O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

03_Matematica Banco do Brasil.pdf

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
1
Banco do Brasil
Escriturário
1 - Números inteiros, racionais e reais; problemas de contagem. ..............................
1
CONJUNTO DOS NÚMEROS INTEIROS – Z
Definimos o conjunto dos números inteiros1
como a reunião do conjunto dos números natu...
2
Operações entre Números Inteiros
Adição de Números Inteiros
Para melhor entendimento desta operação, associaremos aos nú...
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Matematica
Matematica
Carregando em…3
×

Confira estes a seguir

1 de 198 Anúncio
Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a 03_Matematica Banco do Brasil.pdf (20)

Anúncio

Mais recentes (20)

03_Matematica Banco do Brasil.pdf

  1. 1. 1 Banco do Brasil Escriturário 1 - Números inteiros, racionais e reais; problemas de contagem. .......................................1 2 - Sistema legal de medidas. ...........................................................................................33 3 - Razões e proporções; divisão proporcional; regras de três simples e compostas; porcentagens. ........................................................................................................................41 4 - Lógica proposicional. ...................................................................................................77 5 - Noções de conjuntos. ................................................................................................104 6 - Relações e funções; Funções polinomiais; Funções exponenciais e logarítmicas. ....115 7 - Matrizes. ....................................................................................................................148 8 - Determinantes. ..........................................................................................................158 9 - Sistemas lineares. .....................................................................................................173 10 - Sequências. 11 - Progressões aritméticas e progressões geométricas. ...................186 Olá Concurseiro, tudo bem? Sabemos que estudar para concurso público não é tarefa fácil, mas acreditamos na sua dedicação e por isso elaboramos nossa apostila com todo cuidado e nos exatos termos do edital, para que você não estude assuntos desnecessários e nem perca tempo buscando conteúdos faltantes. Somando sua dedicação aos nossos cuidados, esperamos que você tenha uma ótima experiência de estudo e que consiga a tão almejada aprovação. Pensando em auxiliar seus estudos e aprimorar nosso material, disponibilizamos o e-mail professores@maxieduca.com.br para que possa mandar suas dúvidas, sugestões ou questionamentos sobre o conteúdo da apostila. Todos e-mails que chegam até nós, passam por uma triagem e são direcionados aos tutores da matéria em questão. Para o maior aproveitamento do Sistema de Atendimento ao Concurseiro (SAC) liste os seguintes itens: 01. Apostila (concurso e cargo); 02. Disciplina (matéria); 03. Número da página onde se encontra a dúvida; e 04. Qual a dúvida. Caso existam dúvidas em disciplinas diferentes, por favor, encaminhar em e-mails separados, pois facilita e agiliza o processo de envio para o tutor responsável, lembrando que teremos até cinco dias úteis para respondê-lo (a). Não esqueça de mandar um feedback e nos contar quando for aprovado! Bons estudos e conte sempre conosco! 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  2. 2. 1 CONJUNTO DOS NÚMEROS INTEIROS – Z Definimos o conjunto dos números inteiros1 como a reunião do conjunto dos números naturais N = {0, 1, 2, 3, 4,..., n,...}, o conjunto dos opostos dos números naturais e o zero. Este conjunto é denotado pela letra Z (Zahlen = número em alemão). O conjunto dos números inteiros possui alguns subconjuntos notáveis: Atenção: A nomenclatura utilizada abaixo pode interferir diretamente no contexto de uma questão, tome muito cuidado ao interpreta-los, pois são todos diferentes (Z+ , Z_ , Z*). - O conjunto dos números inteiros não nulos: Z* = {..., -4, -3, -2, -1, 1, 2, 3, 4,...} Z* = Z – {0} - O conjunto dos números inteiros não negativos: Z+ = {0, 1, 2, 3, 4,...} Z+ é o próprio conjunto dos números naturais: Z+ = N - O conjunto dos números inteiros positivos: Z*+ = {1, 2, 3, 4,...} - O conjunto dos números inteiros não positivos: Z_ = {..., -5, -4, -3, -2, -1, 0} - O conjunto dos números inteiros negativos: Z*- = {..., -5, -4, -3, -2, -1} Módulo: chama-se módulo de um número inteiro a distância ou afastamento desse número até o zero, na reta numérica inteira. Representa-se o módulo por | |. O módulo de 0 é 0 e indica-se |0| = 0 O módulo de +7 é 7 e indica-se |+7| = 7 O módulo de –9 é 9 e indica-se |–9| = 9 O módulo de qualquer número inteiro, diferente de zero, é sempre positivo. Números Opostos: Dois números inteiros são ditos opostos um do outro quando apresentam soma zero; assim, os pontos que os representam distam igualmente da origem. Exemplo: O oposto do número 3 é -3, e o oposto de -3 é 3, pois 3 + (-3) = (-3) + 3 = 0 No geral, dizemos que o oposto, ou simétrico, de a é – a, e vice-versa; particularmente o oposto de zero é o próprio zero. 1 IEZZI, Gelson – Matemática - Volume Único IEZZI, Gelson - Fundamentos da Matemática – Volume 01 – Conjuntos e Funções 1 - Números inteiros, racionais e reais; problemas de contagem. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  3. 3. 2 Operações entre Números Inteiros Adição de Números Inteiros Para melhor entendimento desta operação, associaremos aos números inteiros positivos a ideia de ganhar e aos números inteiros negativos a ideia de perder. Ganhar 5 + ganhar 3 = ganhar 8 (+ 5) + (+ 3) = (+8) Perder 3 + perder 4 = perder 7 (- 3) + (- 4) = (- 7) Ganhar 8 + perder 5 = ganhar 3 (+ 8) + (- 5) = (+ 3) Perder 8 + ganhar 5 = perder 3 (- 8) + (+ 5) = (- 3) O sinal (+) antes do número positivo pode ser dispensado, mas o sinal (–) antes do número negativo nunca pode ser dispensado. Subtração de Números Inteiros A subtração é empregada quando: - Precisamos tirar uma quantidade de outra quantidade; - Temos duas quantidades e queremos saber quanto uma delas tem a mais que a outra; - Temos duas quantidades e queremos saber quanto falta a uma delas para atingir a outra. A subtração é a operação inversa da adição. Observe que em uma subtração o sinal do resultado é sempre do maior número!!! 4 + 5 = 9 4 – 5 = -1 Considere as seguintes situações: 1 - Na segunda-feira, a temperatura de Monte Sião passou de +3 graus para +6 graus. Qual foi a variação da temperatura? Esse fato pode ser representado pela subtração: (+6) – (+3) = +3 2 - Na terça-feira, a temperatura de Monte Sião, durante o dia, era de +6 graus. À Noite, a temperatura baixou de 3 graus. Qual a temperatura registrada na noite de terça-feira? Esse fato pode ser representado pela adição: (+6) + (–3) = +3 Se compararmos as duas igualdades, verificamos que (+6) – (+3) é o mesmo que (+6) + (–3). Temos: (+6) – (+3) = (+6) + (–3) = +3 (+3) – (+6) = (+3) + (–6) = –3 (–6) – (–3) = (–6) + (+3) = –3 Daí podemos afirmar: Subtrair dois números inteiros é o mesmo que adicionar o primeiro com o oposto do segundo. Fique Atento: todos parênteses, colchetes, chaves, números, ..., entre outros, precedidos de sinal negativo, tem o seu sinal invertido, ou seja, é dado o seu oposto. Ex.: 10 – (10+5) = 10 – (+15) = 10 – 15 = - 5 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  4. 4. 3 Multiplicação de Números Inteiros A multiplicação funciona como uma forma simplificada de uma adição quando os números são repetidos. Poderíamos analisar tal situação como o fato de estarmos ganhando repetidamente alguma quantidade, como por exemplo, ganhar 1 objeto por 30 vezes consecutivas, significa ganhar 30 objetos e esta repetição pode ser indicada por um x, isto é: 1 + 1 + 1 ... + 1 + 1 = 30 x 1 = 30 Se trocarmos o número 1 pelo número 2, obteremos: 2 + 2 + 2 + ... + 2 + 2 = 30 x 2 = 60 Se trocarmos o número 2 pelo número -2, obteremos: (–2) + (–2) + ... + (–2) = 30 x (-2) = –60 Na multiplicação o produto dos números a e b, pode ser indicado por a x b, a . b ou ainda ab sem nenhum sinal entre as letras. Divisão de Números Inteiros - Divisão exata de números inteiros. Veja o cálculo: (– 20) : (+ 5) = q  (+ 5) . q = (– 20)  q = (– 4) Logo (– 20) : (+ 5) = - 4 Considerando os exemplos dados, concluímos que, para efetuar a divisão exata de um número inteiro por outro número inteiro, diferente de zero, dividimos o módulo do dividendo pelo módulo do divisor. Exemplo: (+7) : (–2) ou (–19) : (–5) são divisões que não podem ser realizadas em Z, pois o resultado não é um número inteiro. - No conjunto Z, a divisão não é comutativa, não é associativa e não tem a propriedade da existência do elemento neutro. - Não existe divisão por zero. - Zero dividido por qualquer número inteiro, diferente de zero, é zero, pois o produto de qualquer número inteiro por zero é igual a zero. Exemplo: 0 : (–10) = 0 b) 0 : (+6) = 0 c) 0 : (–1) = 0 Regra de Sinais da Multiplicação e Divisão → Sinais iguais (+) (+); (-) (-) = resultado sempre positivo. → Sinais diferentes (+) (-); (-) (+) = resultado sempre negativo. Potenciação de Números Inteiros A potência xn do número inteiro a, é definida como um produto de n fatores iguais. O número x é denominado a base e o número n é o expoente. xn = x . x . x . x ... x, x é multiplicado por x, n vezes. Exemplos: 33 = (3) x (3) x (3) = 27 (-5)5 = (-5) x (-5) x (-5) x (-5) x (-5) = -3125 (-7)² = (-7) x (-7) = 49 (+9)² = (+9) x (+9) = 81 - Toda potência de base positiva é um número inteiro positivo. Exemplo: (+3)2 = (+3) . (+3) = +9 - Toda potência de base negativa e expoente par é um número inteiro positivo. Exemplo: (–8)2 = (–8) . (–8) = +64 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  5. 5. 4 - Toda potência de base negativa e expoente ímpar é um número inteiro negativo. Exemplo: (–5)3 = (–5) . (–5) . (–5) = –125 - Propriedades da Potenciação: 1) Produtos de Potências com bases iguais: Conserva-se a base e somam-se os expoentes. (–7)3 . (–7)6 = (–7)3+6 = (–7)9 2) Quocientes de Potências com bases iguais: Conserva-se a base e subtraem-se os expoentes. (-13)8 : (-13)6 = (-13)8 – 6 = (-13)2 3) Potência de Potência: Conserva-se a base e multiplicam-se os expoentes. [(-8)5 ]2 = (-8)5 . 2 = (-8)10 4) Potência de expoente 1: É sempre igual à base. (-8)1 = -8 e (+70)1 = +70 5) Potência de expoente zero e base diferente de zero: É igual a 1. (+3)0 = 1 e (–53)0 = 1 Radiciação de Números Inteiros A raiz n-ésima (de ordem n) de um número inteiro x é a operação que resulta em outro número inteiro não negativo b que elevado à potência n fornece o número x. O número n é o índice da raiz enquanto que o número x é o radicando (que fica sob o sinal do radical). √𝑥 𝑛 = b bn = x A raiz quadrada (de ordem 2) de um número inteiro x é a operação que resulta em outro número inteiro não negativo que elevado ao quadrado coincide com o número x. Atenção: Não existe a raiz quadrada de um número inteiro negativo no conjunto dos números inteiros. Erro comum: Frequentemente lemos em materiais didáticos e até mesmo ocorre em algumas aulas aparecimento de: 9 = ± 3, mas isto está errado. O certo é: 9 = +3 Observamos que não existe um número inteiro não negativo que multiplicado por ele mesmo resulte em um número negativo. A raiz cúbica (de ordem 3) de um número inteiro x é a operação que resulta em outro número inteiro que elevado ao cubo seja igual ao número x. Aqui não restringimos os nossos cálculos somente aos números não negativos. Exemplos: (a) 3 8 = 2, pois 2³ = 8 (b) 3 8  = –2, pois (–2)³ = -8 (c) 3 27 = 3, pois 3³ = 27 (d) 3 27  = –3, pois (–3)³ = -27 Observação: Ao obedecer à regra dos sinais para o produto de números inteiros, concluímos que: (1) Se o índice da raiz for par, não existe raiz de número inteiro negativo. (2) Se o índice da raiz for ímpar, é possível extrair a raiz de qualquer número inteiro. