SlideShare uma empresa Scribd logo
Definição de Matrizes
Matriz: Tabela de elementos dispostos em linhas e colunas.
Amxn
=
a a a
a a a
a a a
n
n
m m mn
11 12 1
21 22 2
1 2


  















= [aij
]mxn
matriz A de m linhas e n colunas
Elemento da linha i
e coluna j
Elemento da 2 ª linha e 1ª coluna
TIPOS DE MATRIZES
1 2 2
1 1 3
4 1 2
−










 Matriz quadrada
m = n (x linhas = x colunas)
Esta é uma matriz quadrada de ordem 3 (3 x 3)
 Diagonais
Só tem sentido falar de diagonais
em matrizes quadradas.
Diagonal principal (i = j) Diagonal secundária = (n + 1 = i + j)
Elementos da
diagonal principal:
1, 1 e 2
Elementos da
diagonal secundária:
2, 1 e 4
2 1 1
0 1 2
0 0 4
−









 Matriz triangular superior
Matrizes
Triangulares
2 0 0 0
1 1 0 0
2 3 4 0
4 5 7 2














 Matriz triangular inferior










500
020
004
Elementos acima ou abaixo
da diagonal principal são
todos nulos.
Lembre-se o ou da matemática não
é exclusivo, ou seja, vale também
quando ambos são verdade!
Esta também é uma matriz triangular!
Falou em diagonal, falou em matriz
quadrada! Todas as triangulares
são quadradas.
Casos especiais
de Matrizes
Triangulares.  Matriz identidade
2 0 0
0 4 0
0 0 7










1 0 0
0 1 0
0 0 1










 Matriz diagonal
Apenas os elementos da diagonal
principal são diferentes de zero
A identidade é uma matriz
diagonal cujo elementos da
diagonal principal são todos iguais
a um.
Falou em diagonal, falou em matriz
quadrada! Todas as triangulares
são quadradas. Chatice hein!
Todas as Triangulares são quadradas, logo, a diagonal e a identidade são quadradas.
Chamamos a matriz acima de I3
(identidade de ordem 3)
No geral, In onde n é a ordem da
matriz.
0 0 0 0
0 0 0 0
0 0 0 0










 Matriz nula
Todos os elementos são nulos.
Chamamos a matriz nula de Omxn
Então essa é O3x4
A Matriz nula não precisa ser
quadrada!
 Igualdade de Matrizes.
Duas matrizes são ditas idênticas
quando seus elementos
correspondentes são iguais.









 −
421
213
112









 −
421
213
112
Caso ao olhar
essas duas
matrizes e não
ver que elas
são iguais,
favor procurar
o oculista.
Transposta  troca de linha por coluna (m x n => n x m )
23
41
30
12
x
A










−
= .
431
102
=A
32
t
x





 −
Matriz A transposta
Simétrica  Matriz quadrada tal que At
= A
22
23
31
x
A 





= .
23
31
=A
22
t
x






Matriz A transposta
Anti-Simétrica  Matriz quadrada tal que At
= -A
33
013
102
320
x
A










−−
−
= .
013
102
320
=A
33
t
x










−−
−
=
Os elementos
da transposta
são os opostos
da original.
OPERAÇÕES COM MATRIZES
Adição










−+









 −
01
52
40
52
04
11










=
53
52
31
Dadas duas matrizes A e B, somaremos os elementos de A com seus
correspondentes em B, ou seja, se tomarmos um elemento na primeira linha
e primeira coluna de A devemos somá-los com o elemento na primeira linha
e primeira coluna de B.
É sempre possível
somar matrizes?
Não!
Somente quando
estas forem de
mesma ordem.
+ =
Se liguem, o mesmo vale pra subtração.
Multiplicação por escalar
Multiplicação por escalar ( número real qualquer)  multiplicamos todos os
elementos da matriz por este número.






