolos
Apostila matematica notacao formulas simbolosApostila matematica notacao formulas simbolos
Apostila matematica notacao formulas simbolostrigono_metria
 
Apostila matemática básica 2
Apostila matemática básica 2Apostila matemática básica 2
Apostila matemática básica 2waynemarques
 
Conjuntos numéricos gabarito
Conjuntos numéricos gabaritoConjuntos numéricos gabarito
Conjuntos numéricos gabaritoOtávio Sales
 
MatemáTica BáSica
MatemáTica BáSicaMatemáTica BáSica
MatemáTica BáSicaeducacao f
 
Conjuntos numericos 6
Conjuntos numericos 6Conjuntos numericos 6
Conjuntos numericos 6gendersonkaio
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricosCie02
 
Aulas de matemática(soares)números inteiros (2)
Aulas de matemática(soares)números inteiros (2)Aulas de matemática(soares)números inteiros (2)
Aulas de matemática(soares)números inteiros (2)Antonio Filho
 
Plano de aula 1 º ano ensino medio - 1º bimestre
Plano de aula  1 º ano ensino medio - 1º bimestrePlano de aula  1 º ano ensino medio - 1º bimestre
Plano de aula 1 º ano ensino medio - 1º bimestreAngela Machado Verissimo
 
Trabalho de matematica ensino médio
Trabalho de matematica ensino médioTrabalho de matematica ensino médio
Trabalho de matematica ensino médioWANDERSON JONER
 

Mais procurados (20)

Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4
 
Resumo conjuntos numéricos
Resumo conjuntos numéricosResumo conjuntos numéricos
Resumo conjuntos numéricos
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Apostila matematica notacao formulas simbolos
Apostila matematica notacao formulas simbolosApostila matematica notacao formulas simbolos
Apostila matematica notacao formulas simbolos
 
Matematica
MatematicaMatematica
Matematica
 
Apostila matemática básica 2
Apostila matemática básica 2Apostila matemática básica 2
Apostila matemática básica 2
 
Conjuntos numéricos gabarito
Conjuntos numéricos gabaritoConjuntos numéricos gabarito
Conjuntos numéricos gabarito
 
MatemáTica BáSica
MatemáTica BáSicaMatemáTica BáSica
MatemáTica BáSica
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Conjuntos, Intervalos Reais e funções
Conjuntos, Intervalos Reais e funçõesConjuntos, Intervalos Reais e funções
Conjuntos, Intervalos Reais e funções
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Conjuntos numericos 6
Conjuntos numericos 6Conjuntos numericos 6
Conjuntos numericos 6
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Aulas de matemática(soares)números inteiros (2)
Aulas de matemática(soares)números inteiros (2)Aulas de matemática(soares)números inteiros (2)
Aulas de matemática(soares)números inteiros (2)
 
Plano de aula 1 º ano ensino medio - 1º bimestre
Plano de aula  1 º ano ensino medio - 1º bimestrePlano de aula  1 º ano ensino medio - 1º bimestre
Plano de aula 1 º ano ensino medio - 1º bimestre
 
Apostila Matematica Básica Parte 2
Apostila Matematica Básica Parte 2Apostila Matematica Básica Parte 2
Apostila Matematica Básica Parte 2
 
Trabalho de matematica ensino médio
Trabalho de matematica ensino médioTrabalho de matematica ensino médio
Trabalho de matematica ensino médio
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Conj num e interv
Conj num e intervConj num e interv
Conj num e interv
 

Semelhante a Matemática: Números naturais, inteiros, racionais e reais

Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricosandreilson18
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursoseducacao f
 
Mat conjuntos numericos 002
Mat conjuntos numericos  002Mat conjuntos numericos  002
Mat conjuntos numericos 002trigono_metria
 
www.AulasDeMatematicaApoio.com.br - Matemática - Conjunto de Números Inteiros
 www.AulasDeMatematicaApoio.com.br  - Matemática - Conjunto de Números Inteiros www.AulasDeMatematicaApoio.com.br  - Matemática - Conjunto de Números Inteiros
www.AulasDeMatematicaApoio.com.br - Matemática - Conjunto de Números InteirosBeatriz Góes
 
www.AulaParticularApoio.Com.Br - Matemática - Conjunto de Números Inteiros
www.AulaParticularApoio.Com.Br - Matemática -  Conjunto de Números Inteiroswww.AulaParticularApoio.Com.Br - Matemática -  Conjunto de Números Inteiros
www.AulaParticularApoio.Com.Br - Matemática - Conjunto de Números InteirosApoioAulaParticular
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricoswww.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos NuméricosClarice Leclaire
 
www.TutoresDePlantao.Com.Br - Matemática - Conjunto de Números Inteiros
www.TutoresDePlantao.Com.Br - Matemática -  Conjunto de Números Inteiroswww.TutoresDePlantao.Com.Br - Matemática -  Conjunto de Números Inteiros
www.TutoresDePlantao.Com.Br - Matemática - Conjunto de Números InteirosAntônia Sampaio
 
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiroswww.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática - Conjunto de Números InteirosEnsinoFundamental
 
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiroswww.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática - Conjunto de Números InteirosLucia Silveira
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números InteirosAulas De Matemática Apoio
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaAntonio Carneiro
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaAntonio Carneiro
 
Conjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º GrauConjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º Grauguest47023a
 
Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)Jcraujonunes
 

Semelhante a Matemática: Números naturais, inteiros, racionais e reais (20)

Conjuntos
ConjuntosConjuntos
Conjuntos
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursos
 
Matemática bom! 2008
Matemática bom! 2008Matemática bom! 2008
Matemática bom! 2008
 
Matemática bom!
Matemática bom! Matemática bom!
Matemática bom!
 
Mat conjuntos numericos 002
Mat conjuntos numericos  002Mat conjuntos numericos  002
Mat conjuntos numericos 002
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
www.AulasDeMatematicaApoio.com.br - Matemática - Conjunto de Números Inteiros
 www.AulasDeMatematicaApoio.com.br  - Matemática - Conjunto de Números Inteiros www.AulasDeMatematicaApoio.com.br  - Matemática - Conjunto de Números Inteiros
www.AulasDeMatematicaApoio.com.br - Matemática - Conjunto de Números Inteiros
 
www.AulaParticularApoio.Com.Br - Matemática - Conjunto de Números Inteiros
www.AulaParticularApoio.Com.Br - Matemática -  Conjunto de Números Inteiroswww.AulaParticularApoio.Com.Br - Matemática -  Conjunto de Números Inteiros
www.AulaParticularApoio.Com.Br - Matemática - Conjunto de Números Inteiros
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricoswww.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
 
www.TutoresDePlantao.Com.Br - Matemática - Conjunto de Números Inteiros
www.TutoresDePlantao.Com.Br - Matemática -  Conjunto de Números Inteiroswww.TutoresDePlantao.Com.Br - Matemática -  Conjunto de Números Inteiros
www.TutoresDePlantao.Com.Br - Matemática - Conjunto de Números Inteiros
 
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiroswww.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
 
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiroswww.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
 
Conjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º GrauConjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º Grau
 
Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)
 
Mat numeros racionais
Mat numeros racionaisMat numeros racionais
Mat numeros racionais
 