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  6. 6. 5 Propriedades da Adição e da Multiplicação dos números Inteiros Para todo a, b e c ∈ 𝑍 1) Associativa da adição: (a + b) + c = a + (b + c) 2) Comutativa da adição: a + b = b + a 3) Elemento neutro da adição: a + 0 = a 4) Elemento oposto da adição: a + (-a) = 0 5) Associativa da multiplicação: (a.b).c = a.(b.c) 6) Comutativa da multiplicação: a.b = b.a 7) Elemento neutro da multiplicação: a.1 = a 8) Distributiva da multiplicação relativamente à adição: a.(b + c) = ab + ac 9) Distributiva da multiplicação relativamente à subtração: a.(b – c) = ab – ac Atenção: tanto a adição como a multiplicação de um número natural por outro número natural, continua como resultado um número natural. Questões 01. (Fundação Casa – Agente Educacional – VUNESP) Para zelar pelos jovens internados e orientá- los a respeito do uso adequado dos materiais em geral e dos recursos utilizados em atividades educativas, bem como da preservação predial, realizou-se uma dinâmica elencando “atitudes positivas” e “atitudes negativas”, no entendimento dos elementos do grupo. Solicitou-se que cada um classificasse suas atitudes como positiva ou negativa, atribuindo (+4) pontos a cada atitude positiva e (-1) a cada atitude negativa. Se um jovem classificou como positiva apenas 20 das 50 atitudes anotadas, o total de pontos atribuídos foi (A) 50. (B) 45. (C) 42. (D) 36. (E) 32. 02. (UEM/PR – Auxiliar Operacional – UEM) Ruth tem somente R$ 2.200,00 e deseja gastar a maior quantidade possível, sem ficar devendo na loja. Verificou o preço de alguns produtos: TV: R$ 562,00 DVD: R$ 399,00 Micro-ondas: R$ 429,00 Geladeira: R$ 1.213,00 Na aquisição dos produtos, conforme as condições mencionadas, e pagando a compra em dinheiro, o troco recebido será de: (A) R$ 84,00 (B) R$ 74,00 (C) R$ 36,00 (D) R$ 26,00 (E) R$ 16,00 03. (BNDES – Técnico Administrativo – CESGRANRIO) Multiplicando-se o maior número inteiro menor do que 8 pelo menor número inteiro maior do que - 8, o resultado encontrado será (A) - 72 (B) - 63 (C) - 56 (D) - 49 (E) – 42 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  7. 7. 6 04. (Polícia Militar/MG - Assistente Administrativo - FCC) Em um jogo de tabuleiro, Carla e Mateus obtiveram os seguintes resultados: Ao término dessas quatro partidas, (A) Carla perdeu por uma diferença de 150 pontos. (B) Mateus perdeu por uma diferença de 175 pontos. (C) Mateus ganhou por uma diferença de 125 pontos. (D) Carla e Mateus empataram. 05. (Pref. de Palmas/TO – Técnico Administrativo Educacional – COPESE/UFT) Num determinado estacionamento da cidade de Palmas há vagas para carros e motos. Durante uma ronda dos agentes de trânsito, foi observado que o número total de rodas nesse estacionamento era de 124 (desconsiderando os estepes dos veículos). Sabendo que haviam 12 motos no estacionamento naquele momento, é CORRETO afirmar que estavam estacionados: (A) 19 carros (B) 25 carros (C) 38 carros (D) 50 carros 06. (Casa da Moeda) O quadro abaixo indica o número de passageiros num voo entre Curitiba e Belém, com duas escalas, uma no Rio de Janeiro e outra em Brasília. Os números positivos indicam a quantidade de passageiros que subiram no avião e os negativos, a quantidade dos que desceram em cada cidade. O número de passageiros que chegou a Belém foi: (A) 362 (B) 280 (C) 240 (D) 190 (E) 135 07. (Pref.de Niterói/RJ) As variações de temperatura nos desertos são extremas. Supondo que durantes o dia a temperatura seja de 45ºC e à noite seja de -10ºC, a diferença de temperatura entre o dia e noite, em ºC será de: (A) 10 (B) 35 (C) 45 (D) 50 (E) 55 08. (Pref.de Niterói/RJ) Um trabalhador deseja economizar para adquirir a vista uma televisão que custa R$ 420,00. Sabendo que o mesmo consegue economizar R$ 35,00 por mês, o número de meses que ele levará para adquirir a televisão será: (A) 6 (B) 8 (C) 10 (D) 12 (E) 15 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  8. 8. 7 09. (Pref.de Niterói/RJ) Um estudante empilhou seus livros, obtendo uma única pilha 52cm de altura. Sabendo que 8 desses livros possui uma espessura de 2cm, e que os livros restantes possuem espessura de 3cm, o número de livros na pilha é: (A) 10 (B) 15 (C) 18 (D) 20 (E) 22 10. (FINEP – Assistente Administrativo – CESGRANRIO) Um menino estava parado no oitavo degrau de uma escada, contado a partir de sua base (parte mais baixa da escada). A escada tinha 25 degraus. O menino subiu mais 13 degraus. Logo em seguida, desceu 15 degraus e parou novamente. A quantos degraus do topo da escada ele parou? (A) 8 (B) 10 (C) 11 (D) 15 (E) 19 Comentários 01. Resposta: A 50-20=30 atitudes negativas 20.4=80 30.(-1)=-30 80-30=50 02. Resposta: D Geladeira + Micro-ondas + DVD = 1213 + 429 + 399 = 2041 Geladeira + Micro-ondas + TV = 1213 + 429 + 562 = 2204, extrapola o orçamento Geladeira + TV + DVD = 1213 + 562 + 399 = 2174, é a maior quantidade gasta possível dentro do orçamento. Troco:2200 – 2174 = 26 reais 03. Resposta: D Maior inteiro menor que 8 é o 7 Menor inteiro maior que - 8 é o - 7. Portanto: 7(- 7) = - 49 04. Resposta: C Carla: 520 – 220 – 485 + 635 = 450 pontos Mateus: - 280 + 675 + 295 – 115 = 575 pontos Diferença: 575 – 450 = 125 pontos 05. Resposta: B Moto: 2 rodas Carro: 4 12.2=24 124-24=100 100/4=25 carros 06. Resposta: D 240 - 194 + 158 - 108 + 94 = 190 07. Resposta: E 45 – (- 10) = 55 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  9. 9. 8 08. Resposta: D 420: 35 = 12 meses 09. Resposta: D São 8 livros de 2 cm: 8.2 = 16 cm Como eu tenho 52 cm ao todo e os demais livros tem 3 cm, temos: 52 - 16 = 36 cm de altura de livros de 3 cm 36 : 3 = 12 livros de 3 cm O total de livros da pilha: 8 + 12 = 20 livros ao todo. 10. Resposta: E 8 + 13 = 21 21– 15 = 6 25 – 6 = 19 CONJUNTO DOS NÚMEROS RACIONAIS – Q Um número racional2 é o que pode ser escrito na forma n m , onde m e n são números inteiros, sendo que n deve ser diferente de zero. Frequentemente utilizamos m/n para significar a divisão de m por n. Como podemos observar, números racionais podem ser obtidos através da razão entre dois números inteiros, razão pela qual, o conjunto de todos os números racionais é denotado por Q. Assim, é comum encontrarmos na literatura a notação: Q = { n m : m e n em Z, n diferente de zero} No conjunto Q destacamos os seguintes subconjuntos: Atenção: A nomenclatura utilizada abaixo pode interferir diretamente no contexto de uma questão, tome muito cuidado ao interpreta-los, pois são todos diferentes (Q+ , Q_ , Q*). - Q* = conjunto dos racionais não nulos; - Q+ = conjunto dos racionais não negativos; - Q*+ = conjunto dos racionais positivos; - Q _ = conjunto dos racionais não positivos; - Q*_ = conjunto dos racionais negativos. Representação Decimal das Frações Tomemos um número racional q p , tal que p não seja múltiplo de q. Para escrevê-lo na forma decimal, basta efetuar a divisão do numerador pelo denominador. Nessa divisão podem ocorrer dois casos: 1º - O numeral decimal obtido possui, após a vírgula, um número finito de algarismos. Decimais Exatos: 2 IEZZI, Gelson - Matemática- Volume Único IEZZI, Gelson - Fundamentos da Matemática – Volume 1 – Conjuntos e Funções http://mat.ufrgs.br 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  10. 10. 9 2º - O numeral decimal obtido possui, após a vírgula, infinitos algarismos (nem todos nulos), repetindo- se periodicamente Decimais Periódicos ou Dízimas Periódicas: Existem frações muito simples que são representadas por formas decimais infinitas, com uma característica especial: Aproveitando o exemplo acima temos 0,333... = 3. 1/101 + 3 . 1/102 + 3 . 1/103 + 3 . 1/104 ... Representação Fracionária dos Números Decimais Trata-se do problema inverso, estando o número racional escrito na forma decimal, procuremos escrevê-lo na forma de fração. Temos dois casos: 1º Transformamos o número em uma fração cujo numerador é o número decimal sem a vírgula e o denominador é composto pelo numeral 1, seguido de tantos zeros quantas forem as casas decimais do número decimal dado: 2º Devemos achar a fração geratriz da dízima dada; para tanto, vamos apresentar o procedimento através de alguns exemplos: a) Seja a dízima 0, 333... Veja que o período que se repete é apenas 1(formado pelo 3)  então vamos colocar um 9 no denominador e repetir no numerador o período. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  11. 11. 10 Assim, a geratriz de 0,333... é a fração 9 3 . b) Seja a dízima 5, 1717... O período que se repete é o 17, logo dois noves no denominador (99). Observe também que o 5 é a parte inteira, logo ele vem na frente: 5 17 99 → 𝑡𝑒𝑚𝑜𝑠 𝑢𝑚𝑎 𝑓𝑟𝑎çã𝑜 𝑚𝑖𝑠𝑡𝑎, 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑑𝑜 → (5.99 + 17) = 512, 𝑙𝑜𝑔𝑜 ∶ 512 99 Assim, a geratriz de 5,1717... é a fração 99 512 . Neste caso para transformarmos uma dízima periódica simples em fração, basta utilizarmos o dígito 9 no denominador de acordo com a quantidade de dígitos que tiver o período da dízima. c) Seja a dízima 1, 23434... O número 234 é a junção do anteperíodo com o período. Neste caso dizemos que a dízima periódica é composta, pois existe uma parte que não se repete e outra que se repete. Temos então um anteperíodo (2) e o período (34). Ao subtrairmos deste número o anteperíodo (234-2), obtemos 232 no qual será o numerador. O denominador é formado por tantos dígitos 9 – que correspondem ao período, neste caso 99 (dois noves) – e pelo dígito 0 – que correspondem a tantos dígitos tiverem o anteperíodo, neste caso 0 (um zero). 1 232 990 → 𝑡𝑒𝑚𝑜𝑠 𝑢𝑚𝑎 𝑓𝑟𝑎çã𝑜 𝑚𝑖𝑠𝑡𝑎, 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑑𝑜 − 𝑎 → (1.990 + 232) = 1222, 𝑙𝑜𝑔𝑜 ∶ 1222 990 Simplificando por 2, obtemos x = 495 611 , que será a fração geratriz da dízima 1, 23434... Módulo ou valor absoluto: É a distância do ponto que representa esse número ao ponto de abscissa zero. Exemplos: 1) Módulo de – 2 3 é 2 3 . Indica-se 2 3  = 2 3 2) Módulo de + 2 3 é 2 3 . Indica-se 2 3  = 2 3 Números Opostos: Dizemos que – 2 3 e 2 3 são números racionais opostos ou simétricos e cada um deles é o oposto do outro. As distâncias dos pontos – 2 3 e 2 3 ao ponto zero da reta são iguais. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  12. 12. 11 Inverso de um Número Racional ( 𝒂 𝒃 ) −𝒏 , 𝒂 ≠ 𝟎 = ( 𝒃 𝒂 ) 𝒏 , 𝒃 ≠ 𝟎 Representação geométrica dos Números Racionais Observa-se que entre dois inteiros consecutivos existem infinitos números racionais. Soma (Adição) de Números Racionais Como todo número racional é uma fração ou pode ser escrito na forma de uma fração, definimos a adição entre os números racionais b a e d c , da mesma forma que a soma de frações, através de: Subtração de Números Racionais A subtração de dois números racionais p e q é a própria operação de adição do número p com o oposto de q, isto é: p – q = p + (–q), onde p = b a e q = d c . Multiplicação (Produto) de Números Racionais Como todo número racional é uma fração ou pode ser escrito na forma de uma fração, definimos o produto de dois números racionais b a e d c , da mesma forma que o produto de frações, através de: Para realizar a multiplicação de números racionais, devemos obedecer à mesma regra de sinais que vale em toda a Matemática: Podemos assim concluir que o produto de dois números com o mesmo sinal é positivo, mas o produto de dois números com sinais diferentes é negativo. Divisão (Quociente) de Números Racionais A divisão de dois números racionais p e q é a própria operação de multiplicação do número p pelo inverso de q, isto é: p ÷ q = p × q-1 𝒂 𝒃 : 𝒄 𝒅 = 𝒂 𝒃 . 