−
−
31
102
.2 





−
−−
=
3.21.2
10.22.2






−
−−
=
62
204
Matriz A Matriz -2A
Multiplicação de matriz por matriz
CONDIÇÃO: Só podemos efetuar o produto de duas matrizes Amxn e Blxp se o
número de colunas da primeira for igual ao número de linhas da segunda (n = l).
A matriz C = AB será de ordem m x p.
22
23
40
11
.
35
24
12
x
x





 −










23
4.3)1(50.31.5
4.2)1(40.21.4
4.1)1(20.11.2
x










+−+
+−+
+−+
=










=
75
44
22
Em geral AB ≠ BA, ou seja, o produto de matrizes não comutativo
2
1
2
1
4
2
4
2
5
3
5
3
Pode ser possível efetuar AB e não ser possível efetuar BA.
O produto da primeira linha pela
primeira coluna, gera o elemento C11.
O produto da primeira linha pela
segunda coluna, gera o elemento C12.
Ihhh...
Aqui
fu...!
22
23
40
11
.
35
24
12
x
x





 −




















=
75
44
222.1 + 1.0 2.(-1) + 1.4
4.1 + 2.0 4.(-1) + 2.4
5.1 + 3.0 5.(-1) + 3.4
Observe,
multiplicamos
ordenadamente os
termos, ou seja,
multiplicamos o
primeiro elemento
da elemento com o
primeiro da coluna e
por aí vai...
EXEMPLO 1
1) Seja A = e seja B =
.
Calcule A + B.
11
EXEMPLO 2
2) Seja A = e seja B = .
Calcule A – B.
12
EXEMPLO 3
3) Calcule o produto das matrizes:
13
EXEMPLO 4
4) A mátriz A de ordem 2 x 3 definida por
dada por:
a) b) c)
d) e)
14
EXEMPLO 5
5) Dadas as matrizes
calcule a matriz A – Bt
é:
15
Professor Antônio Carlos Carneiro
Barroso
 Graduado Em Matemática pela UFBA
Graduado em Ciências naturais pela UFBA
Pós graduado em Metodologia e Didática de
ensino Superior
www.ensinodematemtica.blogspot.com.br
www.youtube.com/accbarroso
www.facebook.com/acmatematico
www.twitter.com/profbarroso
Salvador-Ba

Mais conteúdo relacionado

Mais procurados (20)

Matrizes
MatrizesMatrizes
Matrizes
 
Matrizes
MatrizesMatrizes
Matrizes
 
Determinantes 2º ano
Determinantes 2º anoDeterminantes 2º ano
Determinantes 2º ano
 
Matrizes 2013
Matrizes 2013Matrizes 2013
Matrizes 2013
 
Matrizes
MatrizesMatrizes
Matrizes
 
Introdução ao estudo de Matrizes
Introdução ao estudo de MatrizesIntrodução ao estudo de Matrizes
Introdução ao estudo de Matrizes
 
Matrizes
MatrizesMatrizes
Matrizes
 
Regra de sarrus
Regra de sarrusRegra de sarrus
Regra de sarrus
 
Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).
 
Matriz[1]
Matriz[1]Matriz[1]
Matriz[1]
 
Matrizes aula 01
Matrizes aula 01Matrizes aula 01
Matrizes aula 01
 
Matematica
MatematicaMatematica
Matematica
 
Matrizes ppt
Matrizes pptMatrizes ppt
Matrizes ppt
 
Matemática - Vídeo Aula Matrizes
Matemática - Vídeo Aula MatrizesMatemática - Vídeo Aula Matrizes
Matemática - Vídeo Aula Matrizes
 
Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - Determinante
 
Matrizes
MatrizesMatrizes
Matrizes
 
Matrizes determinantes
Matrizes determinantesMatrizes determinantes
Matrizes determinantes
 
Matrizes
MatrizesMatrizes
Matrizes
 
Aula de matrizes
Aula de matrizesAula de matrizes
Aula de matrizes
 

Destaque

Curiosidades sobre matriz
Curiosidades sobre matrizCuriosidades sobre matriz
Curiosidades sobre matrizJose Silva
 