Matemática: Números naturais, inteiros, racionais e reais

  • 1. MATEMÁTICA NÚMEROS INTEIROS, RACIONAIS E REAIS 1.1. CONJUNTO DOS NÚMEROS NATURAIS (N) No dia-a-dia, utilizamo-nos de conceitos matemáticos sem mesmo perceber. Sempre que podemos contar as unidades de um conjunto de coisas, por exemplo, quando contamos o dinheiro que temos na carteira, ou o número de gols que o centroavante de nosso time marcou no último campeonato, ou ainda o número de votos que o Presidente Lula recebeu nas últimas eleições, obtemos como resposta um resultado que denomina-se número natural. Portanto, qualquer número que seja resultado ou conseqüência de uma contagem de unidades é denominado de número natural e é representado por N. N = {0, 1, 2, 3, 4, 5,...} Um subconjunto importante de N é o conjunto N*: N* = {1, 2, 3, 4, 5,...} Como podemos ver, o zero foi excluído do conjunto N. Podemos visualizar o conjunto dos números naturais ordenados sobre uma reta, como mostrado abaixo: 1
  • 2. Dentro do conjunto dos números naturais podemos afirmar que todas as operações envolvendo adição (+) e multiplicação (x) SEMPRE dará como resultado outro número natural. Já não podemos dizer o mesmo quanto às operações inversas da adição – a subtração ( — ), e da multiplicação – a divisão ( ÷ ), pois nem sempre podemos representar a diferença entre dois números naturais por outro número natural, o mesmo acontecendo com a divisão. Por exemplo, a diferença 5 – 8 ou a divisão 7 ÷ 5. Por este motivo, foi criado um novo conjunto numérico, chamado de números inteiros e indicado por Z, para se expressar o resultado de algumas subtrações. 1.2. CONJUNTO DOS NÚMEROS INTEIROS (Z) No nosso exemplo anterior vimos que dentro do conjunto dos números naturais a diferença 5 – 8 não podia ser representada por um número natural. Já no conjunto dos números inteiros esta diferença pode ser expressada, pois o resultado ( -3 ) é um número inteiro. Z= {..., -3, -2, -1, 0, 1, 2,...} 3,...} O conjunto N é subconjunto de Z, ou seja, está contido em Z. Outros subconjuntos de Z: Z* = Z- {0} Z+ = conjunto dos inteiros não negativos = {0,1,2,3,4,5,...} Z_ = conjunto dos inteiros não positivos = {0,-1,-2,-3,-4,-5,...} Observe que Z+= N. Podemos considerar os números inteiros ordenados sobre uma reta, conforme mostra o gráfico abaixo: Da mesma maneira que foi criado o conjunto dos números inteiros para que pudéssemos expressar o resultado de algumas subtrações ou diferenças numéricas, o mesmo ocorreu quanto à impossibilidade de expressar o resultado de uma divisão de dois números inteiros. Assim, foi criado o conjunto dos números racionais, que é indicado por Q. 2
  • 3. 1.3. CONJUNTO DOS NÚMEROS RACIONAIS (Q) Os números racionais são todos aqueles que podem ser colocados na forma de fração (com o numerador e denominador pertencentes ao conjunto dos números inteiros). Ou seja, o conjunto dos números racionais é a união do conjunto dos números inteiros com as frações positivas e negativas. 2 4 7 3 5 9 por exemplo são números racionais. Demonstrando: a) os números inteiros -6; 0; -9; 4 são números racionais, pois podem serescritos como: -6 0 -9 b) uma decimal exata finita como 0,6 ou 4,8 também é considerada uma número racional, pois pode ser escrita em forma de fração: 3 24 respectivamente: 5 5 Assim, podemos escrever: a Q { 0} x | x  b Onde podemos ler: “O conjunto dos números racionais ( Q ) é composto por todo e qualquer número (x) tal que (|) este número (x) seja resultado de uma divisão de um número inteiro (a Є Z), numerador (a), por outro número inteiro (a Є Z), denominador (b), desde que o denominador (b) seja diferente de zero.” É interessante considerar a representação decimal de um número racional, que se obtém dividindo a por b. a b 3
  • 4. Exemplos referentes às decimais exatas ou finitas: 1 = 0,5 5 = 1,25 75 = 3,75 2 4 20 Exemplos referentes às decimais periódicas ou infinitas: 1 = 333 ,.... 3 Toda decimal exata ou periódica pode ser representada na forma de número racional. 1.4. CONJUNTO DOS NÚMEROS IRRACIONAIS (Q’) Os números irracionais são decimais infinitas não periódicas, ou seja, os números que não podem ser escritos na forma de fração (divisão de dois inteiros). Como exemplo de números irracionais, temos a raiz quadrada de 2 e a raiz quadrada de 3: ,14142135 ... 3=1 7320 50,8 Um número irracional bastante conhecido é o número π=3,1415926535... (Pi) 1.5. CONJUNTO DOS NÚMEROS REAIS ® Chama-se número real todo número racional ou irracional e representa-se por R R= Q ∪ {irracionais} = {x|x é racional ou x é irracional} ATENÇÃO: 4
  • 5. As relações entre os conjuntos numéricos apresentados podem ser resumidas pelo diagrama a seguir: Portanto, os números naturais, inteiros, racionais e irracionais são todos números REAIS. Como subconjuntos importantes de R temos: R* = IR - {0} R+ = conjunto dos números reais não negativos R_ = conjunto dos números reais não positivos Obs: entre dois números inteiros existem infinitos números reais. Por exemplo: Entre os números 0 e 1 existem infinitos números reais: 0,01 ; 0,003 ; 0,0009 ; 0,12 ; 0,35 ; 0,81 ; 0,99 ; 0,999 ; 0,9999 ... Entre os números 8 e 9 existem infinitos números reais: 8,01 ; 8,02 ; 8,05 ; 8,1 ; 8,2 ; 8,5 ; 8,99 ; 8,999 ; 8,9999 ... 1.6. NÚMEROS FRACIONÁRIOS O símbolo a significa a ÷ b, sendo a e b números naturais e b diferente de zero. b Chamamos: a a = numerador b b = denominador Se a é múltiplo de b, então é um número natural. b Veja um exemplo: A fração 6 é igual a 6 ÷ 3. Neste caso, 6 é o numerador e 3 é o denominador. 3 Efetuando a divisão de 6 por 3, obtemos o quociente 2. Assim, 6 é um número natural e 6 é múltiplo de 3. 5
  • 6. Durante muito tempo, os números naturais foram os únicos conhecidos e usados pelos homens. Depois começaram a surgir questões que não poderiam ser resolvidas com números naturais. Então surgiu o conceito de número fracionário. O significado de uma fração Uma fração envolve a seguinte idéia: dividir algo em partes iguais. Dentre essas partes, consideramos uma ou algumas, conforme nosso interesse. Potenciação no Conjunto dos Números Inteiros - Z Podemos expressar o produto de quatro fatores iguais a 2. 2.2.2.2. por meio de uma potência de base 2 e expoente 4: 2.2.2.2 = 24 Temos, dois elevado à Quarta ou dois à Quarta. Do mesmo modo, podemos representar um produto de quatro fatores iguais a –2. (-2). (-2). (-2). (-2) por meio de uma potência de base –2 e expoente 4: (-2). (-2). (-2). (-2) = (-2)4 Para todos os números a e n,. com n > 1, a potência an é o produto de n fatores iguais a a. . Se n = 1, a1 = a , sen = 0 , a0 = 1 Exemplo: Se a = -8 e b = 3, calcule o valor da expressão algébrica ab. Exercícios: 01 – Calcule cada potência abaixo. 2 a) (-3) = d) (-8)2 = b) (–5)3 = e) (-1)5 = c) (+10)4 = f) (-1)4 = 02 – Escreva cada expressão na forma de potência. a) (-6) . (-6) . (-6) = b) (+7) . (+7) . (+7) . (+7) = c) (-9) . (-9) . (-9) = d) (-1) . (-1) . (-1) . (-1) . (-1) . (-1) . (-1) e) 4.4.4.4.4 = Propriedade da Potenciação Veja como simplificamos o produto (-5)3.(-5)4: (-5)3.(-5)4 = (-5).(-5).(-5).(-5).(-5).(-5).(-5) = (-5)7 = (-5)3+4 Se a é um número inteiro e m e n são números naturais, am. an = a m+n 6
  • 7. O quociente de duas potências também pode ser expresso de um modo mais simples. Por exemplo, 5 2 2 2 2 2 2 . . . . 2 = (-2)5 (-2)2 = = (-2)3 2 2 2 . Se b é um número inteiro diferente de 0 e m e n são números naturais, como m n, m b n = bm bn = b m-n b Se c é um elemento do conjunto dos números inteiros 1 C =C e C0 = 1 Para elevar uma potência a um novo expoente, basta conservar a base e multiplicar os expoentes. Veja: 3 2 2 = (-2)3 (-2)3 =(-2)3+3 = (-2)6 = (-2)3.2 Se d é um número inteiro e m e n são números naturais, (dm)n = d m.n Exercícios 1 – Verifique o máximo que puder: a) (- a)5 .(- a)3 = b) (-10)100 .(-10)105.(-10)0 = 4 5 c) = 5 4 8 d) 4 = 8 8 3 3 e) 7 = 3 10 5 3 3 f) 25 = 3 2 - Sabendo que a = -4 e b = 2, qual é o valor da expressão algébrica. OBS: 1º. Todo número elevado ao expoente zero é igual a 1. 2º. Todo número negativo elevado ao expoente par é positivo. 3º. Todo número negativo elevado ao expoente ímpar é negativo. Propriedade da Potenciação dos números Racionais (Q) Para todo número racional b e para todos os números naturais m e n, temos: bm. bn = b m+n ; 2 3 23 5 1 1 1 1 2 2 2 2 7
  • 8. (bm)n = b m-n ; 24 2 .4 8 1 1 1 2 2 2 Se b é um número racional diferente de 0 e m n; bm n = b m-n : b 5 1 52 3 2 1 1 2 1 2 2 2 Uma Quarta propriedade é muito útil para simples cálculos com potências: 3 3 3333 3 3 3 3 27 3 55555. 5 5 . 5 125 Para todos os números racionais b e c, com c 0, e para todo o número natural n: n n b b c cn Exercícios 1 – Calcule cada potência 2 1 a) 2 3 4 b) 3 1 7 c) 12 0 37 d) = 100 2 3 e) 10 2 - Simplifique as expressões numéricas. 8
  • 9. 1 2 1 3 a) 2 2 0 3 17 2 1 b) 2 21 3 3 2 1 1 3 2 c) 2 2 3 3 - Simplifique usando as propriedades de potenciação 2 6 1 1 a) 2 2 15 1 3 b) 6 1 3 5 8 2 2 3 3 c) 3 2 3 5 1 d) 4 6 e) 0,4 = Expoente Inteiro Negativo Qualquer número elevado ao número inteiro negativo para podermos efetuar tal potência devemos: 3 3 3 1 1 1 2 3 2 2 8 2 2 2 2 3 3 9 2 3 2 2 4 Expoente Racional Fracionário 3 2 23 22 5 32 35 9
  • 10. Lembrando que a multiplicação de raízes pode ser expressa: a.b a b 22 3 2 2 3 23 2 ab a b a 3 3 .b e o quociente: ab a b 2 2 52 2 52 5 2 5 5 a b a b ab Base 10 Sem dúvida como estamos nos relacionando com Eletrotécnica e Eletrônica é importante que saibamos trabalhar com a base dez , não esquecendo que são válidas as propriedades da potenciação. Exercícios Resolva a) (-10)3 = b) (+100)2.(1000)1. (+10)2 = 37 2 3 101010 c) 2 3 27 1010 10 5 10 d) 23 10 23 25 10 10 e) 35 32 10 10 Resumo de Potenciação 1) am .an = a m+n 2) am n = a m-n a m 3) a n = n a m 4) a0 = 1 5) a1 = a 2 2 1 1 6) a 2 a a 10