𝒅 𝒄 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  13. 13. 12 Potenciação de Números Racionais A potência qn do número racional q é um produto de n fatores iguais. O número q é denominado a base e o número n é o expoente. qn = q × q × q × q × ... × q, (q aparece n vezes) Exemplos: Propriedades da Potenciação: 1) Toda potência com expoente 0 é igual a 1. 2) Toda potência com expoente 1 é igual à própria base. 3) Toda potência com expoente negativo de um número racional diferente de zero é igual a outra potência que tem a base igual ao inverso da base anterior e o expoente igual ao oposto do expoente anterior. 4) Toda potência com expoente ímpar tem o mesmo sinal da base. 5) Toda potência com expoente par é um número positivo. 6) Produto de potências de mesma base. Para reduzir um produto de potências de mesma base a uma só potência, conservamos a base e somamos os expoentes. 7) Divisão de potências de mesma base. Para reduzir uma divisão de potências de mesma base a uma só potência, conservamos a base e subtraímos os expoentes. 8) Potência de Potência. Para reduzir uma potência de potência a uma potência de um só expoente, conservamos a base e multiplicamos os expoentes. Radiciação de Números Racionais Se um número representa um produto de dois ou mais fatores iguais, então cada fator é chamado raiz do número. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  14. 14. 13 Exemplos: 1) 9 1 Representa o produto 3 1 . 3 1 ou 2 3 1       .Logo, 3 1 é a raiz quadrada de 9 1 . Indica-se 9 1 = 3 1 2) 0,216 Representa o produto 0,6 . 0,6 . 0,6 ou (0,6)3 . Logo, 0,6 é a raiz cúbica de 0,216. Indica-se 3 216 , 0 = 0,6. Um número racional, quando elevado ao quadrado, dá o número zero ou um número racional positivo. Logo, os números racionais negativos não têm raiz quadrada no conjunto dos números racionais. Por exemplo, o número 9 100  não tem raiz quadrada em Q, pois tanto 3 10  como 3 10  , quando elevados ao quadrado, dão 9 100 . Já um número racional positivo, só tem raiz quadrada no conjunto dos números racionais se ele for um quadrado perfeito. E o número 3 2 não tem raiz quadrada em Q, pois não existe número racional que elevado ao quadrado dê 3 2 . Questões 01. (Pref. Jundiaí/SP– Agente de Serviços Operacionais – MAKIYAMA) Na escola onde estudo, ¼ dos alunos tem a língua portuguesa como disciplina favorita, 9/20 têm a matemática como favorita e os demais têm ciências como favorita. Sendo assim, qual fração representa os alunos que têm ciências como disciplina favorita? (A) 1/4 (B) 3/10 (C) 2/9 (D) 4/5 (E) 3/2 02. (Fundação CASA – Agente de Apoio Operacional – VUNESP) De um total de 180 candidatos, 2/5 estudam inglês, 2/9 estudam francês, 1/3 estuda espanhol e o restante estuda alemão. O número de candidatos que estuda alemão é: (A) 6. (B) 7. (C) 8. (D) 9. (E) 10. 03. (Fundação CASA – Agente de Apoio Operacional – VUNESP) Em um estado do Sudeste, um Agente de Apoio Operacional tem um salário mensal de: salário-base R$ 617,16 e uma gratificação de R$ 185,15. No mês passado, ele fez 8 horas extras a R$ 8,50 cada hora, mas precisou faltar um dia e foi descontado em R$ 28,40. No mês passado, seu salário totalizou (A) R$ 810,81. (B) R$ 821,31. (C) R$ 838,51. (D) R$ 841,91. (E) R$ 870,31. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  15. 15. 14 04. (Pref. Niterói) Simplificando a expressão abaixo: 1,3333…+ 3 2 1,5+ 4 3 Obtém-se (A) ½. (B) 1. (C) 3/2. (D) 2. (E) 3. 05. (SABESP – Aprendiz – FCC) Em um jogo matemático, cada jogador tem direito a 5 cartões marcados com um número, sendo que todos os jogadores recebem os mesmos números. Após todos os jogadores receberem seus cartões, aleatoriamente, realizam uma determinada tarefa que também é sorteada. Vence o jogo quem cumprir a tarefa corretamente. Em uma rodada em que a tarefa era colocar os números marcados nos cartões em ordem crescente, venceu o jogador que apresentou a sequência (A) −4; −1; √16; √25; 14 3 (B) −1; −4; √16; 14 3 ; √25 (C) −1; −4; 14 3 ; √16; √25 (D) −4; −1; √16; 14 3 ; √25 (E)−4; −1; 14 3 ; √16; √25 06. (SABESP – Agente de Saneamento Ambiental – FCC) Somando-se certo número positivo x ao numerador, e subtraindo-se o mesmo número x do denominador da fração 2/3 obtém-se como resultado, o número 5. Sendo assim, x é igual a (A) 52/25. (B) 13/6. (C) 7/3. (D) 5/2. (E) 47/23. 07. (SABESP – Aprendiz – FCC) Mariana abriu seu cofrinho com 120 moedas e separou-as: − 1 real: ¼ das moedas − 50 centavos: 1/3 das moedas − 25 centavos: 2/5 das moedas − 10 centavos: as restantes Mariana totalizou a quantia contida no cofre em (A) R$ 62,20. (B) R$ 52,20. (C) R$ 50,20. (D) R$ 56,20. (E) R$ 66,20. 08. (PM/SE – Soldado 3ªclasse – FUNCAB) Numa operação policial de rotina, que abordou 800 pessoas, verificou-se que 3/4 dessas pessoas eram homens e 1/5 deles foram detidos. Já entre as mulheres abordadas, 1/8 foram detidas. Qual o total de pessoas detidas nessa operação policial? (A) 145 (B) 185 (C) 220 (D) 260 (E) 120 09. (Pref. Jundiaí/SP – Agente de Serviços Operacionais – MAKIYAMA) Quando perguntado sobre qual era a sua idade, o professor de matemática respondeu: “O produto das frações 9/5 e 75/3 fornece a minha idade!”. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  16. 16. 15 Sendo assim, podemos afirmar que o professor tem: (A) 40 anos. (B) 35 anos. (C) 45 anos. (D) 30 anos. (E) 42 anos. Comentários 01. Alternativa: B. Somando português e matemática: 1 4 + 9 20 = 5 + 9 20 = 14 20 = 7 10 O que resta gosta de ciências: 1 − 7 10 = 3 10 02. Alternativa: C. 2 5 + 2 9 + 1 3 Mmc(3,5,9)=45 18+10+15 45 = 43 45 O restante estuda alemão: 2/45 180 ∙ 2 45 = 8 03. Alternativa: D. 𝑠𝑎𝑙á𝑟𝑖𝑜 𝑚𝑒𝑛𝑠𝑎𝑙: 617,16 + 185,15 = 802,31 ℎ𝑜𝑟𝑎𝑠 𝑒𝑥𝑡𝑟𝑎𝑠: 8,5 ∙ 8 = 68 𝑚ê𝑠 𝑝𝑎𝑠𝑠𝑎𝑑𝑜: 802,31 + 68,00 − 28,40 = 841,91 Salário foi R$ 841,91. 04. Alternativa: B. 1,3333...= 12/9 = 4/3 1,5 = 15/10 = 3/2 4 3 + 3 2 3 2 + 4 3 = 17 6 17 6 = 1 05. Alternativa: D. √16 = 4 √25 = 5 14 3 = 4,67 A ordem crescente é: −4; −1; √16; 14 3 ; √25 06. Alternativa: B. Lá vem o tal do “x” né, mas analise o seguinte, temos a fração 2 3 , aí ele disse o seguinte: Somando-se certo número positivo x ao numerador, e subtraindo-se o mesmo número x do denominador da fração, logo devemos somar “x” no 2 e subtrair “x” de 3, ficando: 2 + x 3 − x Isso é igual a 5, assim teremos formada nossa equação com números racionais! 2+x 3−x = 5, para resolver devemos multiplicar em cruz (como não tem ninguém no denominador do 5, devemos colocar o 1). 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  17. 17. 16 1.(2 + x) = 5.(3 – x) Aplicando a propriedade distributiva: 2 + x = 15 – 5x Letra para um lado e número para o outro, não esquecendo que quando troca de lado inverte o número. x + 5x = 15 – 2 6x = 13 x = 13 6 Portanto a alternativa correta é a “B”. 07. Alternativa: A. 1 𝑟𝑒𝑎𝑙: 120 ∙ 1 4 = 30 𝑚𝑜𝑒𝑑𝑎𝑠 50 𝑐𝑒𝑛𝑡𝑎𝑣𝑜𝑠: 1 3 ∙ 120 = 40 𝑚𝑜𝑒𝑑𝑎𝑠 25 𝑐𝑒𝑛𝑡𝑎𝑣𝑜𝑠: 2 5 ∙ 120 = 48 𝑚𝑜𝑒𝑑𝑎𝑠 10 𝑐𝑒𝑛𝑡𝑎𝑣𝑜𝑠: 120 − 118 𝑚𝑜𝑒𝑑𝑎𝑠 = 2 𝑚𝑜𝑒𝑑𝑎𝑠 30 + 40 ∙ 0,5 + 48 ∙ 0,25 + 2 ∙ 0,10 = 62,20 Mariana totalizou R$ 62,20. 08. Alternativa: A. Este problema é clássico na utilização de frações, primeiro vamos calcular a quantidade de homens e mulheres abordadas: Total: 800 Homens: 3 4 sendo assim devemos encontrar 3 4 𝑑𝑒 800 = 3𝑥800 = 2400, 𝑒 2400 ∶ 4 = 600 Se temos 600 homens, significa que 200 são as mulheres, pois o total é 800, agora vamos calcular os detidos! Homens detidos: 1 5 de 600, logo 600 x 1 = 600 e 600 : 5 = 120, portanto 120 homens detidos. Mulheres detidas: 1 8 de 200, logo 200 x 1 = 200 e 200 : 8 = 25, portanto 25 mulheres detidas. O enunciado pede o total de pessoas detidas nessa operação policial, logo 120 + 25 = 145, o que nos remete a alternativa “A”. 09. Alternativa: C. 9 5 ∙ 75 3 = 675 15 = 45 𝑎𝑛𝑜𝑠 CONJUNTO DOS NÚMEROS REAIS - R O conjunto dos números reais3 R é uma expansão do conjunto dos números racionais que engloba não só os inteiros e os fracionários, positivos e negativos, mas também todos os números irracionais. Assim temos: R = Q U I , sendo Q ∩ I = Ø ( Se um número real é racional, não será irracional, e vice-versa). Lembrando que N Ϲ Z Ϲ Q , podemos construir o diagrama abaixo: 3 IEZZI, Gelson – Matemática - Volume Único IEZZI, Gelson - Fundamentos da Matemática Elementar – Vol. 01 – Conjuntos e Funções 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  18. 18. 17 O conjunto dos números reais apresenta outros subconjuntos importantes: - Conjunto dos números reais não nulos: R* = {x ϵ R| x ≠ 0} - Conjunto dos números reais não negativos: R+ = {x ϵ R| x ≥ 0} - Conjunto dos números reais positivos: R*+ = {x ϵ R| x > 0} - Conjunto dos números reais não positivos: R- = {x ϵ R| x ≤ 0} - Conjunto dos números reais negativos: R*- = {x ϵ R| x < 0} Representação Geométrica dos números reais Ordenação dos números reais A representação dos números reais permite definir uma relação de ordem entre eles. Os números reais positivos, são maiores que zero e os negativos, menores que zero. Expressamos a relação de ordem da seguinte maneira: Dados dois números Reais a e b, a ≤ b ↔ b – a ≥ 0 Exemplo: -15 ≤ 5 ↔ 5 - ( - 15) ≥ 0 5 + 15 ≥ 0 Intervalos reais O conjunto dos números reais possui também subconjuntos, denominados intervalos, que são determinados por meio de desiguladades. Sejam os números a e b , com a < b. Em termos gerais temos: - A bolinha aberta = a intervalo aberto (estamos excluindo aquele número), utilizamos os símbolos: > ;< ou ] ; [ - A bolinha fechada = a intervalo fechado (estamos incluindo aquele número), utilizamos os símbolos: ≥ ; ≤ ou [ ; ] Podemos utilizar ( ) no lugar dos [ ] , para indicar as extremidades abertas dos intervalos. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  19. 19. 18 Às vezes, aparecem situações em que é necessário registrar numericamente variações de valores em sentidos opostos, ou seja, maiores ou acima de zero (positivos), como as medidas de temperatura ou reais em débito, em haver e etc. Esses números, que se estendem indefinidamente, tanto para o lado direito (positivos) como para o lado esquerdo (negativos), são chamados números relativos. Valor absoluto de um número relativo é o valor do número que faz parte de sua representação, sem o sinal. Valor simétrico de um número é o mesmo numeral, diferindo apenas o sinal. Operações com números relativos 1) Adição e subtração de números relativos a) Se os numerais possuem o mesmo sinal, basta adicionar os valores absolutos e conservar o sinal. b) Se os numerais possuem sinais diferentes, subtrai-se o numeral de menor valor e dá-se o sinal do maior numeral. Exemplos: 3 + 5 = 8 4 - 8 = - 4 - 6 - 4 = - 10 - 2 + 7 = 5 2) Multiplicação e divisão de números relativos a) O produto e o quociente de dois números relativos de mesmo sinal são sempre positivos. b) O produto e o quociente de dois números relativos de sinais diferentes são sempre negativos. Exemplos: - 3 x 8 = - 24 - 20 (-4) = + 5 - 6 x (-7) = + 42 28 2 = 14 Questões 01. (EBSERH/ HUPAA – UFAL – Analista Administrativo – Administração – IDECAN) Mário começou a praticar um novo jogo que adquiriu para seu videogame. Considere que a cada partida ele conseguiu melhorar sua pontuação, equivalendo sempre a 15 pontos a menos que o dobro marcado na partida anterior. Se na quinta partida ele marcou 3.791 pontos, então, a soma dos algarismos da quantidade de pontos adquiridos na primeira partida foi igual a (A) 4. (B) 5. (C) 7. (D) 8. (E) 10. 