How to Download & Install Print Drivers MAC
How to Download & Install Print Drivers MACHow to Download & Install Print Drivers MAC
How to Download & Install Print Drivers MACMelissa Heck
 
Língua Portuguesa - Orações Subordinadas Adverbiais e Reduzidas
Língua Portuguesa - Orações Subordinadas Adverbiais e ReduzidasLíngua Portuguesa - Orações Subordinadas Adverbiais e Reduzidas
Língua Portuguesa - Orações Subordinadas Adverbiais e ReduzidasChrislaine1999
 
Projeto email sem_nome_escola
Projeto email sem_nome_escolaProjeto email sem_nome_escola
Projeto email sem_nome_escolaWilson Barbieri
 
Projeto de pesquisa: Jogando dominó de matrizes e determinantes
Projeto de pesquisa: Jogando dominó de matrizes e determinantesProjeto de pesquisa: Jogando dominó de matrizes e determinantes
Projeto de pesquisa: Jogando dominó de matrizes e determinantesWesley Freitas
 
Matrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesMatrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesslidericardinho
 

Destaque (9)

Curiosidades sobre matriz
Curiosidades sobre matrizCuriosidades sobre matriz
Curiosidades sobre matriz
 
How to Download & Install Print Drivers MAC
How to Download & Install Print Drivers MACHow to Download & Install Print Drivers MAC
How to Download & Install Print Drivers MAC
 
Língua Portuguesa - Orações Subordinadas Adverbiais e Reduzidas
Língua Portuguesa - Orações Subordinadas Adverbiais e ReduzidasLíngua Portuguesa - Orações Subordinadas Adverbiais e Reduzidas
Língua Portuguesa - Orações Subordinadas Adverbiais e Reduzidas
 
Matrizes 2014
Matrizes 2014Matrizes 2014
Matrizes 2014
 
Projeto email sem_nome_escola
Projeto email sem_nome_escolaProjeto email sem_nome_escola
Projeto email sem_nome_escola
 
Projeto de pesquisa: Jogando dominó de matrizes e determinantes
Projeto de pesquisa: Jogando dominó de matrizes e determinantesProjeto de pesquisa: Jogando dominó de matrizes e determinantes
Projeto de pesquisa: Jogando dominó de matrizes e determinantes
 
Jogo de Domino em grupo
Jogo de Domino em grupoJogo de Domino em grupo
Jogo de Domino em grupo
 
Matrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesMatrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslineares
 
Oracoes subordinadas
Oracoes subordinadasOracoes subordinadas
Oracoes subordinadas
 

Semelhante a Matrizes 17122016

Aula_1_Matrizes.pptx
Aula_1_Matrizes.pptxAula_1_Matrizes.pptx
Aula_1_Matrizes.pptxCntiaCastro14
 
01. Matrizes_Determinantes_SistemasLineares.pptx
01. Matrizes_Determinantes_SistemasLineares.pptx01. Matrizes_Determinantes_SistemasLineares.pptx
01. Matrizes_Determinantes_SistemasLineares.pptxJosivaldoFarias1
 
áLgebra linear 01 aula 01-matrizes e cálculo determinantes
áLgebra linear 01 aula 01-matrizes e cálculo determinantesáLgebra linear 01 aula 01-matrizes e cálculo determinantes
áLgebra linear 01 aula 01-matrizes e cálculo determinantesPedro Povoleri
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]guest202a61
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]Antonio Carneiro
 
Matriz aula [modo de compatibilidade]
Matriz aula [modo de compatibilidade]Matriz aula [modo de compatibilidade]
Matriz aula [modo de compatibilidade]Alvaro6601
 
áLgebra linear 01 aula 01-matrizes e cálculo determinantes (2)
áLgebra linear 01 aula 01-matrizes e cálculo determinantes (2)áLgebra linear 01 aula 01-matrizes e cálculo determinantes (2)
áLgebra linear 01 aula 01-matrizes e cálculo determinantes (2)Pedro Povoleri
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - DeterminantesAulasEnsinoMedio
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - DeterminantesAulasEnsinoMedio
 