  • 11. Leitura de uma Fração As frações recebem nomes especiais quando os denominadores são 2, 3, 4, 5, 6, 7, 8, 9 e também quando os denominadores são 10, 100, 1000, ... Frações equivalentes Frações equivalentes são frações que representam a mesma parte do todo. Exemplo: são equivalentes Para encontrar frações equivalentes devemos multiplicar o numerador e o denominador por um mesmo número natural, diferente de zero. Simplificação de frações Uma fração equivalente a , com termos menores, é . A fração foi obtida dividindo-se ambos os termos da fração pelo fator comum 3. Dizemos que a fração é uma fração simplificada de . A fração não pode ser simplificada, por isso é chamada de fração irredutível. A fração não pode ser simplificada porque 3 e 4 não possuem nenhum fator comum. Números fracionários Seria possível substituir a letra X por um número natural que torne a sentença abaixo verdadeira? 3*X=1 Substituindo X, temos: X por 0 temos: 3 * 0 = 0 11
  • 12. X por 1 temos: 3 * 1 = 3. Portanto, substituindo X por qualquer número natural jamais encontraremos o produto 1. Para resolver esse problema temos que criar novos números. Assim, surgem os números fracionários. “Toda fração equivalente representa o mesmo número fracionário.” Portanto, uma fração (b diferente de zero) e todas frações equivalentes a ela representam o mesmo número fracionário. Resolvendo agora o problema inicial, concluímos que X = 1 , pois 3 * = 1. 3 3 2. SISTEMA LEGAL DE MEDIDAS 2.1. MEDIDA E UNIDADE DE MEDIDA Medir uma grandeza significa compará-la com outra grandeza de mesma espécie, que doravante denominaremos de unidade ou padrão, e verificar quantas vezes esta grandeza cabe na grandeza a ser medida. Metro Linear Os povos antigos utilizaram durante muito tempo partes de seu corpo para medir comprimento, o que gerou muita confusão devido a pés e mãos serem de tamanhos diferentes. Para resolver esta confusão, cientistas franceses, no final do século XVIII, estabeleceram o metro como unidade fundamental (padrão) para medir o comprimento. 2.2. AS UNIDADES DE MEDIDA DE COMPRIMENTO Como unidade padrão para medida de comprimento ficou estabelecido o metro, cujo símbolo ficou sendo o m. Quando desejamos medir grandes extensões ou distâncias, fica difícil utilizar o metro como unidade. Temos, portanto, que utilizar os múltiplos do metro, que são: decâmetro = dam equivalente a 10 m hectômetro = hm equivalente a 100 m quilômetro = km equivalente a 1000 m Já, para medirmos pequenas extensões ou distâncias, nos utilizamos dos submúltiplos do metro: decímetro = dm equivalente a 0,1 m centímetro = cm equivalente a 0,01 m milímetro = mm equivalente a 0,001 m 12
  • 13. 2.3. MUDANÇA DE UNIDADE Conversão para unidade menor: desloca-se a vírgula para direita, tantas casas decimais quantos forem os espaços que separam as duas unidades na escala. Exemplo: Transformar: a) 3,5 hm m Neste caso, devemos deslocar a vírgula 2 casas à direita, achando 350 m b) 62,18 m dm Agora, deslocamos a vírgula uma casa à direita, encontrando 621,8 m Conversão para unidade maior: desloca-se a vírgula para a esquerda, tantas casas decimais quantos forem os espaços que separam as duas unidades na escala. Exemplo: Transformar a) 84,4 dm m Fazendo uso da regra, deslocamos a vírgula uma casa à esquerda, e encontramos 8,44 m b) 341,75 mm dm Neste exemplo, devemos deslocar a vírgula 2 casas à esquerda, encontrando 3,4175 dm 2.4. POLÍGONOS, PERÍMETROS E ÁREAS Perímetro nada mais é que a soma das medidas de todos os lados de um polígono de n lados, e é representado pela letra P. 13
  • 14. 14
  • 15. 2.5. MEDIDAS DE SUPERFÍCIE Medir uma superfície é simplesmente compará-la com uma superfície tomada com unidade padrão. 2 A unidade fundamental para medir superfícies é o metro quadrado (m ). Esta medida de superfície também é denominada ÁREA da superfície. 15
  • 16. O metro quadrado é a área de um quadrado de lado 1 m. 1m2 = 1m x 1m Mudança de Unidade - Qualquer unidade é sempre 100 vezes maior que a unidade imediatamente inferior ou 100 vezes menor que a unidade imediatamente superior. Como os múltiplos e submúltiplos do metro quadrado variam de 100 em 100, a conversão de unidade é feita deslocando-se a vírgula de 2 em 2 casas, para a direita ou para a esquerda. Unidades Agrárias - Quando queremos medir grandes extensões de terra, utilizamos as unidades agrárias que são: are, hectare e centiare. 2.6. ÁREAS DAS PRINCIPAIS FIGURAS PLANAS 16
  • 17. 17
  • 18. 2.7. VOLUMES DE SÓLIDOS 3 Para medirmos o Volume de um corpo utilizamo-nos do metro cúbico (m ) como unidade fundamental, que corresponde ao volume de um cubo de 1 m de aresta (lado). Cada unidade é 1000 vezes maior que a unidade imediatamente inferior ou 1000 vezes menor que a unidade imediatamente superior. Mudança de Unidade - A conversão de unidade é feita deslocando-se a vírgula de 3 em 3 casas decimais para a direita ou para a esquerda. 18
  • 19. 19
  • 20. 20
  • 21. 2.8. MEDIDAS DE CAPACIDADE Para medirmos o volume de um recipiente que contém líquidos ou gases, usamos como unidade fundamental o litro. O litro é o volume de um cubo de 1 dm de aresta. Símbolo= l 1 l = 1 dm 3 1 dm x 1 dm x 1 dm Unidades de Capacidade quilolitro hectolitro decalitro litro decilitro centilitro mililitro kl hl dal l dl cl ml 1.000 l 100 l 10 l 1l 0,1 l 0,01 l 0,001 l Conforme observamos no quadro acima, cada unidade de capacidade é 10 vezes maior que a unidade imediatamente inferior e 10 vezes menor que a unidade imediatamente superior. Mudança de Unidade Na conversão de uma unidade em outra inferior, devemos deslocar a vírgula para a direita de uma em uma casa decimal. Exemplo: 4,71 l - 471 l e 0,008 dal - 0,08 hl Na conversão de uma unidade em outra superior, devemos deslocar a vírgula para a esquerda de uma em uma casa decimal. Exemplo: 4,36 cl - 0,0436 l e 1,5 l - 0,015 hl 2.9. MEDIDA DE MASSA A unidade fundamental de massa é o quilograma (kg) que corresponde a massa aproximada de 3 1dm de água destilada a uma temperatura de 4º C. Não devemos confundir PESO e MASSA. PESO - é a força com que a Terra atrai os corpos para o seu centro. MASSA - é a quantidade de matéria que um corpo possui. 21
  • 22. Mudança de Unidade Na mudança de unidade de medidas de massa observamos que cada unidade é 10 vezes maior que a imediatamente inferior ou 10 vezes menor que imediatamente superior. Exemplos: 1,57 hg - 157 g e 41,3 mg - 4,13 cg 75 dg - 0,75 dag e 5,5414 dag - 554,14dg Outras Medidas de Massa Relações Importantes Então podemos estabelecer uma correspondência entre as unidades de volume, capacidade e massa conforme pode ser mostrado na tabela abaixo: 22
  • 23. 2.10. MEDIDAS DE TEMPO Por não pertencerem ao sistema métrico decimal, daremos uma rápida pincelada nas medidas de tempo. A unidade legal para a medida de tempo é o segundo. Os seus múltiplos são apresentados como segue: Unidade Múltiplos Nome Segundo Minuto Hora dia Símbolo s min h d valor 1s 60 s 6 0 min = 3600 s 24 h = 1440 min = 86.400s As medidas de tempo inferiores ao segundo não têm designação própria, sendo utilizados os submúltiplos decimais. Assim dizemos: décimos de segundo, centésimos de segundo, ou milésimos de segundo. Utilizam-se também as unidades de tempo estabelecidas pelas convenções usuais do calendário civil e da Astronomia, como, por exemplo, 1 mês, o ano, o século, etc. Para efetuar a mudança de uma unidade para outra, devemos multiplicá-la (ou dividi-la) pelo valor desta unidade. 3. RAZÕES E PROPORÇÕES 3.1. RAZÃO ENTRE DUAS GRANDEZAS Para entendermos o significado da razão entre dois números ou grandezas, analisaremos algumas situações do dia-a-dia. 1º caso: Marlene receberá visitas para uma festa no final de semana e resolveu preparar um batida de frutas. A receita diz que devem ser colocadas 9 frutas em cada receita, sendo 6 laranjas e 3 maças. Comparemos os números envolvidos nesta situação. Sabemos que: 9, 6 e 3 são os números envolvidos nesta hipotética situação; para cada 6 laranjas, devemos colocar 3 maças. Escrevemos assim: 6 6 ou 6 : 3 é a razão entre os números 6 e 3, nesta ordem. 3 3 Como 6 é o dobro de 3, para fazer o mesmo tipo de batida de frutas, a quantidade de laranjas deve ser sempre igual ao dobro da quantidade de maças. 23
  • 24. “Se a e b são dois números e b é diferente de zero, dizemos que a: b é a razão entre a e b, nessa ordem” ou a b 2º caso: Para ir à escola, Lucas gasta 30 minutos indo à pé. Já, Matheus utiliza-se de sua moto e faz o mesmo percurso em 10 minutos. Qual a razão entre os tempos gastos por Matheus e Lucas para chegarem até a escola, sabendo-se que o espaço percorrido é o mesmo ? tempo gasto por Matheus .................. 10 minutos tempo gasto por Lucas ...................... 30 minutos 10 = 30 1 ou 1 : 3 a razão entre os tempos gastos por Lucas e 1 Matheus significa que para cada minuto gasto por Matheus, e Lucas gasta três vezes mais tempo para percorrer o mesmo percurso. “A razão entre grandezas de mesma natureza é a razão entre os números que expressam as medidas destas grandezas.” Atenção: Quando comparamos grandezas de mesma natureza, as medidas devem estar expressas na mesma unidade. Observações: 1) A razão entre dois números racionais pode ser apresentada de três formas. Exemplo: Razão entre 1 e 4: 1:4 ou ou 0,25. 2) A razão entre dois números racionais pode ser expressa com sinal negativo, desde que seus termos tenham sinais contrários. Exemplo: A razão entre –1 e 8 é . Termos de uma razão Observe a razão: (lê-se “a está para b” ou “a para b”). 24