02. (Pref. Guarujá/SP – SEDUC – Professor de Matemática – CAIPIMES) Considere m um número real menor que 20 e avalie as afirmações I, II e III: I- (20 – m) é um número menor que 20. II- (20 m) é um número maior que 20. III- (20 m) é um número menor que 20. É correto afirmar que: (A) I, II e III são verdadeiras. (B) apenas I e II são verdadeiras. (C) I, II e III são falsas. (D) apenas II e III são falsas. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  20. 20. 19 03. (Pref. Guarujá/SP – SEDUC – Professor de Matemática – CAIPIMES) Na figura abaixo, o ponto que melhor representa a diferença 3 4 − 1 2 na reta dos números reais é: (A) P. (B) Q. (C) R. (D) S. 04. (TJ/PR - Técnico Judiciário – TJ/PR) Uma caixa contém certa quantidade de lâmpadas. Ao retirá- las de 3 em 3 ou de 5 em 5, sobram 2 lâmpadas na caixa. Entretanto, se as lâmpadas forem removidas de 7 em 7, sobrará uma única lâmpada. Assinale a alternativa correspondente à quantidade de lâmpadas que há na caixa, sabendo que esta comporta um máximo de 100 lâmpadas. (A) 36. (B) 57. (C) 78. (D) 92. 05. (MP/SP – Auxiliar de Promotoria I – Administrativo – VUNESP) Para ir de sua casa à escola, Zeca percorre uma distância igual a 3 4 da distância percorrida na volta, que é feita por um trajeto diferente. Se a distância percorrida por Zeca para ir de sua casa à escola e dela voltar é igual a 7 5 de um quilômetro, então a distância percorrida por Zeca na ida de sua casa à escola corresponde, de um quilômetro, a (A) 2 3 (B) 3 4 (C) 1 2 (D) 4 5 (E) 3 5 06. (TJ/SP - Auxiliar de Saúde Judiciário - Auxiliar em Saúde Bucal – VUNESP) Para numerar as páginas de um livro, uma impressora gasta 0,001 mL por cada algarismo impresso. Por exemplo, para numerar as páginas 7, 58 e 290 gasta-se, respectivamente, 0,001 mL, 0,002 mL e 0,003 mL de tinta. O total de tinta que será gasto para numerar da página 1 até a página 1 000 de um livro, em mL, será (A) 1,111. (B) 2,003. (C) 2,893. (D) 1,003. (E) 2,561. 07. (Câmara de São Paulo/SP – Técnico Administrativo – FCC) Um funcionário de uma empresa deve executar uma tarefa em 4 semanas. Esse funcionário executou 3/8 da tarefa na 1a semana. Na 2 a semana, ele executou 1/3 do que havia executado na 1a semana. Na 3a e 4a semanas, o funcionário termina a execução da tarefa e verifica que na 3a semana executou o dobro do que havia executado na 4 a semana. Sendo assim, a fração de toda a tarefa que esse funcionário executou na 4ª semana é igual a (A) 5/16. (B) 1/6. (C) 8/24. (D)1/ 4. (E) 2/5. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  21. 21. 20 08. (CODAR – Coletor de lixo reciclável – EXATUS/2016) Numa divisão com números inteiros, o resto vale 5, o divisor é igual ao resto somado a 3 unidades e o quociente é igual ao dobro do divisor. Assim, é correto afirmar que o valor do dividendo é igual a: (A) 145. (B) 133. (C) 127. (D) 118. 09. (METRÔ – Assistente Administrativo Júnior – FCC) Quatro números inteiros serão sorteados. Se o número sorteado for par, ele deve ser dividido por 2 e ao quociente deve ser acrescido 17. Se o número sorteado for ímpar, ele deve ser dividido por seu maior divisor e do quociente deve ser subtraído 15. Após esse procedimento, os quatro resultados obtidos deverão ser somados. Sabendo que os números sorteados foram 40, 35, 66 e 27, a soma obtida ao final é igual a (A) 87. (B) 59. (C) 28. (D) 65. (E) 63. 10. (UNESP – Assistente de Informática I – VUNESP) O valor de uma aposta em certa loteria foi repartido em cotas iguais. Sabe-se que a terça parte das cotas foi dividida igualmente entre Alex e Breno, que Carlos ficou com a quarta parte das cotas, e que Denis ficou com as 5 cotas restantes. Essa aposta foi premiada com um determinado valor, que foi repartido entre eles de forma diretamente proporcional ao número de cotas de cada um. Dessa forma, se Breno recebeu R$ 62.000,00, então Carlos recebeu (A) R$ 74.000,00. (B) R$ 93.000,00. (C) R$ 98.000,00. (D) R$ 102.000,00. (E) R$ 106.000,00. Comentários 01. Alternativa: D. Pontuação atual = 2 . partida anterior – 15 * 4ª partida: 3791 = 2.x – 15 2.x = 3791 + 15 x = 3806 / 2 x = 1903 * 3ª partida: 1903 = 2.x – 15 2.x = 1903 + 15 x = 1918 / 2 x = 959 * 2ª partida: 959 = 2.x – 15 2.x = 959 + 15 x = 974 / 2 x = 487 * 1ª partida: 487 = 2.x – 15 2.x = 487 + 15 x = 502 / 2 x = 251 Portanto, a soma dos algarismos da 1ª partida é 2 + 5 + 1 = 8. 02. Alternativa: C. I. Falso, pois m é Real e pode ser negativo. II. Falso, pois m é Real e pode ser negativo. III. Falso, pois m é Real e pode ser positivo. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  22. 22. 21 03. Alternativa: A. 3 4 − 1 2 = 3 − 2 4 = 1 4 = 0,25 04. Alternativa: D. Vamos chamar as retiradas de r, s e w: e de T o total de lâmpadas. Precisamos calcular os múltiplos de 3, 5 e de 7, separando um múltiplo menor do que 100 que sirva nas três equações abaixo: De 3 em 3: 3 . r + 2 = Total De 5 em 5: 5 . s + 2 = Total De 7 em 7: 7 . w + 1 = Total Primeiramente, vamos calcular o valor de w, sem que o total ultrapasse 100: 7 . 14 + 1 = 99, mas 3 . r + 2 = 99 vai dar que r = 32,333... (não convém) 7 . 13 + 1 = 92, e 3 . r + 2 = 92 vai dar r = 30 e 5 . s + 2 = 92 vai dar s = 18. 05. Alternativa: E. Ida + volta = 7/5 . 1 3 4 . 𝑥 + 𝑥 = 7 5 5.3𝑥+ 20𝑥=7.4 20 15𝑥 + 20𝑥 = 28 35𝑥 = 28 𝑥 = 28 35 (: 7/7) 𝑥 = 4 5 (volta) Ida: 3 4 . 4 5 = 3 5 06. Alternativa: C. 1 a 9 = 9 algarismos = 0,0019 = 0,009 ml De 10 a 99, temos que saber quantos números tem. 99 – 10 + 1 = 90. OBS: soma 1, pois quanto subtraímos exclui-se o primeiro número. 90 números de 2 algarismos: 0,00290 = 0,18ml De 100 a 999 999 – 100 + 1 = 900 números 9000,003 = 2,7 ml 1000 = 0,004ml Somando: 0,009 + 0,18 + 2,7 + 0,004 = 2,893 07. Alternativa: B. Tarefa: x Primeira semana: 3/8x 2 semana: 1 3 ∙ 3 8 𝑥 = 1 8 𝑥 1ª e 2ª semana: 3 8 𝑥 + 1 8 𝑥 = 4 8 𝑥 = 1 2 𝑥 Na 3ª e 4ª semana devem ser feito a outra metade. 3ªsemana: 2y 4ª semana: y 2𝑦 + 𝑦 = 1 2 𝑥 3𝑦 = 1 2 𝑥 𝑦 = 1 6 𝑥 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  23. 23. 22 08. Alternativa: B. Tendo D = dividendo; d = divisor; Q = quociente e R = resto, podemos escrever essa divisão como: D = d.Q + R Sabemos que o R = 5 O divisor é o R + 3 → d = R + 3 = 5 + 3 = 8 E o quociente o dobro do divisor → Q = 2d = 2.8 = 16 Montando temos: D = 8.16 + 5 = 128 + 5 = 133. 09. Alternativa: B. * número 40: é par. 40 / 2 + 17 = 20 + 17 = 37 * número 35: é ímpar. Seu maior divisor é 35. 35 / 35 – 15 = 1 – 15 = – 14 * número 66: é par. 66 / 2 + 17 = 33 + 17 = 50 * número 27: é ímpar. Seu maior divisor é 27. 27 / 27 – 15 = 1 – 15 = – 14 * Por fim, vamos somar os resultados: 37 – 14 + 50 – 14 = 87 – 28 = 59 10. Alternativa: B. Vamos chamar o valor de cada cota de ( x ). Assim: * Breno: 𝟏 𝟐 . 𝟏 𝟑 . 𝒙 = 𝟔𝟐𝟎𝟎𝟎 𝟏 𝟔 . 𝒙 = 𝟔𝟐𝟎𝟎𝟎 x = 62000 . 6 x = R$ 372000,00 * Carlos: 𝟏 𝟒 . 𝟑𝟕𝟐𝟎𝟎𝟎 = 𝑹$ 𝟗𝟑𝟎𝟎𝟎, 𝟎𝟎 ANÁLISE COMBINATÓRIA A Análise Combinatória4 é a parte da Matemática que desenvolve meios para trabalharmos com problemas de contagem, sendo eles: - Princípio Fundamental da Contagem (PFC); - Fatorial de um número natural; - Tipos de Agrupamentos Simples (Arranjo, permutação e combinação); - Tipos de Agrupamentos com Repetição (Arranjo, permutação e combinação). A Análise Combinatória é o suporte da Teoria das Probabilidades, e de vital importância para as ciências aplicadas, como a Medicina, a Engenharia, a Estatística entre outras. Princípio Fundamental da Contagem-PFC (Princípio Multiplicativo) O princípio multiplicativo ou fundamental da contagem constitui a ferramenta básica para resolver problemas de contagem sem que seja necessário enumerar seus elementos, através das possibilidades 4 IEZZI, Gelson – Matemática – Volume Único FILHO, Begnino Barreto; SILVA,Claudio Xavier da – Matemática – Volume Único - FTD BOSQUILHA, Alessandra - Minimanual compacto de matemática: teoria e prática: ensino médio / Alessandra Bosquilha, Marlene Lima Pires Corrêa, Tânia Cristina Neto G. Viveiro. -- 2. ed. rev. -- São Paulo: Rideel, 2003. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  24. 24. 23 dadas. É uma das técnicas mais utilizadas para contagem, mas também dependendo da questão pode se tornar trabalhosa. Exemplos 1) Imagine que, na cantina de sua escola, existem cinco opções de suco de frutas: pêssego, maçã, morango, caju e mamão. Você deseja escolher apenas um desses sucos, mas deverá decidir também se o suco será produzido com água ou leite. Escolhendo apenas uma das frutas e apenas um dos acompanhamentos, de quantas maneiras poderá pedir o suco? 2) Para ir da sua casa (cidade A) até a casa do seu amigo Pedro (que mora na cidade C) João precisa pegar duas conduções: A1 ou A2 ou A3 que saem da sua cidade até a B e B1 ou B2 que o leva até o destino final C. Vamos montar o diagrama da árvore para avaliarmos todas as possibilidades: De forma resumida, e rápida podemos também montar através do princípio multiplicativo o número de possibilidades: 3) De sua casa ao trabalho, Sílvia pode ir a pé, de ônibus ou de metrô. Do trabalho à faculdade, ela pode ir de ônibus, metrô, trem ou pegar uma carona com um colega. De quantos modos distintos Sílvia pode, no mesmo dia, ir de casa ao trabalho e de lá para a faculdade? Vejamos, o trajeto é a junção de duas etapas: 1º) Casa → Trabalho: ao qual temos 3 possibilidades 2º) Trabalho → Faculdade: 4 possibilidades. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  25. 25. 24 Multiplicando todas as possibilidades (pelo PFC), teremos: 3 x 4 = 12. No total Sílvia tem 12 maneiras de fazer o trajeto casa – trabalho – faculdade. DEFINIÇÃO do PFC: Se um evento que chamaremos de E1 puder ocorrer de a maneiras e um outro evento que chamaremos de E2 puder ocorrer de b maneiras e E1 for independente de E2, assim a quantidade de maneiras distintas de os dois eventos ocorrerem simultaneamente será dado por axb, isto é, a quantidade de maneiras de a ocorrer, multiplicado pela quantidade de maneiras de b ocorrer. Questões 01. (Pref. Chapecó/SC – Engenheiro de Trânsito – IOBV) Em um restaurante os clientes têm a sua disposição, 6 tipos de carnes, 4 tipos de cereais, 4 tipos de sobremesas e 5 tipos de sucos. Se o cliente quiser pedir 1 tipo carne, 1 tipo de cereal, 1 tipo de sobremesa e 1 tipo de suco, então o número de opções diferentes com que ele poderia fazer o seu pedido, é: (A) 19 (B) 480 (C) 420 (D) 90 02. (Pref. Rio de Janeiro/RJ – Agente de Administração – Pref. Rio de Janeiro) Seja N a quantidade máxima de números inteiros de quatro algarismos distintos, maiores do que 4000, que podem ser escritos utilizando-se apenas os algarismos 0, 1, 2, 3, 4, 5 e 6. O valor de N é: (A) 120 (B) 240 (C) 360 (D) 480 Comentários 01. Resposta: B. A questão trata-se de princípio fundamental da contagem, logo vamos enumerar todas as possibilidades de fazermos o pedido: 6 x 4 x 4 x 5 = 480 maneiras. 02. Resposta: C. Pelo enunciado precisa ser um número maior que 4000, logo para o primeiro algarismo só podemos usar os números 4,5 e 6 (3 possibilidades). Como se trata de números distintos para o segundo algarismo poderemos usar os números (0,1,2,3 e também 4,5 e 6 dependo da primeira casa) logo teremos 7 – 1 = 6 possibilidades. Para o terceiro algarismos teremos 5 possibilidades e para o último, o quarto algarismo, teremos 4 possibilidades, montando temos: Basta multiplicarmos todas as possibilidades: 3 x 6 x 5 x 4 = 360. Logo N é 360. Fatorial de um Número Natural É comum aparecerem produtos de fatores naturais sucessivos em problemas de análise combinatória, tais como: 3. 2 . 1 ou 5. 4 . 3 . 2 . 1, por isso surgiu a necessidade de simplificarmos este tipo de notação, facilitando os cálculos combinatórios. Assim, produtos em que os fatores chegam sucessivamente até a unidade são chamados fatoriais. Matematicamente: Dado um número natural n, sendo n є N e n ≥ 2, temos: 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  26. 