Semelhante a Matrizes 17122016 (20)

2º ano matriz
2º ano matriz2º ano matriz
2º ano matriz
 
Aula_1_Matrizes.pptx
Aula_1_Matrizes.pptxAula_1_Matrizes.pptx
Aula_1_Matrizes.pptx
 
01. Matrizes_Determinantes_SistemasLineares.pptx
01. Matrizes_Determinantes_SistemasLineares.pptx01. Matrizes_Determinantes_SistemasLineares.pptx
01. Matrizes_Determinantes_SistemasLineares.pptx
 
Matrizes.pptx
Matrizes.pptxMatrizes.pptx
Matrizes.pptx
 
áLgebra linear 01 aula 01-matrizes e cálculo determinantes
áLgebra linear 01 aula 01-matrizes e cálculo determinantesáLgebra linear 01 aula 01-matrizes e cálculo determinantes
áLgebra linear 01 aula 01-matrizes e cálculo determinantes
 
Matrizes
MatrizesMatrizes
Matrizes
 
Matriz alunos
Matriz   alunosMatriz   alunos
Matriz alunos
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]
 
Matrizes
MatrizesMatrizes
Matrizes
 
Matriz 1 2012
Matriz 1   2012Matriz 1   2012
Matriz 1 2012
 
Matrizes e determinantes
Matrizes e determinantesMatrizes e determinantes
Matrizes e determinantes
 
2 ano matrizes 2010
2 ano   matrizes 20102 ano   matrizes 2010
2 ano matrizes 2010
 
Matriz aula [modo de compatibilidade]
Matriz aula [modo de compatibilidade]Matriz aula [modo de compatibilidade]
Matriz aula [modo de compatibilidade]
 
áLgebra linear 01 aula 01-matrizes e cálculo determinantes (2)
áLgebra linear 01 aula 01-matrizes e cálculo determinantes (2)áLgebra linear 01 aula 01-matrizes e cálculo determinantes (2)
áLgebra linear 01 aula 01-matrizes e cálculo determinantes (2)
 
Aula_1_Matrizes.pptx
Aula_1_Matrizes.pptxAula_1_Matrizes.pptx
Aula_1_Matrizes.pptx
 
Matrizes hoje
Matrizes hojeMatrizes hoje
Matrizes hoje
 
10 - Matrizes
10 - Matrizes10 - Matrizes
10 - Matrizes
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
 

Mais de Antonio Carneiro (20)

Volumes 17122016
Volumes 17122016Volumes 17122016
Volumes 17122016
 
Sessão de cônicas 17122016
Sessão de cônicas 17122016Sessão de cônicas 17122016
Sessão de cônicas 17122016
 
Angulos 17122016
Angulos 17122016Angulos 17122016
Angulos 17122016
 
Estudodareta 17122016
Estudodareta 17122016Estudodareta 17122016
Estudodareta 17122016
 
Função de 2º grau 17122016
Função de 2º grau 17122016Função de 2º grau 17122016
Função de 2º grau 17122016
 
Polinomios 17122016
Polinomios 17122016Polinomios 17122016
Polinomios 17122016
 
Introduomatemticacomercialefinanceira 17122016
Introduomatemticacomercialefinanceira 17122016Introduomatemticacomercialefinanceira 17122016
Introduomatemticacomercialefinanceira 17122016
 
Matriz
MatrizMatriz
Matriz
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Ângulo
ÂnguloÂngulo
Ângulo
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
Estudo da reta
Estudo da retaEstudo da reta
Estudo da reta
 
Matemática Comercial e Financeira
 Matemática Comercial e Financeira Matemática Comercial e Financeira
Matemática Comercial e Financeira
 