  • 25. Na razão a:b ou , o número a é denominado antecedente e o número b é denominado conseqüente. Veja o exemplo: 3 : 5 = Leitura da razão: 3 está para 5 ou 3 para 5. Razões inversas Considere as razões. Observe que o produto dessas duas razões é igual a 1, ou seja, Nesse caso, podemos afirmar que são razões inversas. Duas razões são inversas entre si quando o produto delas é igual a 1. Exemplo: são razões inversas, pois . Podemos verificar que nas razões inversas o antecedente de uma é o consequente da outra, e vice-versa. Observações: 1) Uma razão de antecedente zero não possui inversa. 2) Para determinar a razão inversa de uma razão dada, devemos permutar (trocar) os seus termos. Exemplo: O inverso de . 25
  • 26. Razões equivalentes Dada uma razão entre dois números, obtemos uma razão equivalente da seguinte maneira: Multiplicando-se ou dividindo-se os termos de uma razão por um mesmo número racional (diferente de zero), obtemos uma razão equivalente. Exemplos: são razões equivalentes. são razões equivalentes. Razão entre grandezas da mesma espécie O conceito é o seguinte: Denomina-se razão entre grandezas de mesma espécie o quociente entre os números que expressam as medidas dessas grandezas numa mesma unidade. Exemplos: 1) Calcular a razão entre a altura de dois vasos de flores, sabendo que o primeiro possui uma altura h1= 1,20m e o segundo possui uma altura h2= 1,50m. A razão entre as alturas h1 e h2 é dada por: 2) Num certo intervalo de tempo, um carro percorre 2 km enquanto Alexandre caminha 50 metros. Qual é a razão entre os espaços percorridos pelo carro e por Alexandre, durante este intervalo de tempo? 26
  • 27. Quando temos unidades de medida diferentes, devemos transforma-las para a mesma base. Neste caso, transformaremos a distância percorrida pelo carro em metros. ( 2 km = 2.000 m ) 2000 = 40 50 1 significa que o carro percorre 40 m enquanto Alexandre percorre 1 m. Razões entre grandezas de espécies diferentes O conceito é o seguinte: Para determinar a razão entre duas grandezas de espécies diferentes, determina-se o quociente entre as medidas dessas grandezas. Exemplos: 1) Consumo médio: Marlene foi de Rio Preto a Uberlândia (298 Km) no seu carro, realizar uma visita à sua mãe. Foram gastos nesse percurso 26 litros de combustível. Qual a razão entre a distância e o combustível consumido? O que significa essa razão? Solução: Razão = 298 26 1 , 1 46 km / l 1 , 1 46 km / l (lê-se “11,46 quilômetros por litro”). Essa razão significa que a cada litro consumido foram percorridos em média 11,46 km. 2) Velocidade média: Na mesma viagem Rio Preto/Uberlândia, Marlene fez o percurso (298Km) em 4 horas. Qual a razão entre a medida dessas grandezas? O que significa essa razão? Solução: Razão = 298 74 5 , km / h 4 Razão = 74,5 km/h (lê-se “74,5 quilômetros por hora”). Essa razão significa que a cada hora foram percorridos em média 74,5 km. 27
  • 28. 3) Densidade demográfica: A cidade de São José do Rio Preto no último censo teve uma população avaliada em 367.512 habitantes. Sua área é de 434,10 km2. Determine a razão entre o número de habitantes e a área da cidade. O que significa essa razão? 28
  • 30. 367 512. 434 10 , 2 846 hab / km Razão = 846 hab/km2 (lê-se “846 habitantes por quilômetro quadrado”) Essa razão significa que em cada quilômetro quadrado existem em média 846 habitantes. 4) Densidade absoluta ou massa específica: Um cubo de concreto de 10 cm de aresta tem massa igual a 17,8 kg. Determine a razão entre a massa e o volume desse corpo. O que significa essa razão? Solução: Volume = 10 cm . 10 cm . 10 cm = 1.000cm3 Massa = 17,8 kg = 17.800 3 Razão =17800 = 17 8g/ cm , 1000 Razão = 17,8 g/cm3 (lê-se “17,8 gramas por centímetro cúbico”). Essa razão significa que 1000 cm3 de concreto pesa 17,8g. 30
  • 31. 3.2. CONCEITO DE PROPORÇÃO 1º Caso: Uma escola tem 800 alunos e freqüentemente realiza pesquisas com o intuito de saber o índice de satisfação de seus alunos. A última pesquisa realizada teve por objetivo saber qual o esporte preferido de seus alunos. Os números levantados foram os seguintes: De posse dos dados, podemos analisa-los utilizando alguns quocientes: 1. total de alunos que praticam natação ................... 160 total de alunos da escola .................................... 800 160 8 500 Constatamos, portanto, que de cada 5 alunos matriculados na escola, 1 pratica natação. 2. total de alunos que praticam Basquete ................. 40 total de alunos que jogam futebol de salão ............ 240 4 10 2 640 O número de alunos que pratica futebol de salão é 6 vezes maior que o número de alunos que pratica basquete. 2º Caso: Gabriel e Inês resolvem pintar a parede da sala de sua casa. Eles sabem que para conseguir uma tonalidade rosa, devem misturar 2 litros de vermelho e 3 de branco. Mas esta receita só dá certo para pequenas dimensões a serem pintadas. Como a parede é muito grande, Inês está em dúvida se pode misturar 10 litros de vermelho com 15 litros de branco. E aí ? O que fazer para resolver este problema ? E você o que acha ? Basta misturar as tintas para ver o que acontece ? 31
  • 32. O problema é que se der errado o prejuízo será dobrado: o tempo gasto e o custo da tinta. Para resolver esta questão vamos usar razões para ter uma maior probabilidade de acerto. 2 receita diz = 2 vermelhos com 3 brancos - a mistura é de 2 3 Inês quer ... 10 vermelhos com 15 brancos - a mistura é de 10 10 As razões 2 e são iguais 15 3 15 A igualdade 2 = 10 é uma proporção entre os números 2, 3, 10 e 15, nessa ordem. 3 15 Lê-se: 2 está para 3 assim como 10 está para 15 Assim: Proporção é uma igualdade entre duas razões. Uma Proporção envolve quatro números no mínimo: a, b, c e d. Nesta ordem, temos a proporção  a : b = c : d, sendo b e d ≠ zero Elementos de uma proporção Dados quatro números racionais a, b, c, d, não-nulos, nessa ordem, dizemos que eles formam uma proporção quando a razão do 1º para o 2º for igual à razão do 3º para o 4º. Assim: ou a :b = c :d (lê-se “a está para b assim como c está para d”) Os números a, b, c e d são os termos da proporção, sendo: b e c os meios da proporção. a e d os extremos da proporção. 32
  • 33. Exemplo: Dada a proporção , temos: Leitura: 3 está para 4 assim como 27 está para 36. Meios: 4 e 27 Extremos: 3 e 36 Propriedade fundamental das proporções Observe as seguintes proporções: De modo geral, temos que: a cb d ⇔a . d  b.c Nasce daí a propriedade fundamental das proporções: Em toda proporção, o produto dos meios é igual ao produto dos extremos. Aplicações da propriedade fundamental Determinação do termo desconhecido de uma proporção Exemplos: Determine o valor de x na proporção: 33
  • 34. x 21  3 9 Solução: Fazendo uso da Propriedade Fundamental das Proporções, temos que: 9 . x = 3 . 21 (aplicando a propriedade fundamental) 9 . x = 63 63 9 x = 7 Logo, o valor de x é 7.  Determine o valor de x na proporção: 7 1 x 5x 2 3 Solução: 5 . (x-1) = 7 . (3x+2) (aplicando a propriedade fundamental) 5x - 5 = 21x + 14 5x - 21x = 14 + 5 -16x = 19   19 x 16 Quarta proporcional Dados três números racionais a, b e c, não-nulos, denomina-se quarta proporcional desses números um número x tal que: Exemplo: 34
  • 35.  Determine a quarta proporcional dos números 7, 3 e 21. Solução: Indicamos por x a quarta proporcional e armamos a proporção: 35
  • 36. 7 21  3 x (aplicando a propriedade fundamental) 7 . x = 3 . 21 7 . x = 63 63  7 x = 9 Logo, a quarta proporcional é 9. 4. REGRA DE TRÊS 4.1. REGRA DE TRÊS SIMPLES Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos. A Regra de três simples é utilizada para resolver problemas que envolvem proporcionalidade entre duas grandezas. Passos utilizados numa regra de três simples Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência. Identificar se as grandezas são diretamente ou inversamente proporcionais. Montar a proporção e resolver a equação. Exemplos: 1. Em 3 minutos uma torneira despeja 6 litros de água numa caixa d´água. Se a caixa ficou cheia em 6 horas, qual será a capacidade desta caixa d´água ? Tempo Capacidade da Caixa 3 minutos 6 litros 6 h = 6 * 60 minutos X litros 360 minutos 36
  • 37. Resolvendo, temos: 3 . x = 6 . 360 3 x = 2160 litros x = 2.160/3  x = 720 litros b) Um motociclista viaja de S.J.do Rio Preto até Mirassol, à velocidade de 80km/h, fazendo o percurso em 10 minutos. Se a velocidade da moto fossede 100km/h, em quantos minutos seria feito o mesmo percurso? 37
  • 38. Velocidade (Km/h) Tempo (minutos) 80 10 min 100 X min Observe que as grandezas são inversamente proporcionais, aumentando a velocidade o tempo diminui na razão inversa. Resolução: X/10 = 80/100  = 10*80/100 x = 800/100  x = 8 minutos x Observe que o exercício foi montado respeitando os sentidos das setas. 4.2. REGRA DE TRÊS COMPOSTA Algumas situações envolvem mais de duas grandezas. A análise e a resolução de problemas desta natureza podem envolver uma regra de três composta. Exemplo: a) 20 pintores trabalhando 6 horas por dia, pintam um edifício em 4 dias. Quantos dias serão necessários para que 6 pintores, trabalhando 8 horas por dia, pintem o mesmo edifício? 1. Para facilitar a resolução, vamos separar as grandezas e números envolvidos: Quantidade de pintores: 20, 6 Horas por dia : 6, 8 Número de dias: 4 , x 2. supondo que o número de horas por dia não varie: Pintores Horas p/ dia Nº de dias 20 6 4 6 8 x Grandezas inversamente proporcionais * Menos pintores, mais dias para pintar 3. Supondo que a quantidade de pintores não varie: Pintores Horas p/ dia Nº de dias 20 6 4 6 8 x 38