26. 25 Onde: n! é o produto de todos os números naturais de 1 até n (lê-se: “n fatorial”) Por convenção temos que: Exemplos 1) De quantas maneiras podemos organizar 8 alunos em uma fila. Observe que vamos utilizar a mesma quantidade de alunos na fila nas mais variadas posições: Temos que 8! = 8.7.6.5.4.3.2.1 = 40320 2) Dado 9! 5! , qual o valor dessa fração? Observe que o denominador é menor que o numerador, então para que possamos resolver vamos levar o numerador até o valor do denominador e simplificarmos: Tipos de Agrupamento Os agrupamentos que não possuem elementos repetidos, são chamamos de agrupamentos simples. Dentre eles, temos aqueles onde a ordem é importante e os que a ordem não é importante. Vamos ver detalhadamente cada um deles. - Arranjo simples: agrupamentos simples de n elementos distintos tomados(agrupados) p a p. Aqui a ordem dos seus elementos é importante, é o que diferencia. Exemplos 1) Dados o conjunto S formado pelos números S= {1,2,3,4,5,6} quantos números de 3 algarismos podemos formar com este conjunto? Observe que 123 é diferente de 321 e assim sucessivamente, logo é um Arranjo. Se fossemos montar todos os números levaríamos muito tempo, para facilitar os cálculos vamos utilizar a fórmula do arranjo. Pela definição temos: A n,p (Lê-se: arranjo de n elementos tomados p a p). Então: Utilizando a fórmula: 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  27. 27. 26 Onde n = 6 e p = 3 An, p = n! (n − p)! → A6,3 = 6! (6 − 3)! = 6! 3! = 6.5.4.3! 3! = 120 Então podemos formar com o conjunto S, 120 números com 3 algarismos. 2) Uma escola possui 18 professores. Entre eles, serão escolhidos: um diretor, um vice-diretor e um coordenador pedagógico. Quantas as possibilidades de escolha? n = 18 (professores) p = 3 (cargos de diretor, vice-diretor e coordenador pedagógico) An, p = n! (n − p)! → A18,3 = 18! (18 − 3)! = 18! 15! = 18.17.16.15! 15! = 4896 grupos - Permutação simples: sequência ordenada de n elementos distintos (arranjo), ao qual utilizamos todos os elementos disponíveis, diferenciando entre eles apenas a ordem. A permutação simples é um caso particular do arranjo simples. É muito comum vermos a utilização de permutações em anagramas (alterações da sequência das letras de uma palavra). Exemplos 1) Quantos anagramas podemos formar com a palavra CALO? Utilizando a fórmula da permutação temos: n = 4 (letras) P4! = 4! = 4 . 3 . 2 . 1! = 24 . 1! (como sabemos 1! = 1) → 24 . 1 = 24 anagramas 2) Utilizando a palavra acima, quantos são os anagramas que começam com a letra L? P3! = 3! = 3 . 2 . 1! = 6 anagramas que começam com a letra L. - Combinação simples: agrupamento de n elementos distintos, tomados p a p, sendo p ≤ n. O que diferencia a combinação do arranjo é que a ordem dos elementos não é importante. Vemos muito o conceito de combinação quando queremos montar uma comitiva, ou quando temos também de quantas maneiras podemos cumprimentar um grupo ou comitiva, entre outros. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  28. 28. 27 Exemplos 1) Uma escola tem 7 professores de Matemática. Quatro deles deverão representar a escola em um congresso. Quantos grupos de 4 professores são possíveis? Observe que sendo 7 professores, se invertermos um deles de posição não alteramos o grupo formado, os grupos formados são equivalentes. Para o exemplo acima temos ainda as seguintes possibilidades que podemos considerar sendo como grupo equivalentes. P1, P2, P4, P3 – P2, P1, P3, P4 – P3, P1, P2, P4 – P2, P4, P3, P4 – P4, P3, P1, P2 ... Com isso percebemos que a ordem não é importante! Vamos então utilizar a fórmula para agilizar nossos cálculos: Aqui dividimos novamente por p, para desconsiderar todas as sequências repetidas (P1, P2, P3, P4 = P4, P2, P1, P3= P3, P2, P4, P1=...). Aplicando a fórmula: Cn, p = n! (n − p)! p! → C7,4 = 7! (7 − 4)! 4! = 7! 3! 4! = 7.6.5.4! 3! 4! = 210 3.2.1 = 210 6 = 35 grupos de professores 2) Considerando dez pontos sobre uma circunferência, quantas cordas podem ser construídas com extremidades em dois desses pontos? Uma corda fica determinada quando escolhemos dois pontos entre os dez. Escolher (A,D) é o mesmo que escolher (D,A), então sabemos que se trata de uma combinação. Aqui temos então a combinação de 10 elementos tomados 2 a 2. C10,2 = n! (n − p)! p! = 10! (10 − 2)! 2! = 10! 8! 2! = 10.9.8! 8! 2! = 90 2 = 45 cordas Agrupamentos com Repetição Existem casos em que os elementos de um conjunto repetem-se para formar novos subconjuntos. Nestes casos, devemos usar fórmulas de agrupamentos com repetição. Assim, teremos: A) arranjo com repetição; B) permutação com repetição; C) combinação com repetição. Vejamos: a) Arranjo com repetição: ou arranjo completo, é um grupo de p elementos de um dado conjunto, com n elementos distintos, onde a mudança de ordem determina grupos diferentes, podendo porém ter elementos repetidos. Indicamos por AR n,p 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  29. 29. 28 No arranjo com repetição, temos todos os elementos do conjunto à disposição a cada escolha, por isso, pelo Princípio Fundamental da Contagem, temos: Exemplo Quantas chapas de automóvel compostas de 2 letras nas duas primeiras posições, seguidas por 4 algarismos nas demais posições (sendo 26 letras do nosso alfabeto e sendo os algarismos do sistema decimal) podem ser formadas? O número de pares de letras que poderá ser utilizado é: Pois podemos repetir eles. Aplicando a fórmula de Arranjo com repetição temos: 𝑨𝑹 𝒏, 𝒑 = 𝒏𝒑 → 𝑨𝑹 𝟐𝟔, 𝟐 = 𝟐𝟔𝟐 = 𝟔𝟕𝟔 Para a quantidade de números temos (0,1,2,3,4,5,6,7,8,9 – 10 algarismos): 𝑨𝑹 𝒏, 𝒑 = 𝒏𝒑 → 𝑨𝑹 𝟏𝟎, 𝟒 = 𝟏𝟎𝟒 = 𝟏𝟎. 𝟎𝟎𝟎 Assim o número de chapas que podemos ter é dado pela multiplicação dos valores achados: 676 . 10 000 = 6 760 000 possibilidades de placas. Observação: Caso não pudesse ser utilizada a placa com a sequência de zeros, ou seja, com 4 zeros teríamos: 𝑨𝑹 𝒏, 𝒑 = 𝒏𝒑 → 𝑨𝑹 𝟏𝟎, 𝟒 = 𝟔𝟕𝟔. 𝟏𝟎𝟒 − 𝟔𝟕𝟔. 𝟏 = 𝟔𝟕𝟔. (𝟏𝟎𝟎𝟎𝟎 − 𝟏) b) Permutação com repetição: a diferença entre arranjo e permutação é que esta faz uso de todos os elementos do conjunto. Na permutação com repetição, como o próprio nome indica, as repetições são permitidas e podemos estabelecer uma fórmula que relacione o número de elementos, n, e as vezes em que o mesmo elemento aparece. Com α + β + γ + ... ≤ n Exemplo Quantos são os anagramas da palavra ARARA? n = 5 α = 3 (temos 3 vezes a letra A) β = 2 (temos 2 vezes a letra R) Equacionando temos: 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  30. 30. 29 𝑷𝒏(∝,𝜷,𝜸,… ) = 𝒏! 𝜶! 𝜷! 𝜸! … → 𝒑𝟓(𝟑,𝟐) = 𝟓! 𝟑! 𝟐! = 𝟓. 𝟒. 𝟑! 𝟑! 𝟐! = 𝟓. 𝟒 𝟐. 𝟏 = 𝟐𝟎 𝟐 = 𝟏𝟎 𝒂𝒏𝒂𝒈𝒓𝒂𝒎𝒂𝒔 B.1) Permutação circular: a permutação circular com repetição pode ser generalizada através da seguinte forma: Vejamos o exemplo como chegar na fórmula, para aplicação. - De quantas maneiras 5 meninas que brincam de roda podem formá-la? Fazendo um esquema, observamos que são posições iguais: O total de posições é 5! e cada 5 representa uma só permutação circular. Assim, o total de permutações circulares será dado por: 𝑃𝑐5 = 5! 5 = 5.4! 5 = 4! = 4.3.2.1 = 24 C) Combinação com repetição: dado um conjunto com n elementos distintos, chama-se combinação com repetição, classe p (ou combinação completa p a p) dos n elementos desse conjunto, a todo grupo formado por p elementos, distintos ou não, em qualquer ordem. Exemplo Em uma combinação com repetição classe 2 do conjunto {a, b, c}, quantas combinações obtemos? Ilustrando temos: Utilizando a fórmula da combinação com repetição, verificamos o mesmo resultado sem necessidade de enumerar todas as possibilidades: n = 3 e p = 2 𝑪𝑹𝒏, 𝒑 = 𝑪 𝒏 + 𝒑 − 𝟏, 𝒑 → 𝑪𝑹 𝟑 + 𝟐 − 𝟏, 𝟐 → 𝑪𝑹𝟒, 𝟐 = 𝟒! 𝟐! (𝟒 − 𝟐)! = 𝟒! 𝟐! 𝟐! = 𝟒. 𝟑. 𝟐! 𝟐! 𝟐! = 𝟏𝟐 𝟐 = 𝟔 Questões 01. (CRQ 2ª Região/MG – Auxiliar Administrativo – FUNDEP) Com 12 fiscais, deve-se fazer um grupo de trabalho com 3 deles. Como esse grupo deverá ter um coordenador, que pode ser qualquer um deles, o número de maneiras distintas possíveis de se fazer esse grupo é: (A) 4 (B) 660 (C) 1 320 (D) 3 960 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  31. 31. 30 02. (PM/SP – Cabo – CETRO) Uma lei de certo país determinou que as placas das viaturas de polícia deveriam ter 3 algarismos seguidos de 4 letras do alfabeto grego (24 letras). Sendo assim, o número de placas diferentes será igual a (A) 175.760.000. (B) 183.617.280. (C) 331.776.000. (D) 358.800.000. 03. (TJ/RS – Técnico Judiciário - FAURGS) O Tribunal de Justiça está utilizando um código de leitura de barras composto por 5 barras para identificar os pertences de uma determinada seção de trabalho. As barras podem ser pretas ou brancas. Se não pode haver código com todas as barras da mesma cor, o número de códigos diferentes que se pode obter é de (A) 10. (B) 30. (C) 50. (D) 150. (E) 250. 04. (SEED/SP – Agente de Organização Escolar – VUNESP) Um restaurante possui pratos principais e individuais. Cinco dos pratos são com peixe, 4 com carne vermelha, 3 com frango, e 4 apenas com vegetais. Alberto, Bianca e Carolina pretendem fazer um pedido com três pratos principais individuais, um para cada. Alberto não come carne vermelha nem frango, Bianca só come vegetais, e Carolina só não come vegetais. O total de pedidos diferentes que podem ser feitos atendendo as restrições alimentares dos três é igual a (A) 384. (B) 392. (C) 396. (D) 416. (E)432. 05. (Pref. Jundiaí/SP – Eletricista – MAKIYAMA) Dentre os nove competidores de um campeonato municipal de esportes radicais, somente os quatro primeiros colocados participaram do campeonato estadual. Sendo assim, quantas combinações são possíveis de serem formadas com quatro desses nove competidores? (A) 126 (B)120 (C) 224 (D) 212 (E) 156 06. (Pref. Lagoa da Confusão/TO – Orientador Social – IDECAN) Renato é mais velho que Jorge de forma que a razão entre o número de anagramas de seus nomes representa a diferença entre suas idades. Se Jorge tem 20 anos, a idade de Renato é (A) 24. (B) 25. (C) 26. (D) 27. (E) 28. 07. (Pref. Nepomuceno/MG – Técnico em Segurança do Trabalho – CONSULPLAN) Numa sala há 3 ventiladores de teto e 4 lâmpadas, todos com interruptores independentes. De quantas maneiras é possível ventilar e iluminar essa sala mantendo, pelo menos, 2 ventiladores ligados e 3 lâmpadas acesas? (A) 12. (B) 18. (C) 20. (D) 24. (E) 36. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  32. 32. 31 08. (CREA/PR – Agente Administrativo– FUNDATEC) A fim de vistoriar a obra de um estádio de futebol para a copa de 2014, um órgão público organizou uma comissão composta por 4 pessoas, sendo um engenheiro e 3 técnicos. Sabendo-se que em seu quadro de funcionários o órgão dispõe de 3 engenheiros e de 9 técnicos, pode-se afirmar que a referida comissão poderá ser formada de _____ maneiras diferentes. Assinale a alternativa que completa corretamente a lacuna do trecho acima. (A) 252 (B) 250 (C) 243 (D) 127 (E) 81 09. (ESA – Música – EXÉRCITO BRASILEIRO) Colocando-se em ordem alfabética os anagramas da palavra FUZIL, que posição ocupará o anagrama ZILUF. (A) 103 (B) 104 (C) 105 (D) 106 (E) 107 10. (CODEMIG – Analista de Administração – Gestão de Concursos) Oito amigos encontraram-se em uma festa. Se cada um dos amigos trocar um aperto de mão com cada um dos outros, quantos apertos de mão serão trocados? (A) 22. (B) 25. (C) 27. (D) 28. Comentários 01. Resposta: B Esta questão trata-se de Combinação, pela fórmula temos: Cn, p = n! (n − p)! p! Onde n = 12 e p = 3 Cn, p = n! (n − p)! p! → C12,3 = 12! (12 − 3)! 3! = 12! 9! 3! = 12.11.10.9! 9! 3! = 1320 3.2.1 = 1320 6 = 220 Como cada um deles pode ser o coordenado, e no grupo tem 3 pessoas, logo temos 220 x 3 = 660. 