Sessões Cônicas
 Sessões Cônicas Sessões Cônicas
Sessões Cônicas
 
Triângulo
TriânguloTriângulo
Triângulo
 
Produtos notaveis
Produtos notaveisProdutos notaveis
Produtos notaveis
 
Função Exponencial
Função ExponencialFunção Exponencial
Função Exponencial
 
Apresentação 3
Apresentação 3Apresentação 3
Apresentação 3
 
Apresentação4 6ª a vesp
Apresentação4 6ª a vespApresentação4 6ª a vesp
Apresentação4 6ª a vesp
 
Apresentação5 ativ 5ª a vesp
Apresentação5 ativ 5ª a vespApresentação5 ativ 5ª a vesp
Apresentação5 ativ 5ª a vesp
 

Último

Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leiteprofesfrancleite
 
bem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animalbem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animalcarlamgalves5
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaCludiaRodrigues693635
 
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docxCONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docxEduardaMedeiros18
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...LuizHenriquedeAlmeid6
 
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdfprova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdfssuser06ee57
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - FalamansaMary Alvarenga
 
Multiplicação - Caça-número
Multiplicação - Caça-número Multiplicação - Caça-número
Multiplicação - Caça-número Mary Alvarenga
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptxlucioalmeida2702
 
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdfARIANAMENDES11
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfManuais Formação
 
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdfLabor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdfemeio123
 
Atividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfAtividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfmaria794949
 
Nós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaNós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaIlda Bicacro
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosbiancaborges0906
 
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docxAtividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docxSolangeWaltre
 
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxSão Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxMartin M Flynn
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxGraycyelleCavalcanti
 
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdfHans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdfrarakey779
 
Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-carloseduardogonalve36
 

Último (20)

Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leite
 
bem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animalbem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animal
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditiva
 
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docxCONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
 
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdfprova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - Falamansa
 
Multiplicação - Caça-número
Multiplicação - Caça-número Multiplicação - Caça-número
Multiplicação - Caça-número
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptx
 
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
 
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdfLabor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdf
 
Atividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfAtividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdf
 
Nós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaNós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-Nova
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anos
 
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docxAtividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
 
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxSão Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptx
 
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdfHans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
 
Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-
 

Matrizes 17122016

  • 1. Definição de Matrizes Matriz: Tabela de elementos dispostos em linhas e colunas. Amxn = a a a a a a a a a n n m m mn 11 12 1 21 22 2 1 2                     = [aij ]mxn matriz A de m linhas e n colunas Elemento da linha i e coluna j Elemento da 2 ª linha e 1ª coluna
  • 2. TIPOS DE MATRIZES 1 2 2 1 1 3 4 1 2 −            Matriz quadrada m = n (x linhas = x colunas) Esta é uma matriz quadrada de ordem 3 (3 x 3)  Diagonais Só tem sentido falar de diagonais em matrizes quadradas. Diagonal principal (i = j) Diagonal secundária = (n + 1 = i + j) Elementos da diagonal principal: 1, 1 e 2 Elementos da diagonal secundária: 2, 1 e 4
  • 3. 2 1 1 0 1 2 0 0 4 −           Matriz triangular superior Matrizes Triangulares 2 0 0 0 1 1 0 0 2 3 4 0 4 5 7 2                Matriz triangular inferior           500 020 004 Elementos acima ou abaixo da diagonal principal são todos nulos. Lembre-se o ou da matemática não é exclusivo, ou seja, vale também quando ambos são verdade! Esta também é uma matriz triangular! Falou em diagonal, falou em matriz quadrada! Todas as triangulares são quadradas.
  • 4. Casos especiais de Matrizes Triangulares.  Matriz identidade 2 0 0 0 4 0 0 0 7           1 0 0 0 1 0 0 0 1            Matriz diagonal Apenas os elementos da diagonal principal são diferentes de zero A identidade é uma matriz diagonal cujo elementos da diagonal principal são todos iguais a um. Falou em diagonal, falou em matriz quadrada! Todas as triangulares são quadradas. Chatice hein! Todas as Triangulares são quadradas, logo, a diagonal e a identidade são quadradas. Chamamos a matriz acima de I3 (identidade de ordem 3) No geral, In onde n é a ordem da matriz.
  • 5. 0 0 0 0 0 0 0 0 0 0 0 0            Matriz nula Todos os elementos são nulos. Chamamos a matriz nula de Omxn Então essa é O3x4 A Matriz nula não precisa ser quadrada!  Igualdade de Matrizes. Duas matrizes são ditas idênticas quando seus elementos correspondentes são iguais.           − 421 213 112           − 421 213 112 Caso ao olhar essas duas matrizes e não ver que elas são iguais, favor procurar o oculista.
  • 6. Transposta  troca de linha por coluna (m x n => n x m ) 23 41 30 12 x A           − = . 431 102 =A 32 t x       − Matriz A transposta Simétrica  Matriz quadrada tal que At = A 22 23 31 x A       = . 23 31 =A 22 t x       Matriz A transposta Anti-Simétrica  Matriz quadrada tal que At = -A 33 013 102 320 x A           −− − = . 013 102 320 =A 33 t x           −− − = Os elementos da transposta são os opostos da original.
  • 7. OPERAÇÕES COM MATRIZES Adição           −+           − 01 52 40 52 04 11           = 53 52 31 Dadas duas matrizes A e B, somaremos os elementos de A com seus correspondentes em B, ou seja, se tomarmos um elemento na primeira linha e primeira coluna de A devemos somá-los com o elemento na primeira linha e primeira coluna de B. É sempre possível somar matrizes? Não! Somente quando estas forem de mesma ordem. + = Se liguem, o mesmo vale pra subtração.
  • 8. Multiplicação por escalar Multiplicação por escalar ( número real qualquer)  multiplicamos todos os elementos da matriz por este número.       − − 31 102 .2       − −− = 3.21.2 10.22.2       − −− = 62 204 Matriz A Matriz -2A
  • 9. Multiplicação de matriz por matriz CONDIÇÃO: Só podemos efetuar o produto de duas matrizes Amxn e Blxp se o número de colunas da primeira for igual ao número de linhas da segunda (n = l). A matriz C = AB será de ordem m x p. 22 23 40 11 . 35 24 12 x x       −           23 4.3)1(50.31.5 4.2)1(40.21.4 4.1)1(20.11.2 x           +−+ +−+ +−+ =           = 75 44 22 Em geral AB ≠ BA, ou seja, o produto de matrizes não comutativo 2 1 2 1 4 2 4 2 5 3 5 3 Pode ser possível efetuar AB e não ser possível efetuar BA. O produto da primeira linha pela primeira coluna, gera o elemento C11. O produto da primeira linha pela segunda coluna, gera o elemento C12. Ihhh... Aqui fu...!
  • 10. 22 23 40 11 . 35 24 12 x x       −                     = 75 44 222.1 + 1.0 2.(-1) + 1.4 4.1 + 2.0 4.(-1) + 2.4 5.1 + 3.0 5.(-1) + 3.4 Observe, multiplicamos ordenadamente os termos, ou seja, multiplicamos o primeiro elemento da elemento com o primeiro da coluna e por aí vai...
  • 11. EXEMPLO 1 1) Seja A = e seja B = . Calcule A + B. 11
  • 12. EXEMPLO 2 2) Seja A = e seja B = . Calcule A – B. 12
  • 13. EXEMPLO 3 3) Calcule o produto das matrizes: 13
  • 14. EXEMPLO 4 4) A mátriz A de ordem 2 x 3 definida por dada por: a) b) c) d) e) 14
  • 15. EXEMPLO 5 5) Dadas as matrizes calcule a matriz A – Bt é: 15
  • 16. Professor Antônio Carlos Carneiro Barroso  Graduado Em Matemática pela UFBA Graduado em Ciências naturais pela UFBA Pós graduado em Metodologia e Didática de ensino Superior www.ensinodematemtica.blogspot.com.br www.youtube.com/accbarroso www.facebook.com/acmatematico www.twitter.com/profbarroso Salvador-Ba