  • 39. Grandezas inversamente proporcionais Nesta situação, o tempo (dias) é inversamente proporcional à quantidade de pintores e ao tempo de trabalho por dia, portanto o produto 20 . 6 . 4 é igual ao produto 6 . 8 . x 20 . 6 . 4 = 6 . 8 . x  480 = 48 . x  x = 480 / 48 x = 10 Serão necessários 10 dias para pintar o edifício. Como foi visto, existe um método prático para se montar o esquema e resolver o problema. O Método Prático consiste em: escrever em uma coluna as variáveis do mesmo tipo, ou seja, aquelas expressas na mesma unidade de medida.  Identificar aquelas que variam num mesmo sentido (grandezas diretamente proporcionais) e aquelas que variam em sentidos opostos (grandezas inversamente proporcionais), marcando-as com setas no mesmo sentido ou sentidos opostos, conforme o caso. A incógnita x será obtida da forma sugerida no esquema abaixo, dada como exemplo de caráter geral. Imaginemos as grandezas A, B, C e D, que assumem os valores literais mostrados a seguir. Suponhamos, por exemplo, que a grandeza A seja diretamente proporcional à grandeza B, inversamente proporcional à grandeza C e inversamente proporcional à grandeza D. Após termos executado este procedimento, montamos o esquema mostrado abaixo: Neste caso, o valor da incógnita x será dado por: x  a. p c d a. p.c.d . .   b r s b.r . s 39
  • 40. Observem que para as grandezas diretamente proporcionais, multiplicamos x pelos valores invertidos e para as grandezas inversamente proporcionais, multiplicamos pelos valores como aparecem no esquema. Exemplo: STA CASA – SP – Sabe-se que 4 máquinas, operando 4 horas por dia, durante 4 dias, produzem 4 toneladas de certo produto. Quantas toneladas do mesmo produto seriam produzidas por 6 máquinas daquele tipo, operando 6 horas por dia, durante 6 dias? a) 8 b) 15 c) 10,5 d) 13,5 Solução: Observe que a produção em toneladas é diretamente proporcional ao número de máquinas, ao número de dias e ao número de horas/dia. Portanto: Portanto, seriam produzidas 13,5 toneladas do produto, sendo D a alternativa correta. Exercícios resolvidos e propostos 1. Vinte e cinco costureiras, trabalhando oito horas por dia, durante 10 dias, fizeram 800 calças. Vinte costureiras trabalhando nove horas por dia durante dezoito dias, produzirão quantas calças iguais às já produzidas? SOLUÇÃO: Nº Costureiras dias Horas/dia calças 25 10 8 800 20 18 9 x Observe que o número de calças é diretamente proporcional ao número de costureiras, ao número de dias e ao número de horas/dia. 40
  • 41. Portanto: 9 18 20 8 x 00. . . 1 .  296 25 10 8 Resposta: 1296 calças 2. Em uma escola, vinte e cinco estudantes resolvem 150 exercícios de matemática em doze dias, estudando 10 horas por dia. Quantas horas por dia, deverão estudar 30 estudantes, para resolverem 180 exercícios em 15 dias? Solução: Estudantes dias Horas/dia Exercícios 25 12 10 150 30 15 x 180 41
  • 42. Observe que: Aumentando o número de horas/dia, aumenta o número de exercícios, diminui o número de dias necessários e diminui o número de estudantes necessárias. Portanto: X = 10 * 180 * 12 * 25 / 150 * 15 * 30 x = 540000/67500 Resposta: 8 h 3. Certo trabalho é executado por 15 operários, em 12 dias de 10 horas. Se três operários forem demitidos do serviço, quantos dias de 8 horas deverão trabalhar os demais, para realizar o dobro do trabalho anterior? Solução: Aumentando o número de dias, diminui o número de horas/dia necessários e diminui o número de operários necessários. Podemos também dizer que para realizar o dobro do trabalho, o número de dias deve.aumentar. Portanto, podemos montar o seguinte esquema: Operários dias Horas/dia Trabalho 15 12 10 T 12 x 8 2T Logo, 15 10 2T 1 x 2. . . 3 , 7 5 42
  • 43. 1 T2 8 Resposta: 37,5 dias Agora resolva estes dois: 1 - Em uma residência, no mês de fevereiro de um ano não bissexto, ficaram acesas, em média, 16 lâmpadas elétricas durante 5 horas por dia e houve uma despesa de R$ 14,00. Qual foi a despesa em março, quando 20 lâmpadas iguais às anteriores ficaram acesas durante 4 horas por dia, supondo-se que a tarifa de energia não teve aumento? Resposta : R$15,50 2 - Um livro está impresso em 285 páginas de 34 linhas cada uma com 56 letras em cada linha. Quantas páginas seriam necessárias para reimprimir esse livro com 38 linhas por página, cada uma com 60 letras? Resposta: 238 páginas 5. PORCENTAGENS Toda fração de denominador 100, representa uma porcentagem, como diz o próprio nome, por cem. Exemplo: 12 5 36 100 5  %, 100 1 2 %, 100 3 6 % 43
  • 44. Observe que o símbolo % que aparece nos exemplos acima significa por cento. Se repararmos em nossa volta, vamos perceber que este símbolo % aparece com muita freqüência em jornais, revistas, televisão e anúncios de liquidação, etc. Exemplos: A  cesta básica teve um reajuste de 6,2 % no último bimestre;  Os  rendimentos da caderneta de poupança que vencem hoje, são de 3,1 %; A  taxa de desemprego no Brasil cresceu 19% neste ano.  Desconto de 25% nas compras à vista. Devemos lembrar que a porcentagem também pode ser representada na forma de números decimais. Vejam os exemplos: 12 = 0 12 , 81= 0 81 , 100 100 Trabalhando com Porcentagem Vamos fazer alguns cálculos envolvendo porcentagens. Exemplos: 1. Uma geladeira custa 800 reais. Pagando à vista você ganha um desconto de 10%. Quanto pagarei se comprar esta geladeira à vista? 10 %  10 100 (primeiro representamos na forma de fração decimal) 10% de 100  10% x 100  10 8000 100 100 x 800 8 0 800 – 80 = 720 Logo, pagarei 720 reais. 44
  • 45. 2. Pedro usou 32% de um rolo de mangueira de 100m. Determine quantos metros de mangueira Pedro usou. 32% = 32 32 % de 100 ⇒ 32 100 x 100 ⇒ 3200 = 32 100 Logo, Pedro gastou 32 m de mangueira. 3. Comprei uma mercadoria por 2000 reais. Por quanto devo vende-la, se quero obter um lucro de 25% sobre o preço de custo. 25% = 25 100 25 % de 2000 ⇒ 25 10 x 2000 ⇒ 50000 100 = 500 O preço de venda é o preço de custo somado com o lucro. Então, 2000 + 500 = 2500 reais. Logo, devo vender a mercadoria por 2500 reais. 4. Comprei um objeto por 20 000 reais e o vendi por 25 000 reais. Quantos por cento eu obtive de lucro? Lucro: 25 000 – 20 000 = 5 000 ( preço de venda menos o preço de custo) 5000 20000 = 444 = 0 25 25 100 = 25 % 45
  • 46. (resultado da divisão do lucro pelo preço de custo) 5. O preço de uma casa sofreu um aumento de 20%, passando a ser vendida por 35 000 reais. Qual era o preço desta casa antes deste aumento? Porcentagem Preço 120 35 000 100 x 120 x 00 x 35000 ⇒120 x 500000 = , 9166 67 1 3 2 Logo, o preço anterior era R$ 29.166,67 6. FUNÇÕES E GRÁFICOS 6.1. FUNÇÕES A idéia de função sempre está associada a uma relação de dependência entre dois conjuntos. Para chegar à definição de uma função, vamos lembrar alguns conceitos importantes. Produto Cartesiano: A x B A x B = { (a, b)/a ∈ A e b ∈ B } Exemplo: Sejam os conjuntos A = { -1, 0, 1 } e B = { 0, 1, 4 }. A x B = { (-1,0); (-1,1); (-1,4); (0,0); (0,1); (0,4); (1,0); (1,1); (1,4) } Multiplicamos cada termo do conjunto A por cada termo do conjunto B. Relação Uma relação R é qualquer subconjunto de A x B 46
  • 47. Exemplo: Determine os pares das relações: a) R1 = { (x,y) ∈ A x B | y = x + 1 } R1 A B -1 0 0 1 1 4 R1 = {(-1,0);(0,1)} b) R2 = {(x,y) ∈ A x B y = x R2 A B -1 0 0 1 1 4 R2 = {(-1,1); (0,0); (1,1)} Observe que na Relação R2 todos os elementos do primeiro conjunto se corresponderam com algum elemento do segundo conjunto, e uma só vez. A este tipo de Relação chamamos de função de A em B Então: Diz-se que f é uma função (ou aplicação) de A em B ( f: A  B) se, e somente se, para todo elemento x ∈ A, existir um único elemento y ∈ B, tal que (x,y) ∈ f. TODOS os elementos de A devem enviar flecha a algum elemento de B; CADA elemento de A deve mandar uma única flecha para algum elemento de B. Domínio D(f) : é o conjunto da partida das flechas (A) Contradomínio CD(f): é o conjunto da chegada das flechas (B) Imagem Im(f) : é um subconjunto do contradomínio e é formada pelos elementos do CD(f), que são, de fato, imagens de elementos do domínio .y = f(x) 47
  • 48. Tipos Fundamentais de Funções Função Injetora: Uma função f definida de A em B é injetora quando cada elemento de B (que é imagem), é imagem de um único elemento de A Função Bijetora: Uma função f definida de A em B, quando injetora e sobrejetora ao mesmo tempo, recebe o nome de função bijetora. Exemplo: É sobrejetora  Im(f) = B É injetora  cada elemento da imagem em B tem um único correspondente em A Função Inversa: Seja f uma função bijetora definida de A em B, com x ∈ A e y ∈ R, sendo (x,y) ∈ f. Chamaremos de função inversa de f, e indicaremos por f-1, o conjunto dos pares ordenados (y,x) ∈ f-1 com y ∈ B e x ∈ A Exemplo: .f é definida de R em R, sendo y = 2 x. Para determinarmos f-1, basta trocarmos x por y e y por x Observe: Y = 2 x x = 2 y Isolando y em função de x resulta: y = x/2 Exemplo: Achar a função inversa de y = 2x Solução: a) troquemos x por y e y por x: teremos x = 2 y b) expressemos o novo y em função do novo x; teremos, então, y = x/2 e finalmente, f-1(x) = x/2 Paridade das funções 1. Função par A função y = f(x) é PAR, quando x ∈ D(f), f(-x) = f(x) , ou seja, para todo elemento do seu domínio, f(x) = f (-x). Portanto , numa função par, elementos simétricos possuem a mesma imagem. Uma 48