02. Resposta: C Algarismos possíveis: 0,1,2,3,4,5,6,7,8,9=10 algarismos _ _ _ _ _ _ _ 101010  242424 24=331.776.000 03. Resposta: B _ _ _ _ _ 22222=32 possibilidades se pudesse ser qualquer uma das cores Mas, temos que tirar código todo preto e todo branco. 32-2=30 04. Resposta: E Para Alberto:5+4=9 Para Bianca:4 Para Carolina: 12 _ _ _ 9.4.12=432 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  33. 33. 32 05. Resposta: A 1001. C_9,4 = 9! / 5!4! = (9∙8∙7∙6∙5!) / (5!∙24) = 126 06. Resposta: C Anagramas de RENATO _ _ _ _ _ _ 6.5.4.3.2.1=720 Anagramas de JORGE _ _ _ _ _ 5.4.3.2.1=120 Razão dos anagramas: 720 120 = 6 Se Jorge tem 20 anos, Renato tem 20+6=26 anos 07. Resposta: C 1ª possibilidade:2 ventiladores e 3 lâmpadas 𝐶3,2 = 3! 1!2! = 3 𝐶4,3 = 4! 1!3! = 4 𝐶3,2 ∙ 𝐶4,3 = 3 ∙ 4 = 12 2ª possibilidade:2 ventiladores e 4 lâmpadas 𝐶3,2 = 3! 1!2! = 3 𝐶4,4 = 4! 0!4! = 1 𝐶3,2 ∙ 𝐶4,4 = 3 ∙ 1 = 3 3ª possibilidade:3 ventiladores e 3 lâmpadas 𝐶3,3 = 3! 0!3! = 1 𝐶4,3 = 4! 1!3! = 4 𝐶3,3 ∙ 𝐶4,3 = 1 ∙ 4 = 4 4ª possibilidade:3 ventiladores e 4 lâmpadas 𝐶3,3 = 3! 0!3! = 1 𝐶4,4 = 4! 0!4! = 1 𝐶3,3 ∙ 𝐶4,4 = 1 ∙ 1 = 1 Somando as possibilidades: 12 + 3 + 4 + 1 = 20 08. Resposta: A Engenheiros 𝐶3,1 = 3! 2! 1! = 3 Técnicos 𝐶9,3 = 9! 3! 6! = 9 ∙ 8 ∙ 7 ∙ 6! 6 ∙ 6! = 84 3 . 84 = 252 maneiras 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  34. 34. 33 09. Resposta: D O anagrama que ele quer é ZILUF, assim como se inicia com Z podemos admitir todos os outros anagramas que iniciam com letra diferente de “Z” estão antes do desejado, assim: F_ _ _ _ = 4.3.2.1 = 24 I_ _ _ _ = 4.3.2.1 = 24 L_ _ _ _ = 4.3.2.1 = 24 U_ _ _ _ = 4.3.2.1 = 24 Daí começa os com Z Portanto colocaremos Z e a menor letra na segunda opção que será o F ZF_ _ _ = 3.2.1 = 6 Agora depois do último que começa com ZF vem o que começa com ZI Mas antes do L temos o F Assim devemos contar todos que comecem por ZIF ZIF_ _ = 2 Agora temos o que começa com ZIL Mas só temos estes possíveis anagramas em ordem crescente que começam com ZIL ZILFU = 1 ZILUF (Que é o anagrama que queremos) Agora basta saber a posição em que ele ficará, 24 + 24 + 24 + 24 + 6 + 2 + 1 = 105 antes dele, portanto ele estará na 106ª posição. 10. Resposta: D A primeira pessoa apertará a mão de 7 A Segunda, de 6, e assim por diante. Portanto, haverá: 7+6+5+4+3+2+1=28 SISTEMA DE MEDIDAS Sistema de Medidas Decimais: Área, volume, comprimento, capacidade, massa Um sistema de medidas é um conjunto de unidades de medida que mantém algumas relações entre si. O sistema métrico decimal é hoje o mais conhecido e usado no mundo todo. Na tabela seguinte, listamos as unidades de medida de comprimento do sistema métrico. A unidade fundamental é o metro, porque dele derivam as demais. Há, de fato, unidades quase sem uso prático, mas elas têm uma função. Servem para que o sistema tenha um padrão: cada unidade vale sempre 10 vezes a unidade menor seguinte. Por isso, o sistema é chamado decimal. E há mais um detalhe: embora o decímetro não seja útil na prática, o decímetro cúbico é muito usado com o nome popular de litro. As unidades de área do sistema métrico correspondem às unidades de comprimento da tabela anterior. São elas: quilômetro quadrado (km2 ), hectômetro quadrado (hm2 ), etc. As mais usadas, na prática, são o quilômetro quadrado, o metro quadrado e o hectômetro quadrado, este muito importante nas atividades rurais com o nome de hectare (há): 1 hm2 = 1 ha. 2 - Sistema legal de medidas. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  35. 35. 34 No caso das unidades de área, o padrão muda: uma unidade é 100 vezes a menor seguinte e não 10 vezes, como nos comprimentos. Entretanto, consideramos que o sistema continua decimal, porque 100 = 102 . Existem outras unidades de medida mas que não pertencem ao sistema métrico decimal. Vejamos as relações entre algumas essas unidades e as do sistema métrico decimal (valores aproximados): 1 polegada = 25 milímetros 1 milha = 1 609 metros 1 légua = 5 555 metros 1 pé = 30 centímetros A nomenclatura é a mesma das unidades de comprimento acrescidas de quadrado. Agora, vejamos as unidades de volume. De novo, temos a lista: quilômetro cúbico (km3 ), hectômetro cúbico (hm3 ), etc. Na prática, são muitos usados o metro cúbico(m3 ) e o centímetro cúbico(cm3 ). Nas unidades de volume, há um novo padrão: cada unidade vale 1000 vezes a unidade menor seguinte. Como 1000 = 103 , o sistema continua sendo decimal. A noção de capacidade relaciona-se com a de volume. Se o volume da água que enche um tanque é de 7.000 litros, dizemos que essa é a capacidade do tanque. A unidade fundamental para medir capacidade é o litro (l); 1l equivale a 1 dm3 e 1m³ = 1000l. Cada unidade vale 10 vezes a unidade menor seguinte. O sistema métrico decimal inclui ainda unidades de medidas de massa. A unidade fundamental é o grama(g). Nomenclatura: Kg – Quilograma hg – hectograma dag – decagrama g – grama dg – decigrama 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  36. 36. 35 cg – centigrama mg – miligrama Dessas unidades, só têm uso prático o quilograma, o grama e o miligrama. No dia-a-dia, usa-se ainda a tonelada (t). Medidas Especiais: 1 Tonelada(t) = 1000 Kg 1 Arroba = 15 Kg 1 Quilate = 0,2 g Relações entre unidades Temos que: 1 kg = 1l = 1 dm3 1 hm2 = 1 ha = 10.000m2 1 m3 = 1000 l Questões 01. (SESAP-RN – Administrador – COMPERVE/2018) Uma criança desenvolveu uma infecção cujo tratamento deve ser feito com antibióticos. O antibiótico utilizado no tratamento tem recomendação diária de 1,5 mg por um quilograma de massa corpórea, devendo ser administrado três vezes ao dia, em doses iguais. Se a criança tem massa equivalente a 12 kg, cada dose administrada deve ser de (A) 7,5 mg. (B) 9,0 mg. (C) 4,5 mg. (D) 6,0 mg. 02. (MP/SP – Auxiliar de Promotoria I – Administrativo – VUNESP) O suco existente em uma jarra preenchia 3 4 da sua capacidade total. Após o consumo de 495 mL, a quantidade de suco restante na jarra passou a preencher 1 5 da sua capacidade total. Em seguida, foi adicionada certa quantidade de suco na jarra, que ficou completamente cheia. Nessas condições, é correto afirmar que a quantidade de suco adicionada foi igual, em mililitros, a (A) 580. (B) 720. (C) 900. (D) 660. (E) 840. 03. (PM/SP – Oficial Administrativo – VUNESP) Em uma casa há um filtro de barro que contém, no início da manhã, 4 litros de água. Desse filtro foram retirados 800 mL para o preparo da comida e meio litro para consumo próprio. No início da tarde, foram colocados 700 mL de água dentro desse filtro e, até o final do dia, mais 1,2 litros foram utilizados para consumo próprio. Em relação à quantidade de água que havia no filtro no início da manhã, pode-se concluir que a água que restou dentro dele, no final do dia, corresponde a uma porcentagem de (A) 60%. (B) 55%. (C) 50%. (D) 45%. (E) 40%. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  37. 37. 36 04. (UFPE – Assistente em Administração – COVEST) Admita que cada pessoa use, semanalmente, 4 bolsas plásticas para embrulhar suas compras, e que cada bolsa é composta de 3 g de plástico. Em um país com 200 milhões de pessoas, quanto plástico será utilizado pela população em um ano, para embrulhar suas compras? Dado: admita que o ano é formado por 52 semanas. Indique o valor mais próximo do obtido. (A) 108 toneladas (B) 107 toneladas (C) 106 toneladas (D) 105 toneladas (E) 104 toneladas 05. (PM/SP – Oficial Administrativo – VUNESP) Uma chapa de alumínio com 1,3 m2 de área será totalmente recortada em pedaços, cada um deles com 25 cm2 de área. Supondo que não ocorra nenhuma perda durante os cortes, o número de pedaços obtidos com 25 cm2 de área cada um, será: (A) 52000. (B) 5200. (C) 520. (D) 52. (E) 5,2. 06. (CLIN/RJ - Gari e Operador de Roçadeira - COSEAC) Uma peça de um determinado tecido tem 30 metros, e para se confeccionar uma camisa desse tecido são necessários 15 decímetros. Com duas peças desse tecido é possível serem confeccionadas: (A) 10 camisas (B) 20 camisas (C) 40 camisas (D) 80 camisas 07. (CLIN/RJ - Gari e Operador de Roçadeira - COSEAC) Um veículo tem capacidade para transportar duas toneladas de carga. Se a carga a ser transportada é de caixas que pesam 4 quilogramas cada uma, o veículo tem capacidade de transportar no máximo: (A) 50 caixas (B) 100 caixas (C) 500 caixas (D) 1000 caixas 08. (PM/SP – Oficial Administrativo – VUNESP) Um trecho de uma estrada com 5,6 km de comprimento está sendo reparado. A empresa A, responsável pelo serviço, já concluiu 3 7 do total a ser reparado e, por motivos técnicos, 2 5 do trecho que ainda faltam reparar serão feitos por uma empresa B. O número total de metros que a empresa A ainda terá que reparar é (A) 1920. (B) 1980. (C) 2070. (D) 2150. (E) 2230. Comentários 01. Resposta: D Observe que 1,5mg é a dose diária para cada quilograma da criança, como ele é aplicado 3x ao dia, teremos 0,5mg por aplicação, a criança possui 12kg, assim a quantidade de remédio por aplicação será de: 0,5 . 12 = 6,0mg 02. Resposta: B. Vamos chamar de x a capacidade total da jarra. Assim: 3 4 . 𝑥 − 495 = 1 5 . 𝑥 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  38. 38. 37 3 4 . 𝑥 − 1 5 . 𝑥 = 495 5.3.𝑥 − 4.𝑥=20.495 20 15x – 4x = 9900 11x = 9900 x = 9900 / 11 x = 900 mL (capacidade total) Como havia 1/5 do total (1/5 . 900 = 180 mL), a quantidade adicionada foi de 900 – 180 = 720 mL 03. Resposta: B. 4 litros = 4000 ml; 1,2 litros = 1200 ml; meio litro = 500 ml 4000 – 800 – 500 + 700 – 1200 = 2200 ml (final do dia) Utilizaremos uma regra de três simples: ml % 4000 ------- 100 2200 ------- x 4000.x = 2200 . 100 x = 220000 / 4000 = 55% 04. Resposta: D. 4 . 3 . 200000000 . 52 = 1,248 . 1011 g = 1,248 . 105 t 05. Resposta: C. 1,3 m2 = 13000 cm2 13000 / 25 = 520 pedaços 06. Resposta: C. Como eu quero 2 peças desse tecido e 1 peça possui 30 metros logo: 30 . 2 = 60 m. Temos que trabalhar com todas na mesma unidade: 1 m é 10dm assim temos 60m . 10 = 600 dm, como cada camisa gasta um total de 15 dm, temos então: 600/15 = 40 camisas. 07. Resposta: C. Uma tonelada(ton) é 1000 kg, logo 2 ton. 1000kg= 2000 kg Cada caixa pesa 4kg  2000 kg/ 4kg = 500 caixas. 08. Resposta: A. Primeiramente, vamos transformar Km em metros: 5,6 Km = 5600 m (.1000) Faltam 7 7 − 3 7 = 4 7 do total, ou seja, 4 7 𝑑𝑒 5600 = 4.5600 7 = 3200𝑚 A empresa B vai reparar 2 5 𝑑𝑒 3200 = 2.3200 5 = 1280𝑚 Então, a empresa A vai reparar 3200 – 1280 = 1920m SISTEMA DE MEDIDAS NÃO DECIMAIS (TEMPO E ÂNGULO) Antigamente, para saber o melhor momento de caçar e plantar, entre outras atividades, as civilizações observavam a natureza, ou seja, utilizavam-se de fenômenos naturais periódicos. A unidade básica para a contagem do tempo é o dia, que corresponde ao período de tempo entre dois eventos equivalentes sucessivos: por exemplo, o intervalo de tempo entre duas ocorrências do nascer do Sol, que corresponde, em média (dia solar médio), a 24 horas. O ano solar é o período de tempo decorrido para completar um ciclo de estações (primavera, verão, outono e inverno). O ano solar médio tem a duração de aproximadamente 365 dias, 5 horas, 48 minutos e 47 segundos (365,2422 dias). Também é conhecido como ano trópico. A cada quatro anos, as horas extras acumuladas são reunidas no dia 29 de fevereiro, formando o ano bissexto, ou seja, o ano com 366 dias. Temos uma maneira prática de verificar se um ano é bissexto: - Se o número que indica o ano é terminado em 00, esse ano será bissexto se o número for divisível por 400. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  39. 39. 