  • 49. conseqüência desse fato é que os gráficos cartesianos das funções pares são curvas simétricas em relação ao eixo dos y ou eixo das ordenadas. Exemplo: z = x4 + 2 é uma função par, pois f(x) = f(-x), para todo x. Por exemplo, f(2) = 24 + 2 = 18 e f(- 2) = (- 2)4 + 2 = 18 O gráfico abaixo, é de uma função par. 2. Função ímpar A função y = f(x) é ímpar , quando x ∈ D(f) , f (- x) = - f (x) , ou seja, para todo elemento do seu domínio, f (-x) = - f (x). Portanto, numa função ímpar, elementos simétricos possuem imagens simétricas. Uma conseqüência desse fato é que os gráficos cartesianos das funções ímpares, são curvas simétricas em relação ao ponto (0,0), origem do sistema de eixos cartesianos. Exemplo: y = x3 é uma função ímpar pois para todo x, teremos f(-x) = - f(x). Por exemplo, f(- 3) = (- 3)3 = - 278e - f( x) = - ( 33 ) = - 27. O gráfico abaixo é de uma função ímpar: 49
  • 50. Observação: se uma função y = f(x) não é par nem ímpar, dizemos que ela não possui paridade. Exemplo: O gráfico abaixo, representa uma função que não possui paridade, pois a curva não é simétrica em relação ao eixo dos x e também não é simétrica em relação à origem. FUNÇÃO DE 1º GRAU Definição Chama-se função polinomial do 1º grau, ou função afim, qualquer função f de R em R dada pela expressão f(x) = ax + b, onde a e b são números reais dados e a ≠ 0. Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante. 50
  • 51. Veja alguns exemplos de funções polinomiais do 1º grau: f(x) = 6z - 4, onde a = 6 e b = - 4 f(x) = -3y + 2, onde a = -3 e b = 2 f(x) = 8x, onde a = 8 e b = 0 6.2. GRÁFICOS Sistema Cartesiano Ortogonal O Sistema Cartesiano ortogonal é composto por dois eixos perpendiculares com origem comum e uma unidade de medida. No eixo horizontal, chamado eixo das abscissas, representamos os primeiros elementos do par ordenado de números reais. No eixo vertical, chamado de eixo das ordenadas, são representados os segundos elementos do par ordenado de números reais. Observações: a todo par ordenado de números reais corresponde um só ponto do plano, e a cada ponto corresponde um só par ordenado de números reais; O gráfico de uma função polinomial do 1º grau, y = ax + b, com a ≠ 0, é uma reta oblíqua aos eixos Ox e Oy. Exemplo: Vamos construir o gráfico da função y = 4x + 2: Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua: Quando x = 0, temos y = 4 · 0 + 2 = 2; portanto, um ponto é (0, 2). Quando y = 0, temos 0 = 4x +2; portanto, x = ½ e outro ponto é (1/2,0). Marcamos os pontos (0, 2) e (1/2,0) no plano cartesiano e ligamos os dois com uma reta. Já vimos que o gráfico da função afim y = ax + b é uma reta. coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox. O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy. Análise de Gráficos O comportamento de uma função pode ser obtido através de um gráfico, onde 51
  • 52. podemos tirar informações acerca de: crescimento, decrescimento, domínio, imagem, valores máximos e mínimos, se é função positiva ou negativa, etc. 3x 1 f (x)   e o seu gráfico, podemos analisar o seu  Dada uma função 5 comportamento da seguinte maneira: Zero da Função: graficamente, encontramos o zero da função no ponto de encontro da reta com o eixo dos x: f(x) = 0 3x/5 + 1/5 = 0 x =-1/3 Domínio: projetando o gráfico sobre o eixo dos x: D = [-2,3] Imagem: projetando o gráfico sobre o eixo dos y: Im = [-1,2] Podemos observar que para: -2 < 3 temos f ( -2) < f (3) dizemos que a função é crescente. Sinais: X ∈ [ –2, –1/3 [ f (x) < 0 X ∈ ] –1/3, 3 ] f (x) > 0 Valor Mínimo: –1 é o menor valor assumido por y = f (x) Ymin = – 1 Valor Máximo: 2 é o maior valor assumido por y = f (x) Ymáx = – 2 Como reconhecer se um gráfico representa ou não uma Função Quando quisermos saber se um gráfico de uma relação representa ou não uma função, aplicamos a seguinte técnica: Traçamos qualquer reta paralela ao eixo dos y; qualquer que seja a reta traçada, se o gráfico da relação for interceptado em um único ponto, e somente em um ponto, então o gráfico representa uma função. Caso contrário não representa uma função. Gráfico de Função Crescente Tomando por base a função y = 2 x, definida de R em R. Se formos atribuindo valores para x, iremos obtendo valores correspondentes para y e representado-os no plano cartesiano, ficamos com: 52
  • 53. Y 9 y = 2x 8 7 6 5 4 3 2 X 1 -4 -3 -2 0 1 2 3 4 -1 -2 -3 -4 Observe que à medida que os valores de x aumentam, os valores de y também aumentam; neste caso podemos afirmar que a função é crescente. Função Constante Chamamos de Função Constante toda função definida de R em R e representada por f (x) = c ( c = constante ) Exemplos: f (x) = 5; f (x) = - 5; f (x) = ¾ Seu gráfico é uma reta paralela ao eixo dos x, passando pelo par ordenado (ponto) (0,c). Neste caso, teremos o Domínio D = R, o Contradomínio CD = R e a Imagem Im = {c} (0,c) y = c x Função Identidade É a função de R em R definida por : f (x) = x É dita função identidade quando seu gráfico é uma reta que contém as bissetrizes do 1º e 3º quadrantes. Ou seja, os valores de x serão sempre iguais aos valores de y. D = R; CD = R; Im = R y 53
  • 54. Função Afim É toda função f de R em R definida por f (x) = ax + b, sendo a; b ∈ R e a ≠ 0 Observações: Quando b = 0 a função é denominada de função linear; D = R; Im = R; Seu gráfico é uma reta do plano cartesiano. Função Quadrática 2 É toda a função f de R em R definida por f (x) = ax + bx + c, e tendo que a; b; c ∈ R e a ≠ 0. 2 4 2 Exemplos: f (x) = 3 x + 5 x - 7; f (x) = x + 4; f (x) = x gráfico de uma função quadrática é uma PARÁBOLA que terá sua concavidade voltada para cima se a > 0 ou voltada para baixo se a < 0. Exemplos: 2 f (x) = x – 6x + 8 (a = 1 > 0 2 f (x) = -x + 6x – 8 (a = -1 < 0 ) 7. SEQÜÊNCIAS NÚMERICAS Alguns acontecimentos repetem-se periodicamente em nosso cotidiano. Eles possuem estreita relação com a matemática, no que se refere à sucessão de percepções diversas, tais como o passar do tempo, a rotina diária de trabalho e até mesmo os fatos menos perceptíveis como a nossa respiração, o batimento de nosso coração e assim sucessivamente. Assim, a seqüência (ocorrência periódica) de fatos em nosso cotidiano nos conduz, principalmente à idéia de ordem. Seja, por exemplo, a seqüência de números, a seguir: 1 2 3 4 5 6 7 8 9 .... Esta sucessão de números compõe o conjunto dos números Inteiros. Este exemplo mostra-nos que: Seqüência ou sucessão é qualquer conjunto onde seus elementos estão dispostos numa certa ordem. 54
  • 55. Seqüências Numéricas É todo o conjunto de números, que estão dispostos ordenadamente, de uma maneira que possamos indicar quais são os elementos desse conjunto. Exemplo: A seqüência de Fibonacci Nesta seqüência, cada elemento é formado pela soma dos dois elementos anteriores, ou seja: 1, 2, 3, 5, 8, 13, 21, ......... Representação de uma seqüência Representamos a seqüência numérica colocando os termos entre parênteses e separando-os por virgulas. Exemplo: (a1, a2, a3, ......., an, .... ) onde n ∈ N* Estas seqüências poderão ser: Finitas – quando o último termo é conhecido. Ex: (2, 8, 14). Infinitas – quando o último termo não é conhecido. Ex : (3, 13, 23, ...) Leis de Formação Existem seqüências numéricas em que os elementos ou termos estão dispostos de tal forma que não é possível relacioná-los com uma das leis de formação. Um dos exemplos mais recorrentes desta situação é a seqüência dos números primos: (2, 3, 5, 7, ...) Para a continuação dos nossos estudo de seqüências vamos supor sempre a possibilidade de relacionarmos as seqüências com uma lei de formação. Podemos destacar dois tipos de leis de formação de uma seqüência. 1º. Fórmula do Termo Geral Permite calcular um termo de ordem n em qualquer seqüência. Exemplo: Dado an = 1 – 1/(n+1) para n ∈ N*, pede-se calcular o produto dos 99 primeiros termos da seqüência. Solução: Temos que: an = n / (n+1), calculando os termos, a seguir: 55
  • 56. Quando n = 1, então a1 = ½ n=2, a2 = 2/3 n=3, a3 = ¾ ... ... n = 98, a98 = 98/99 n = 99 a99 = 99/100 Efetuando o produto dos termos da seqüência, temos que: ½ . 2/3. ¾. 4/5. ..... . 98/99. 99/100 = Como o denominador de um termo é igual ao numerador do termo seguinte, fazendo as simplificações, temos que: 1 2 . 3 4 . . ... . 51 52 . 1 2 3 4 51 52 98 99 . . . ..... . ..... .  2 4 5 52 53 99 100 Então, o produto dos 99 primeiros termos desta seqüência é igual a 0,01. 2º. Lei de recorrência  Neste caso, é necessário recorrer a outros termos conhecidos (geralmente o primeiro) para se obter qualquer outro elemento da seqüência, através de uma fórmula que forneça esta relação. Exemplo. Dado an+1= an (2n-1 + 1). Se a3= 3, calcule a5. Temos a3 = 3, logo n = 4  3+1 = a3 (23-1 + 1) a a4 = a3 (22+ 1) a4 = a3.5 a4 = 15 56
  • 57. Como queremos a5, temos então: a4+1 = a4 (24-1 + 1) a5 = a4(23 + 1) a5 = 15.9  a5 = 135 Seqüência como função Seja a sucessão de números pares (2, 4, 6, 8, 10, ....) Essa seqüência de números pares é formada de acordo com uma regra ou lei de correspondência, na qual é possível estabelecer uma expressão f(n) que contenha a variável n e tal que para cada numeral natural {1, 2, 3, 4, 5, .....} atribuído a n se tenha a relação: an = f(n) Neste caso, dizemos que f(n) é o termo geral da seqüência A lei de formação do conjunto de números pares é dada através do termo geral an = 2n ou por f(n) = 2n Neste caso, podemos dizer que: Seqüência é uma função cujo domínio é o conjunto dos naturais diferente de zero {1, 2, 3, ....} e cujas imagens formam o conjunto dos números reais, ou seja F : N*  R Séries São expressões numéricas que resultam quando substituímos as vírgulas por sinais de adição entre os termos sucessivos de uma seqüência. Exemplo: A seqüência dos números triangulares 1, 3, 6, 10,..... pode ser decomposta assim: a1 = 1 a2 = 1 + 2 = 3 a3 = 1 + 2 + 3 = 6 a4 = 1 + 2 + 3 + 4 = 10 .......... 57