38 - Se o número que indica o ano não é terminado em 00, esse ano será bissexto se o número for divisível por 4. Exemplo: O ano de 2000, por exemplo, foi bissexto porque 2000 termina em 00 e é divisível por 400. Os calendários antigos baseavam-se em meses lunares (calendários lunares) ou no ano solar (calendário solar) para contagem do tempo. Eles ainda podem definir outras unidades de tempo, como a semana, para o propósito de planejar atividades regulares que não se encaixam facilmente com meses ou anos. O Ano é dividido em 12 meses, os meses, em semanas, e cada semana, em 7 dias. O período de 2 meses corresponde a um bimestre, o de 3 meses a um trimestre e o de 6 meses, a um semestre. Concluindo: - 1 ano tem 365 a 366(bissexto) dias; - 1 ano está dividido em 12 meses; - 1 mês tem de 30 a 31 dias; - 1 dia tem 24 horas Para medirmos o tempo durante o dia, utilizamos o relógio, que pode ser de ponteiros ou digital. Em geral, os relógios marcam as HORAS, os MINUTOS e os SEGUNDOS. - 1 dia tem 24 horas. - 1 hora tem 60 minutos. - 1 minuto tem 60 segundos. Observe-se que não é correto escrever 3,20 horas como forma de representar 3h20min, pois o sistema de medida de tempo não é decimal. O 0,20h representa 12 minutos, pois 0,20.60 min = 12, logo 3,20h = 3horas 12 minutos. - Adição e Subtração de Medida de tempo Ao adicionarmos ou subtrairmos medidas de tempo, precisamos estar atentos as unidades. Vejamos os exemplos: A) 1 h 50 min + 30 min Observe que ao somar 50 + 30, obtemos 80 minutos, como sabemos que 1 hora tem 60 minutos, temos, então acrescentamos a hora +1, e subtraímos 80 – 60 = 20 minutos, é o que resta nos minutos: 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  40. 40. 39 Logo o valor encontrado é de 2 h 20 min. B) 2 h 20 min – 1 h 30 min Observe que não podemos subtrair 20 min de 30 min, então devemos passar uma hora (+1) dos 2 para a coluna minutos. Então teremos novos valores para fazermos nossa subtração, 20 + 60 = 80: Logo o valor encontrado é de 50 min. Medidas de Ângulos e suas Transformações Para medir ângulos, também temos um sistema não decimal. Nesse caso, a unidade básica é o grau. Na astronomia, na cartografia e na navegação são necessárias medidas inferiores a 1º. Temos, então: 1 grau equivale a 60 minutos (1º = 60’) 1 minuto equivale a 60 segundos (1’ = 60”) Os minutos e os segundos dos ângulos não são, é claro, os mesmos do sistema de tempo – hora, minuto e segundo. Há uma coincidência de nomes, mas até os símbolos que os indicam são diferentes: 1h 32min 24s é um intervalo de tempo ou um instante do dia. 1º 32’ 24” é a medida de um ângulo. Por motivos óbvios, cálculos no sistema hora – minuto – segundo são similares a cálculos no sistema grau – minuto – segundo, embora esses sistemas correspondam a grandezas distintas. Questões 01. (SESAP – RN – Técnico em Enfermagem – COMPERVE/2018) Uma profissional de enfermagem deve administrar 250 ml de soro fisiológico em um paciente durante 90 minutos. Para obter a vazão correta do soro em gotas por minuto, ela deverá utilizar a fórmula de gotejamento, dividindo o volume do soro em mililitros pelo triplo do tempo em horas. De acordo com essa fórmula, a quantidade de gotas por minuto dever ser de, aproximadamente, 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  41. 41. 40 (A) 28. (B) 42. (C) 56. (D) 70. 02. (Pref. Camaçari/BA – Téc. Vigilância Em Saúde NM – AOCP) Joana levou 3 horas e 53 minutos para resolver uma prova de concurso, já Ana levou 2 horas e 25 minutos para resolver a mesma prova. Comparando o tempo das duas candidatas, qual foi a diferença encontrada? (A) 67 minutos. (B) 75 minutos. (C) 88 minutos. (D) 91 minutos. (E) 94 minutos. 03. (SAAE/SP – Auxiliar de Manutenção Geral – VUNESP) A tabela a seguir mostra o tempo, aproximado, que um professor leva para elaborar cada questão de matemática. O gráfico a seguir mostra o número de questões de matemática que ele elaborou. O tempo, aproximado, gasto na elaboração dessas questões foi (A) 4h e 48min. (B) 5h e 12min. (C) 5h e 28min. (D) 5h e 42min. (E) 6h e 08min. 04. (CEFET – Auxiliar em Administração – CESGRANRIO) Para obter um bom acabamento, um pintor precisa dar duas demãos de tinta em cada parede que pinta. Sr. Luís utiliza uma tinta de secagem rápida, que permite que a segunda demão seja aplicada 50 minutos após a primeira. Ao terminar a aplicação da primeira demão nas paredes de uma sala, Sr. Luís pensou: “a segunda demão poderá ser aplicada a partir das 15h 40min.” Se a aplicação da primeira demão demorou 2 horas e 15 minutos, que horas eram quando Sr. Luís iniciou o serviço? (A) 12h 25 min (B) 12h 35 min (C) 12h 45 min (D) 13h 15 min (E) 13h 25 min 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  42. 42. 41 Comentários 01. Resposta: C. Para resolver esta questão temos que estar atentos ao enunciado, pois é dividir a quantidade em ml pelo tempo em horas, então 90min = 1,5hora. Logo, 250 : 4,5 = 55,555... que é aproximadamente 56. 02. Resposta: C. Como 1h tem 60 minutos. Então a diferença entre as duas é de 60+28=88 minutos. 03. Resposta: D. T = 8 . 4 + 10 . 6 + 15 . 10 + 20 . 5 = = 32 + 60 + 150 + 100 = 342 min Fazendo: 342 / 60 = 5 h, com 42 min (resto) 04. Resposta: B. 15 h 40 – 2 h 15 – 50 min = 12 h 35min RAZÃO Razão5 é o quociente (divisão) entre dois números (quantidades, medidas, grandezas). 𝑎 𝑏 𝑜𝑢 𝑎: 𝑏 , 𝑐𝑜𝑚 𝑏 ≠ 0 Onde: Você tem que ficar atento ao fato da frase que estiver o contexto, pois depende da ordem em que for expressa. Exemplos 01. Em um vestibular para o curso de marketing, participaram 3600 candidatos para 150 vagas. A razão entre o número de vagas e o número de candidatos, nessa ordem, foi de 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑣𝑎𝑔𝑎𝑠 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑜𝑠 = 150 3600 = 1 24 Lemos a fração como: Um vinte e quatro avos ( pronuncia-se “ávos”). 02. Em um processo seletivo diferenciado, os candidatos obtiveram os seguintes resultados: − Alana resolveu 11 testes e acertou 5 − Beatriz resolveu 14 testes e acertou 6 − Cristiane resolveu 15 testes e acertou 7 5 IEZZI, Gelson – Fundamentos da Matemática – Vol. 11 – Financeira e Estatística Descritiva IEZZI, Gelson – Matemática Volume Único http://educacao.globo.com 3 - Razões e proporções; divisão proporcional; regras de três simples e compostas; porcentagens. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  43. 43. 42 − Daniel resolveu 17 testes e acertou 8 − Edson resolveu 21 testes e acertou 9 O candidato contratado, de melhor desempenho, (razão de acertos para número de testes), foi: 𝐴𝑙𝑎𝑛𝑎: 5 11 = 0,45 𝐵𝑒𝑎𝑡𝑟𝑖𝑧: 6 14 = 0,42 𝐶𝑟𝑖𝑠𝑡𝑖𝑎𝑛𝑒: 7 15 = 0,46 𝐷𝑎𝑛𝑖𝑒𝑙: 8 17 = 0,47 𝐸𝑑𝑠𝑜𝑛: 9 21 = 0,42 Daniel teve o melhor desempenho pois 0,47 foi o maior número. - Quando a e b forem medidas de uma mesma grandeza, essas devem ser expressas na mesma unidade. Razões Especiais Escala Muitas vezes precisamos ilustrar distâncias muito grandes de forma reduzida, então utilizamos a escala, que é a razão da medida no mapa com a medida real (ambas na mesma unidade). 𝐸 = 𝑚𝑒𝑑𝑖𝑑𝑎 𝑛𝑜 𝑚𝑎𝑝𝑎 𝑚𝑒𝑑𝑖𝑑𝑎 𝑟𝑒𝑎𝑙 Velocidade Média É a razão entre a distância percorrida e o tempo total de percurso. As unidades utilizadas são km/h, m/s, entre outras. 𝑉 = 𝑑𝑖𝑠𝑡â𝑛𝑐𝑖𝑎 𝑝𝑒𝑐𝑜𝑟𝑟𝑖𝑑𝑎 𝑡𝑒𝑚𝑝𝑜 𝑡𝑜𝑡𝑎𝑙 Densidade É a razão entre a massa de um corpo e o seu volume. As unidades utilizadas são g/cm³, kg/m³, entre outras. 𝐷 = 𝑚𝑎𝑠𝑠𝑎 𝑑𝑜 𝑐𝑜𝑟𝑝𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑜 𝑐𝑜𝑟𝑝𝑜 PROPORÇÃO É uma igualdade entre duas razões. Dada as razões 𝑎 𝑏 e 𝑐 𝑑 , à setença de igualdade 𝑎 𝑏 = 𝑐 𝑑 chama-se proporção6 . Onde: Exemplo 1 - O passageiro ao lado do motorista observa o painel do veículo e vai anotando, minuto a minuto, a distância percorrida. Sua anotação pode ser visualizada na tabela a seguir: 6 IEZZI, Gelson – Fundamentos da Matemática – Vol. 11 – Financeira e Estatística Descritiva IEZZI, Gelson – Matemática Volume Único http://educacao.globo.com 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  44. 44. 43 Distância percorrida (em km) 2 4 6 8 ... Tempo gasto (em min) 1 2 3 4 ... Nota-se que a razão entre a distância percorrida e o tempo gasto para percorrê-la é sempre igual a 2: 2 1 = 2 ; 4 2 = 2 ; 6 3 = 2 ; 8 4 = 2 Então: 2 1 = 4 2 = 6 3 = 8 4 Dizemos que os números da sucessão (2,4,6, 8, ...) são diretamente proporcionais aos números da sucessão (1,2,3,3, 4, ...). Propriedades da Proporção 1 - Propriedade Fundamental O produto dos meios é igual ao produto dos extremos, isto é, a. d = b. c Exemplo Na proporção 45 30 = 9 6 ,(lê-se: “45 está para 30, assim como 9 está para 6.), aplicando a propriedade fundamental, temos: 45.6 = 30.9 = 270 2 - A soma dos dois primeiros termos está para o primeiro (ou para o segundo termo), assim como a soma dos dois últimos está para o terceiro (ou para o quarto termo). 𝑎 𝑏 = 𝑐 𝑑 → 𝑎 + 𝑏 𝑎 = 𝑐 + 𝑑 𝑐 𝑜𝑢 𝑎 + 𝑏 𝑏 = 𝑐 + 𝑑 𝑑 Exemplo 2 3 = 6 9 → 2 + 3 2 = 6 + 9 6 → 5 2 = 15 6 = 30 𝑜𝑢 2 + 3 3 = 6 + 9 9 → 5 3 = 15 9 = 45 3 - A diferença entre os dois primeiros termos está para o primeiro (ou para o segundo termo), assim como a diferença entre os dois últimos está para o terceiro (ou para o quarto termo). 𝑎 𝑏 = 𝑐 𝑑 → 𝑎 − 𝑏 𝑎 = 𝑐 − 𝑑 𝑐 𝑜𝑢 𝑎 − 𝑏 𝑏 = 𝑐 − 𝑑 𝑑 Exemplo 2 3 = 6 9 → 2 − 3 2 = 6 − 9 6 → −1 2 = −3 6 = −6 𝑜𝑢 2 − 3 3 = 6 − 9 9 → −1 3 = −3 9 = −9 4 - A soma dos antecedentes está para a soma dos consequentes, assim como cada antecedente está para o seu consequente. 𝑎 𝑏 = 𝑐 𝑑 → 𝑎 + 𝑐 𝑏 + 𝑑 = 𝑎 𝑏 𝑜𝑢 𝑎 + 𝑐 𝑏 + 𝑑 = 𝑐 𝑑 Exemplo 2 3 = 6 9 → 2 + 6 3 + 9 = 2 3 → 8 12 = 2 3 = 24 𝑜𝑢 2 + 6 3 + 9 = 6 9 → 8 12 = 6 9 = 72 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  45. 45. 44 5 - A diferença dos antecedentes está para a diferença dos consequentes, assim como cada antecedente está para o seu consequente. 𝑎 𝑏 = 𝑐 𝑑 → 𝑎 − 𝑐 𝑏 − 𝑑 = 𝑎 𝑏 𝑜𝑢 𝑎 − 𝑐 𝑏 − 𝑑 = 𝑐 𝑑 Exemplo 6 9 = 2 3 → 6 − 2 9 − 3 = 6 9 → 4 6 = 6 9 = 36 𝑜𝑢 6 − 2 9 − 3 = 2 3 → 4 6 = 2 3 = 12 Problemas envolvendo razão e proporção 01. Em uma fundação, verificou-se que a razão entre o número de atendimentos a usuários internos e o número de atendimento total aos usuários (internos e externos), em um determinado dia, nessa ordem, foi de 3/5. Sabendo que o número de usuários externos atendidos foi 140, pode-se concluir que, no total, o número de usuários atendidos foi: A) 84 B) 100 C) 217 D) 280 E) 350 Resolução: Usuários internos: i Usuários externos: e Sabemos que neste dia foram atendidos 140 externos → e = 140 𝑖 𝑖+𝑒 = 3 5 = 𝑖 𝑖+140 , usando o produto dos meios pelos extremos temos 5i = 3(i + 140) → 5i = 3i + 420 → 5i – 3i = 420 → 2i = 420 → i = 420 2 → i = 210 i + e = 210 + 140 = 350 Resposta “E” 02. Em um concurso participaram 3000 pessoas e foram aprovadas 1800. A razão do número de candidatos aprovados para o total de candidatos participantes do concurso é: A) 2/3 B) 3/5 C) 5/10 D) 2/7 E) 6/7 Resolução: Resposta “B” 03. Em um dia de muita chuva e trânsito caótico, 2/5 dos alunos de certa escola chegaram atrasados, sendo que 1/4 dos atrasados tiveram mais de 30 minutos de atraso. Sabendo que todos os demais alunos chegaram no horário, pode-se afirmar que nesse dia, nessa escola, a razão entre o número de alunos que chegaram com mais de 30 minutos de atraso e número de alunos que chegaram no horário, nessa ordem, foi de: A) 2:3 B) 1:3 C) 1:6 D) 3:4 E) 2:5 Resolução: 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  46. 46. 45 Se 2 5 chegaram atrasados 1 − 2 5 = 3 5 𝑐ℎ𝑒𝑔𝑎𝑟𝑎𝑚 𝑛𝑜 ℎ𝑜𝑟á𝑟𝑖𝑜 2 5 ∙ 1 4 = 1 10 𝑡𝑖𝑣𝑒𝑟𝑎𝑚 𝑚𝑎𝑖𝑠 𝑑𝑒 30 𝑚𝑖𝑛𝑢𝑡𝑜𝑠 𝑑𝑒 𝑎𝑡𝑟𝑎𝑠𝑜 𝑟𝑎𝑧ã𝑜 = 𝑡𝑖𝑣𝑒𝑟𝑎𝑚 𝑚𝑎𝑖𝑠 𝑑𝑒 30 min 𝑑𝑒 𝑎𝑡𝑟𝑎𝑠𝑜 𝑐ℎ𝑒𝑔𝑎𝑟𝑎𝑚 𝑛𝑜 ℎ𝑜𝑟á𝑟𝑖𝑜 = 1 10 3 5 𝑟𝑎𝑧ã𝑜 = 1 10 ∙ 5 3 = 1 6 𝑜𝑢 1: 6 Resposta “C” Questões 01. (Pref. de Cerquilho/SP – Professor de Ensino Fundamental I – Metro Capital Soluções/2018) Durante um campeonato de tiro ao alvo, José disparou 12 vezes. Sabendo que a razão do número de acertos para o total de disparos foi de 3/4 (três quartos), quantos disparos José acertou? (A) 7. (B) 10. (C) 4. (D) 7. (E) 9. 