  • 58. Assim, para encontrarmos o enésimo número triangular, devemos somar os termos de uma seqüência finita, de 1 até o número desejado, ou seja: an = 1 + 2 + 3 + 4 + 5 + 6 + ....... + n Exemplo. Determinar o décimo primeiro número triangular a11 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = 64 Desta forma, podemos dizer que dada uma única seqüência numérica (a1, a2, a3, a4, a5,... , an) formamos a seqüência de somas (S1, S2, S3, S4, ....., Sn) Podemos, então, observar que : S1 = a1 S2 = a1 + a2 S3 = a1 + a2 + a3 ............................ Sn =a1 + a2 + a3 ..... + an Fica, portanto, caracterizado o que chamamos de Série As séries também podem ser finitas (quando se conhece o último termo da série) ou infinitas (quando não se conhece o último termo). A representação de uma série é dada pelo símbolo ∑ (somatório) Para a série finita temos a representação Exemplo prático de série E, para a série infinita é usada a representação 58
  • 59. Uma pessoa A, chega às 14 horas para um encontro com uma pessoa B. Como B não chegou, ainda, A resolveu esperar um tempo t1 = ½ hora, e após, t2 = ½ t1, e após, t3 = ½ t2, e assim sucessivamente. Se B não veio quanto tempo A esperou até ir embora? Pelos dados temos a seguinte seqüência infinita: (30min, 15min, 7,5min, 3,75min, .........) Para obter o valor da soma desta seqüência, basta calcular o valor da série, ou seja: Sn = 30 + 15 + 7,5 + 3,75 + ........ Observamos que: S1 = 30min S2 = 30 + 15 = 45min S3 = 30 + 15 + 7,5 = 52,5min S4 = 30 + 15 + 7,5 + 3,75 = 56,25min ................................... S8 = 59,765625min Podemos constatar que, conforme o número de termos vai aumentando, o valor de cada termo acrescentado vai diminuindo, aproximando-se cada vez mais de 60 minutos. Dizemos, neste caso, que a seqüência converge para 60 minutos. Logo, a pessoa terá que esperar 60 minutos até ir embora. Exercícios resolvidos 1) A partir das seqüências a) 12 = 1 22 = 1+2+1 32 = 1+2+3+2+1 .................. b) 12 = 1 112 = 121 1112 ................... 59
  • 60. Calcule o valor de A A= (55555 x 55555) / 1+2+3+4+5+4+3+2+1 - 1000 Solução: Ora, pela seqüência b, temos que: 1+2+3+4+5+4+3+2+1 = 52 e, pela seqüência a, temos que: 111112 = 123454321 Então, aplicando estes resultados na expressão A, temos que : a= (52 x 123454321 ) / 52 – 10000 Logo, A=123453321 2) Uma seqüência numérica é definida por: a1 = 1 an = an-1 + (-1)n para n >= 2 Determine a soma dos 6 primeiros termos. Solução: Pelos dados temos que: a2 = 1 + (-1)2 = 2 a3 = 2 + (-1)3 = 1 a4 = 1 + (-1)4 = 2 a5= 2 + (-1)5 = 1 a6 = 1 + (-1)6 = 2 Logo S6 = 1+2+1+2+1+2 = 9 3) Qual é a soma da série: n = 1 ==> a1 = -1 n = 2 ==> a2 = 1 n = 3 ==> a3 = -1 Então, se n é par a soma é zero e se n é impar a soma é igual a –1 60
  • 61. 8. JUROS SIMPLES E COMPOSTOS 8.1. JUROS SIMPLES Conceito: é aquele pago unicamente sobre o capital inicial ou principal J= C x i x n Onde: J = juros C = capital inicial i = taxa unitária de juros n = número de períodos que o capital ficou aplicado Observações: a taxa i e o número de períodos n devem referir-se à mesma unidade de tempo, isto é, se a taxa for anual, o tempo deverá ser expresso em anos; se for mensal, o tempo deverá ser expresso em meses, e assim sucessivamente;  em todas as fórmulas matemáticas utiliza-se a taxa de juros na forma unitária (taxa percentual ou centesimal, dividida por 100) Juro Comercial - para operações envolvendo valores elevados e períodos pequenos (1 dia ou alguns dias) pode haver diferença na escolha do tipo de juros a ser utilizado. O juro Comercial considera o ano comercial com 360 dias e o mês comercial com 30 dias. Juro Exato -no cálculo do juro exato, utiliza-se o ano civil, com 365 dias (ou 366 dias se o ano for bissexto) e os meses com o número real de dias. sempre que nada for especificado, considera-se a taxa de juros sob o conceito comercial Taxa Nominal - é a taxa usada na linguagem normal, expressa nos contratos ou informada nos exercícios; a taxa nominal é uma taxa de juros simples e se refere a um determinado período de capitalização. Taxa Proporcional  duas taxas são denominadas proporcionais quando existe entre elas a mesma relação verificada para os períodos de tempo a que se referem. i1 = t1 i2 t2 Taxa Equivalente - duas taxas são equivalentes se fizerem com que um mesmo capital produza o mesmo montante no fim do mesmo prazo de aplicação. 61
  • 62. no regime de juros simples, duas taxas equivalentes também são proporcionais; CAPITAL, TAXA E PRAZO MÉDIOS em alguns casos podemos ter situações em que diversos capitais são aplicados, em épocas diferentes, a uma mesma taxa de juros, desejando-se determinar os rendimentos produzidos ao fim de um certo período. Em outras situações, podemos ter o mesmo capital aplicado a diferentes taxas de juros, ou ainda, diversos capitais aplicados a diversas taxas por períodos distintos de tempo. Capital Médio (juros de diversos Capitais) é o mesmo valor de diversos capitais aplicados a taxas diferentes por prazos diferentes que produzem a MESMA QUANTIA DE JUROS. Cmd = C1 i1 n1 + C2 i2 n2 + C3 i3 n3 + ... + Cn in nn i1 n1 + i2 n2 + i3 n3 + ... + in nn Taxa Média - é a taxa à qual a soma de diversos capitais deve ser aplicada, durante um certo período de tempo, para produzir juros iguais à soma dos juros que seriam produzidos por diversos capitais. Taxamd = C1 i1 n1 + C2 i2 n2 + C3 i3 n3 + ... + Cn in nn C1 n1 + C2 n2+ C3 n3 + ... + Cn nn Prazo Médio - é o período de tempo que a soma de diversos capitais deve ser aplicado, a uma certa taxa de juros, para produzir juros iguais aos que seriam obtidos pelos diversos capitais. Prazomd = C1 i1 n1 + C2 i2 n2 + C3 i3 n3 + ... + Cn in nn C1 i1 + C2 i2+ C3 i3 + ... + Cn in Montante - é o CAPITAL acrescido dos seus JUROS. M = C(1+ixn) a fórmula requer que a taxa i seja expressa na forma unitária; 62
  • 63. a taxa de juros i e o período de aplicação n devem estar expressos na mesma unidade de tempo; Desconto Simples - quando um título de crédito (letra de cambio, promissória, duplicata) ou uma aplicação financeira é resgatada antes de seu vencimento, o título sofre um ABATIMENTO, que é chamado de Desconto. Valor Nominal: valor que corresponde ao seu valor no dia do seu vencimento. Antes do vencimento, o título pode ser resgatado por um valor menor que o nominal, valor este denominado de valor Atual ou valor de Resgate. Desconto Comercial - também conhecido como Desconto Bancário ou “por fora”, é quando o desconto é calculado sobre o VALOR NOMINAL de um título. - pode ser entendido como sendo o juro simples calculado sobre o valor nominal do título; Dc = N x i x n Onde: Dc = Desconto Comercial N = Valor Nominal i = Taxa de juros n = Período considerado Ex.: Uma promissória de valor nominal de $ 500 foi resgatada 4 meses antes de seu vencimento, à taxa de 8 % a.a.. Qual o valor do Desconto ? N = $ 500 i = 8 % a.a. = 0.08 Dc = N . i . n n = 4 meses = 4/12 Dc = 500 . 0.08 . 4/12 Dc = ? Dc = $ 13,33 Valor Atual - o Valor Atual (ou presente) de um título é aquele efetivamente pago (recebido) por este título, na data de seu resgate, ou seja, o valor atual de um título é igual ao valor nominal menos o desconto. O Valor Atual é obtido pela diferença entre seu valor nominal e o desconto comercial aplicado. Vc = N - Dc 63
  • 64. Ex.: Um título de crédito no valor de $ 2000, com vencimento para 65 dias, é descontado à taxa de 130 % a.a. de desconto simples comercial. Determine o valor de resgate (valor atual) do título. N = $ 2000 Dc = N . i . n = $ 2000 . 1.30 . 65/360 n = 65 dias = 65/360 Dc = $ 469,44 i = 130 a.a. = 1.30 Dc = ? Vc = N – Dc = $ 2000 - $ 469,44 Vc = ? Vc = $ 1.530,56 Desconto Racional  desconto racional ou “por dentro” corresponde ao juro simples calculado o sobre o valor atual (ou presente) do título. Note-se que no caso do desconto comercial, o desconto correspondia aos juros simples calculado sobre o valor nominal do título. Dr = N x i x n (1+ixn) Ex.: Qual o desconto racional de um título com valor de face de $ 270, quitado 2 meses antes de seu vencimento a 3 % a.m. ? N = $ 270 Dr = N . i . n / (1 + i . n) n = 2 meses Dr = $ 270 . 0.03 . 2 / (1 + 0.03 . 2) i = 3 a.m. = 0.03 a.m. Dr = $ 16,20 / 1.06 Dr = ? Dr = $ 15,28 Valor Atual Racional - é determinado pela diferença entre o valor nominal N e o desconto racional Dr Vr = N - Dr EQUIVALÊNCIA DE CAPITAIS Capitais Diferidos quando 2 ou mais capitais (ou títulos de crédito, certificados de empréstimos,etc), forem exigíveis em datas diferentes, estes capitais são denominados DIFERIDOS. 64
  • 65. Capitais Equivalentes  por sua vez, 2 ou mais capitais diferidos serão EQUIVALENTES, em uma certa data se, nesta data, seus valores atuais forem iguais. Equivalência de Capitais p/ Desconto Comercial   Chamando-se de Vc o valor atual do desconto comercial de um título num instante n’ e de V’c o de outro título no instante n’, o valor atual destes títulos pode ser expresso como segue: Vc = N ( 1 – i.n ) e V’c = N’ ( 1 – i . n’ ) Para que os títulos sejam equivalentes, Vc deve ser igual a V’c, então: onde: N’ = N ( 1 – i x n) 1 – i x n’ N’ = Capital Equivalente N = Valor Nominal n = período inicial n’ = período subseqüente i = taxa de juros Ex.: Uma promissória de valor nominal $ 2000, vencível em 2 meses, vai ser substituída por outra, com vencimento para 5 meses. Sabendo-se que estes títulos podem ser descontados à taxa de 2 % a.m., qual o valor de face da nova promissória ? $ 2.000 N’ N’ = ? N = $ 2.000 0 1 2 3 4 5 n’ = 5 meses n = 2 meses I = 2 % a.m. = 0,02 a.m. N’ = N (1 – i . n) / 1 – i . n’ = 2.000 (1 – 0.02 . 2) / (1 – 0.02 . 5) N’ = $ 2.133 65
  • 66. Equivalência de Capitais p/ Desconto Racional   Para se estabelecer a equivalência de capitais diferidos em se tratando de desconto racional, basta lembrar que os valores atuais racionais dos respectivos capitais devem ser iguais numa certa data.  Chamando-se de Vr o valor atual do desconto comercial de um título na data n’ e de N o valor nominal deste título na data n, e de V’r o valor racional atual de outro título na data n’, e de N’ o valor nominal do outro título na data n’, temos: Vr = N / ( 1 + i.n ) e V’r = N’ / ( 1 + i . n’ ) logo: Para que se estabeleça a equivalência de capitais devemos ter Vr = V’r, N’ = N ( 1 + i x n’ ) 1+ixn onde: N’ = Capital Equivalente N = Valor Nominal n = período inicial n’ = período subseqüente i = taxa de juros Ex.: qual o valor do capital disponível em 120 dias, equivalente a $ 600, disponível em 75 dias, ‘a taxa de 80 % a.a. de desconto racional simples ? N $ 600 N’ = ? ] ] ] ] 0 75 120 Vr 75 Vr 120 Vr 75 = ? Vr 120 = ? n = 75 dias n’ = 120 dias i = 80 % a.a. = 0.80 a.a. = 0.80/360 a.d. 66
  • 67. Como Vr 75 = Vr 120, temos  N’ = 600 . ( 1 + 0.80/360 . 120) / (1 + 0.80/360 . 75) N’ = $ 651,28 8.2. JUROS COMPOSTOS Conceito: No regime de Juros Compostos, no fim de cada período de tempo a que se refere a taxa de juros considerada, os juros devidos ao capital inicial são incorporados a este capital. Diz-se que os juros são capitalizados, passando este montante, capital mais juros, a render novos juros no período seguinte. Juros Compostos - são aqueles em que a taxa de juros incide sempre sobre o capital inicial, acrescidos dos juros acumulados até o período anterior Cálculo do Montante - vamos supor o cálculo do montante de um capital de $ 1.000, aplicado à taxa de 10 % a.m., durante 4 meses. CAPITAL (C) Juros ( J ) Montante ( M ) 1º Mês 1.000 100 1.100 2º Mês 1.100 110 1.210 3º Mês 1.210 121 1.331 4º Mês 1.331 133 1.464 Pode-se constatar que a cada novo período de incidência de juros, a expressão (1 + i) é elevada à potência correspondente. Onde: n S = P (1+i) S = Soma dos Montantes P = Principal ou Capital Inicial i = taxa de juros n = nº de períodos considerados a taxa de juros i e o período de aplicação n devem estar expressos na mesma unidade de tempo; 67
  • 68. Ex.: Um investidor quer aplicar a quantia de $ 800 por 3 meses, a uma taxa de 8 % a.m., para retirar no final deste período. Quanto irá retirar ? S=? 0 i = 8 % a.m. $ 800 n=3 Dados: Pede-se: S = ? P = $ 800 n = 3 meses i = 8 % a.m. = 0.08 a.m. 3 (1.08) n S = P (1 + i ) = 800 x (1 + 0.08) 3 = 800 x S = $ 800 x 1.08 x 1.08 x 1.08 S = $ 1.007,79 Valor Atual  Considere-se que se deseja determinar a quantia P que deve ser investida à taxa de juros i para que se tenha o montante S, após n períodos, ou seja, calcular o VALOR ATUAL de S. - Basta aplicarmos a fórmula do Montante, ou Soma dos Montantes, para encontrarmos o valor atual n P = S/(1+i) Onde: S = Soma dos Montantes P = Principal ( VALOR ATUAL ) i = taxa de juros n = nº de períodos considerados Interpolação Linear  é utilizada para o cálculo do valor de ( 1 + i )n , quando o valor de n ou de i não constam da tabela financeira disponível para resolver o problema. a interpolação é muito utilizada quando se trabalha com taxas de juros “quebradas” ou períodos de tempo “quebrados”. Ex.: taxa de juros de 3.7 % a.m. ou 5 meses e 10 dias n Como a tabela não fornece o valor da expressão ( 1 + i ) para números “quebrados”, devemos 68
  • 69. procurar os valores mais próximos, para menos e para mais, e executarmos uma regra de três, deste modo: Ex.: Temos que calcular o montante de um principal de $ 1.000 a uma taxa de juros de 3.7 % a.m., após 10 meses, a juros compostos. n A tabela não fornece o fator ( 1 + i ) correspondente a 3.7 %, mas seu valor aproximado pode ser calculado por interpolação linear de valores fornecidos na tabela. Procuramos, então, as taxas mais próximas de 3.7 %, que são 3 % e 4 %. Na linha correspondente a n 10 períodos (n), obtêm-se os fatores correspondentes a ( 1 + i ) que são, respectivamente, 1.343916 e 1.480244. Procedemos, então, a uma regra de três para encontrarmos o fator referente a 3.7 %: para um acréscimo de 1 % ( 4% - 3% ) temos um acréscimo de 0.136328 (1.480244 – 1.343916); n para 0.7 % de acréscimo na taxa, o fator ( 1 + i ) terá um acréscimo de x. Portanto: 1 % --------------- 0.136328 0.7% ------------- x x = 0.09543 n - Somando-se o valor encontrado (0.09543) ao do fator ( 1 + i ) correspondente à taxa de 3 % (1.343916), teremos o fator (1.439346) correspondente à taxa de 3.7 %. - Voltando à solução do problema, temos: S = 1.000 x 1.439346  S = $ 1.439,34 8.3. TAXAS DE JUROS TAXAS PROPORCIONAIS Na formação do montante, os juros podem ser capitalizados mensalmente, trimestralmente, semestralmente e assim por diante, sendo que, via de regra, quando se refere a período de capitalização, a taxa de juros é anual. Assim, pode-se falar em: juros de 30 % a.a., capitalizados semestralmente; juros de 20 % a.a., capitalizados trimestralmente; juros de 12 % a.a., capitalizados mensalmente; n Quando a taxa for anual, capitalizada em períodos menores, o cálculo de ( 1 + i ) é feito com a 69
  • 70. TAXA PROPORCIONAL. Dessa forma: Para 30 % a.a., capitalizados semestralmente, a taxa semestral proporcional é 15% a.s. 1 ano = 2 semestres  30 % a.a. = 2 x 15 % a.s. Para 20 % a.a., capitalizadas trimestralmente, a taxa trimestral proporcional é 5 % a.t. 1 ano = 4 trimestres  20 % a.a. = 4 x 5 % a.t. Para 12 % a.a., capitalizados mensalmente, a taxa mensal proporcional é 1 % a.m. 1 ano = 12 meses  12 % a.a. = 12 x 1 % a.m. Ex.: Qual o montante do capital equivalente a $ 1.000, no fim de 3 anos, com juros de 16 %, capitalizados trimestralmente ? Dados: P = 1.000 i = 16 % a.a. = 4 % a.t. = 0.04 a.t. n = 3 anos = 12 trimestres n S= P.(1+i) 12 S = 1.000 . ( 1 + 0.04 ) S = 1.000 x (1.601032)  S = $ 1.601,03 TAXAS EQUIVALENTES São taxas diferentes entre si, expressas em períodos de tempo diferentes, mas que levam um capital a um mesmo resultado final ao término de um determinado período de tempo. Duas taxas são EQUIVALENTES quando, referindo-se a períodos de tempo diferentes, fazem com que o capital produza o mesmo montante, num mesmo intervalo de tempo. Temos, então: n C = ( 1 + ie ) , onde: ie = taxa de juros equivalente nk Ck = ( 1 + ik ) , onde: ik = taxa de juros aplicada - Como queremos saber a taxa de juros equivalente (ik), para um mesmo capital, temos: n nk C = Ck  ( 1 + ie ) = ( 1 + ik ) k Então: ie = ( 1 + ik ) - 1 70
  • 71. - Esta fórmula é utilizada para, dada uma taxa menor (ex.: dia, mês, trimestre), obter a taxa maior equivalente (ex.: semestre, ano). Ex.: Qual a taxa anual equivalente a 10 % a.m. ? ik = 10 % a.m. = 0.1 a.m. ie = ? k = 1 ano = 12 meses k 12 ie = ( 1 + ik ) – 1 = (1 + 0.1) - 1 = 2.138428 ie = 2.138428 ou transformando para taxa percentual ie = 213,84 % TAXAS NOMINAL e EFETIVA (ou REAL) No regime de juros simples, as taxas são sempre EFETIVAS. Para melhor compreensão dos conceitos de Taxa Nominal e Taxa Efetiva, no sistema de juros compostos, vamos considerar os seguintes enunciados: 1. Qual o montante de um capital de $ 1.000, colocado no regime de juros compostos à taxa de 10 % a.a., com capitalização anual, durante 2 anos ? Solução: Tal enunciado contém uma redundância, pois em se tratando de uma taxa anual de juros compostos, está implícito que a capitalização (adição de juros ao Capital), é feita ao fim de cada ano, ou seja, é anual. Elaborado visando o aspecto didático, este enunciado objetivou enfatizar que a taxa efetivamente considerada é a de 10 % a.a., ou seja, que a taxa de 10 % é uma TAXA EFETIVA. 2. Qual o montante de um capital de $ 1.000, colocado no regime de juros compostos, à taxa de 10 % a.a., com capitalização semestral, durante 2 anos ? Solução: Este segundo enunciado também apresenta uma incoerência, pois sendo uma taxa anual, os juros só são formados ao fim de cada ano e, portanto, decorridos apenas 1 semestre, não se terão formados ainda nenhum juros e, por conseguinte, não poderá haver capitalização semestral. Portanto, na prática costuma-se associar o conceito de TAXA NOMINAL ao de TAXA PROPORCIONAL Assim, se a taxa de juros por período de capitalização for i e se houver N períodos de capitalização, então a TAXA NOMINAL iN será: IN = N x i 71
  • 72. O conceito de TAXA EFETIVA está associado ao de taxa equivalente. Assim, a taxa efetiva ie pode ser determinada por equivalência, isto é, o principal P, aplicado a uma taxa ie, durante um ano, deve produzir o mesmo montante quando aplicado à taxa i durante n períodos. 1/n i = ( 1 + ie) - 1 Ex.: Vamos supor $ 100 aplicados a 4 % a.m., capitalizados mensalmente, pelo prazo de 1 ano. Qual a taxa nominal e a taxa efetiva. a) Taxa Nominal IN = N x i 12 x 0.04 = 0.48 IN = 48 % a.a. Taxa Nominal b) Taxa Efetiva n P = $ 100 S = P (1 + i) S=? 12 i = 4 % a.m. = 0.04 a.m. S = 100 x ( 1 + 0.04) n = 12 meses S = 100 x 1.60103 S = $ 160,10 Logo, J = 160,10 – 100  J = $ 60,10, que foi produzido por $ 100; então: ie = 60,10 % a.a. A taxa equivalente também poderia ser determinada pela fórmula: 1/n i = ( 1 + ie) - 1 n 12 ie = ( 1 + i) - 1 = (1 + 0.04) – 1 = 1.60103 – 1 = 0.60103 ie = 0.6010 transformando-se para a forma percentual, temos: ie = 60,10 % a.a. 72