02. (Colégio Pedro II – Professor – Colégio Pedro II/2018) O trabalho infantil é um dos mais graves problemas do país. De acordo com a Pesquisa Nacional de Amostra por Domicílio (PNAD 2015), mais de 2,7 milhões de crianças e adolescentes, de 5 a 17 anos, estão em situação de trabalho no Brasil – no mundo, são 152 milhões que estão no trabalho precoce. Disponível em: http://www.chegadetrabalhoinfantil.org.br. Acesso em: 30 jul. 2018 De acordo com os dados apresentados, a fração que representa o número de meninas em situação de trabalho infantil no Brasil é: (A) 2/3 (B) 5/10 (C) 9/27 (D) 94/100 03. (FUNCABES – Escriturário – PROMUN/2018) Em um concurso público em que participaram 3000 candidatos, 1800 foram aprovados. A razão do número de candidatos aprovados para o total de candidatos participantes do concurso é: (A) 2/3 (B) 3/5 (C) 5/10 (D) 2/7 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  47. 47. 46 04. (MPE/SP – Oficial de Promotoria – VUNESP) Alfredo irá doar seus livros para três bibliotecas da universidade na qual estudou. Para a biblioteca de matemática, ele doará três quartos dos livros, para a biblioteca de física, um terço dos livros restantes, e para a biblioteca de química, 36 livros. O número de livros doados para a biblioteca de física será (A) 16. (B) 22. (C) 20. (D) 24. (E)18. 05. (EBSERH/HUPA – Técnico em Informática – IDECAN) Entre as denominadas razões especiais encontram-se assuntos como densidade demográfica, velocidade média, entre outros. Supondo que a distância entre Rio de Janeiro e São Paulo seja de 430 km e que um ônibus, fretado para uma excursão, tenha feito este percurso em 5 horas e 30 minutos. Qual foi a velocidade média do ônibus durante este trajeto, aproximadamente, em km/h? (A) 71 km/h (B) 76 km/h (C) 78 km/h (D) 81 km/h (E) 86 km/h. 06. (SEPLAN/GO – Perito Criminal – FUNIVERSA) Em uma ação policial, foram apreendidos 1 traficante e 150 kg de um produto parecido com maconha. Na análise laboratorial, o perito constatou que o produto apreendido não era maconha pura, isto é, era uma mistura da Cannabis sativa com outras ervas. Interrogado, o traficante revelou que, na produção de 5 kg desse produto, ele usava apenas 2 kg da Cannabis sativa; o restante era composto por várias “outras ervas”. Nesse caso, é correto afirmar que, para fabricar todo o produto apreendido, o traficante usou (A) 50 kg de Cannabis sativa e 100 kg de outras ervas. (B) 55 kg de Cannabis sativa e 95 kg de outras ervas. (C) 60 kg de Cannabis sativa e 90 kg de outras ervas. (D) 65 kg de Cannabis sativa e 85 kg de outras ervas. (E) 70 kg de Cannabis sativa e 80 kg de outras ervas. 07. (Pref. Maranguape/CE – Prof. de Educação Básica – GR Consultoria e Assessoria) Eu tenho duas réguas, uma que ao quebrar ficou com 24 cm de comprimento e a outra tem 30 cm, portanto, a régua menor é quantos por cento da régua maior? (A) 90% (B) 75% (C) 80% (D) 85% 08. (SAAE/SP – Auxiliar de Manutenção Geral – VUNESP) Uma cidade A, com 120 km de vias, apresentava, pela manhã, 51 km de vias congestionadas. O número de quilômetros de vias congestionadas numa cidade B, que tem 280 km de vias e mantém a mesma proporção que na cidade A, é (A) 119 km. (B) 121 km. (C) 123 km. (D) 125 km. (E) 127 km. 09. (FINEP – Assistente – CESGRANRIO) Maria tinha 450 ml de tinta vermelha e 750 ml de tinta branca. Para fazer tinta rosa, ela misturou certa quantidade de tinta branca com os 450 ml de tinta vermelha na proporção de duas partes de tinta vermelha para três partes de tinta branca. Feita a mistura, quantos ml de tinta branca sobraram? (A) 75 (B) 125 (C) 175 (D) 375 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  48. 48. 47 (E) 675 10. (MP/SP – Auxiliar de Promotoria I – VUNESP) A medida do comprimento de um salão retangular está para a medida de sua largura assim como 4 está para 3. No piso desse salão, foram colocados somente ladrilhos quadrados inteiros, revestindo-o totalmente. Se cada fileira de ladrilhos, no sentido do comprimento do piso, recebeu 28 ladrilhos, então o número mínimo de ladrilhos necessários para revestir totalmente esse piso foi igual a (A) 588. (B) 350. (C) 454. (D) 476. (E) 382. Comentários 01. Resposta: E A razão do número de acertos para o total é de 3 4 e o total de disparos foi 12, assim a proporção fica da seguinte forma: 3 4 = 𝑥 12 4x = 3.12 4x = 36 x = 36 4 x = 9 02. Resposta: C Vamos resolver este pela forma mais simples, nos dados apresentados temos que 2 em cada 3 crianças em situação de trabalho infantil são do sexo masculino, assim sobra apenas 1 em cada 3 para o sexo feminino, em fração seria 1 3 , mas não temos esta resposta, porém temos 9 27 que nada mais é que 1 3 porém não está simplificado, assim 1 3 = 9 27 . 03. Resposta: B De acordo com a ordem que foi expressa devemos ter 1800 no numerador e 3000 será o denominador, ficando assim: 1800 3000 , simplificando: 18 30 = 3 5 04. Resposta: E X = total de livros Matemática = ¾ x, restou ¼ de x Física = 1 3 . 1 4 = 1/12 Química = 36 livros Logo o número de livros é: 3𝑥 4 + 1𝑥 12 + 36 = x Fazendo o m.m.c. dos denominadores (4,12) = 12 Logo: 9𝑥 + 1𝑥 + 432 = 12𝑥 12 → 10𝑥 + 432 = 12𝑥 → 12𝑥 − 10𝑥 = 432 → 2𝑥 = 432 → 𝑥 = 432 2 → 𝑥 = 216 Como a Biblioteca de Física ficou com 1/12x, logo teremos: 1 12 . 216 = 216 12 = 18 05. Resposta: C 5h30min = 5,5h, transformando tudo em hora e suas frações. 430 5,5 = 78,18 𝑘𝑚/ℎ 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  49. 49. 48 06. Resposta: C O enunciado fornece que a cada 5kg do produto temos que 2kg da Cannabis sativa e os demais outras ervas. Podemos escrever em forma de razão 2 5 , logo: 2 5 . 150 = 60𝑘𝑔 𝑑𝑒 𝐶𝑎𝑛𝑛𝑎𝑏𝑖𝑠 𝑠𝑎𝑡𝑖𝑣𝑎 ∴ 150 − 60 = 90𝑘𝑔 𝑑𝑒 𝑜𝑢𝑡𝑟𝑎𝑠 𝑒𝑟𝑣𝑎𝑠 07. Resposta: C Como é a razão do menor pelo maior temos: 24/30 = 0,80. 100 = 80% 08. Resposta: A A razão da cidade A será: 51 120 A da cidade B será: 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑎𝑑𝑎𝑠 280 Como seguem a mesma proporção teremos a seguinte proporção: 51 120 = 𝑥 280 120.x = 51. 280 → x = 14280 / 120 → x = 119 km 09. Resposta: A Como temos duas partes de tinta vermelha para três partes de tinta branca a fração ficará 2 3 temos ainda que ela utilizou 450ml de tinta vermelha, então vamos encontrar o quanto ela utilizou de tinta branca e depois descobrir o quanto sobrou do total (750ml) 2 3 = 450 𝑥 2x = 450. 3 → x = 1350 / 2 → x = 675 ml de tinta branca foram utilizadas. Sobraram: 750 ml – 675 ml = 75 ml 10. Resposta: A Chamando de C o comprimento e de L a largura, teremos a seguinte proporção 𝐶 𝐿 = 4 3 Como no comprimento foram utilizados 28 ladrilhos, teremos C = 28 e substituindo na proporção, ficará: 28 𝐿 = 4 3 4L = 28. 3 L = 84 4 L = 21 ladrilhos Como teremos 28 ladrilhos no comprimento e 21 na largura, a quantidade total será dada pela área dessa região retangular, ou seja, o produto do comprimento pela largura. Assim, o total de ladrilhos foi de 28. 21 = 588. DIVISÃO PROPORCIONAL Uma forma de divisão no qual determinam-se valores (a,b,c,..) que, divididos por quocientes (x,y,z..) previamente determinados, mantêm-se uma razão que não tem variação, também é conhecida como regra de sociedade. Divisão Diretamente Proporcional Divisão em duas partes diretamente proporcionais Para decompor um número M em duas partes A e B diretamente proporcionais a p e q, montamos um sistema com duas equações e duas incógnitas, de modo que a soma das partes seja A + B = M, porém 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  50. 50. 49 𝐴 𝑝 = 𝐵 𝑞 A solução segue de acordo com as propriedades das proporções: 𝐴 𝑝 = 𝐵 𝑞 = 𝐴 + 𝐵 𝑝 + 𝑞 = 𝑀 𝑝 + 𝑞 = 𝑲 O valor de K é que proporciona a solução pois: A = K.p e B = K.q Exemplos 1) Para decompor o número 200 em duas partes A e B diretamente proporcionais a 2 e 3, montaremos o sistema de modo que A + B = 200, cuja solução segue de: 𝐴 2 = 𝐵 3 = 𝐴 + 𝐵 5 = 200 5 = 𝟒𝟎 Fazendo A = K.p e B = K.q; temos que A = 40.2 = 80 e B=40.3 = 120 2) Determinar números A e B diretamente proporcionais a 8 e 3, sabendo-se que a diferença entre eles é 40. Para resolver este problema basta tomar A – B = 40 e escrever: 𝐴 8 = 𝐵 3 = 𝐴 − 𝐵 5 = 40 5 = 𝟖 Fazendo A = K.p e B = K.q; temos que A = 8.8 = 64 e B = 8.3 = 24 Divisão em várias partes diretamente proporcionais Para decompor um número M em partes x1, x2, ..., xn diretamente proporcionais a p1, p2, ..., pn, deve- se montar um sistema com n equações e n incógnitas, sendo as somas x1 + x2 + ... + xn= M e p1 + p2 + ... + pn = P. 𝑥1 𝑝1 = 𝑥2 𝑝2 = ⋯ = 𝑥𝑛 𝑝𝑛 A solução segue das propriedades das proporções: 𝒙𝟏 𝒑𝟏 = 𝒙𝟐 𝒑𝟐 = ⋯ = 𝒙𝒏 𝒑𝒏 = 𝒙𝟏 + 𝒙𝟐 + ⋯ + 𝒙𝒏 𝒑𝟏 + 𝒑𝟐 + ⋯ 𝒑𝒏 = 𝑴 𝑷 = 𝑲 Observa-se que partimos do mesmo princípio da divisão em duas partes proporcionais. Exemplos 1) Para decompor o número 240 em três partes A, B e C diretamente proporcionais a 2, 4 e 6, deve- se montar um sistema com 3 equações e 3 incógnitas tal que A + B + C = 240 e 2 + 4 + 6 = P. Assim: 𝐴 2 = 𝐵 4 = 𝐶 6 = 𝐴 + 𝐵 + 𝐶 𝑃 = 240 12 = 𝟐𝟎 Logo: A = 20.2 = 40; B = 20.4 = 80 e C = 20.6 =120 2) Determinar números A, B e C diretamente proporcionais a 2, 4 e 6, de modo que 2A + 3B - 4C = 480 A solução segue das propriedades das proporções: 𝐴 2 = 𝐵 4 = 𝐶 6 = 2𝐴 + 3𝐵 − 4𝐶 2.2 + 3.4 − 4.6 = 480 −8 = −𝟔𝟎 Logo: A = - 60.2 = -120 ; B = - 60.4 = - 240 e C = - 60.6 = - 360. Também existem proporções com números negativos. 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ
  51. 51. 50 Divisão Inversamente Proporcional Divisão em duas partes inversamente proporcionais Para decompor um número M em duas partes A e B inversamente proporcionais a p e q, deve-se decompor este número M em duas partes A e B diretamente proporcionais a 1/p e 1/q, que são, respectivamente, os inversos de p e q. Assim basta montar o sistema com duas equações e duas incógnitas tal que A + B = M. Desse modo: 𝐴 1/𝑝 = 𝐵 1/𝑞 = 𝐴 + 𝐵 1/𝑝 + 1/𝑞 = 𝑀 1/𝑝 + 1/𝑞 = 𝑀. 𝑝. 𝑞 𝑝 + 𝑞 = 𝑲 O valor de K proporciona a solução pois: A = K/p e B = K/q. Exemplos 1) Para decompor o número 120 em duas partes A e B inversamente proporcionais a 2 e 3, deve-se montar o sistema tal que A + B = 120, de modo que: 𝐴 1/2 = 𝐵 1/3 = 𝐴 + 𝐵 1/2 + 1/3 = 120 5/6 = 120.6 5 = 144 Assim A = K/p → A = 144/2 = 72 e B = K/q → B = 144/3 = 48 2) Determinar números A e B inversamente proporcionais a 6 e 8, sabendo-se que a diferença entre eles é 10. Para resolver este problema, tomamos A – B = 10. Assim: 𝐴 1/6 = 𝐵 1/8 = 𝐴 − 𝐵 1/6 − 1/8 = 10 1/24 = 240 Assim A = K/p → A = 240/6 = 40 e B = K/q → B = 240/8 = 30 Divisão em várias partes inversamente proporcionais Para decompor um número M em n partes x1, x2, ..., xn inversamente proporcionais a p1, p2, ..., pn, basta decompor este número M em n partes x1, x2, ..., xn diretamente proporcionais a 1/p1, 1/p2, ..., 1/pn. A montagem do sistema com n equações e n incógnitas, assume que x1 + x2 + ... + xn= M e além disso: 𝑥1 1/𝑝1 = 𝑥2 1/𝑝2 = ⋯ = 𝑥𝑛 1/𝑝𝑛 Cuja solução segue das propriedades das proporções: 𝒙𝟏 𝟏/𝒑𝟏 = 𝒙𝟐 𝟏/𝒑𝟐 = ⋯ = 𝒙𝒏 𝟏 𝒑𝒏 = 𝒙𝟏 + 𝒙𝟐 + ⋯ + 𝒙𝒏 𝟏 𝒑𝟏 + 𝟏 𝒑𝟐 + ⋯ 𝟏 𝒑𝒏 = 𝑴 𝟏 𝒑𝟏 + 𝟏 𝒑𝟐 + ⋯ + 𝟏 𝒑𝒏 = 𝑲 Exemplos 1) Para decompor o número 220 em três partes A, B e C inversamente proporcionais a 2, 4 e 6, deve- se montar um sistema com 3 equações e 3 incógnitas, de modo que A + B + C = 220. Desse modo: 𝐴 1/2 = 𝐵 1/4 = 𝐶 1/6 = 𝐴 + 𝐵 + 𝐶 1/2 + 1/4 + 1/6 = 220 11/12 = 240 A solução é A = K/p1 → A = 240/2 = 120, B = K/p2 → B = 240/4 = 60 e C = K/p3 → C = 240/6 = 40 2) Para obter números A, B e C inversamente proporcionais a 2, 4 e 6, de modo que 2A + 3B - 4C = 10, devemos montar as proporções: 𝐴 1/2 = 𝐵 1/4 = 𝐶 1/6 = 2𝐴 + 3𝐵 − 4𝐶 2/2 + 3/4 − 4/6 = 10 13/12 = 120 13 1671811 E-book gerado especialmente para CARLA DIAS FERRAZ

×