Função do 2º grau
Função do 2º grau
A função do 2º grau, também denominada
função quadrática, é definida pela expressão
do tipo:
y = f(x) = ax² + bx + c, onde a, b e c são
constantes reais e Exemplos:
a) y=x²+3x+2 ( a=1; b=3; c=2 )
b) y=x² ( a=1; b=0; c=0 )
c) y=x²-4 ( a=1; b=0; c=-4 )
Conteúdo para 8ª série
Professor Antônio Carlos Carneiro Barroso
Graduado em Matemática pela UFBA
Graduado em Ciências naturais pela UFBA
Pós graduado em Metodologia e Didática de ensino
Superior
www.ensinodematemtica.blogspot.com.br
www.youtube.com/accbarroso
www.facebook.com/acmatematico
www.twitter.com/profbarroso
Salvador-Ba
Gráficos:
Gráfico de uma função do 2º grau:
O gráfico de uma função quadrática
é uma parábola
Podemos visualizar uma parábola em um
parque de diversões, simplesmente olhando
para a montanha russa.
 Sua representação gráfica é dada em torno de
eixos:
Veja:
A Parábola:
Professor Antonio Carlos
Observe os pontos:
 Notem que os pontos: A e A`, B e B`, C e C` são
simétricos (estão a mesma distância do eixo de
simetria). O ponto V representa o vértice da parábola, é
a partir dele que determinamos todos os outros pontos.
Coordenadas do vértice
 A coordenada x do vértice da parábola pode ser
determinada por .
 Exemplo: Determine as coordenada do vértice da
parábola y=x²-4x+3
Temos: a=1, b=-4 e c=3
Logo, a coordenada x será igual a 2, mas e a
coordenada y?
Fique atento:
Simples: Vamos substituir o valor obtido da coordenada
x e determinar o valor da coordenada y.
Assim, para determinarmos a coordenada y da parábola
y=x²-4x+3, devemos substituir o valor de x por 2.
y = (2)²-4.(2)+3 = 4-8+3=-1
Logo, as coordenadas do vértice serão V=(2,-1)
Portanto, para determinarmos as coordenadas do
vértice de uma parábola, achamos o valor da
coordenada x (através de x=-b/2a) e substituindo este
valor na função, achamos a coordenada y!!!
Raízes:
Raízes (ou zeros) da função do 2º grau
Denominam-se raízes da função do 2º grau os
valores de x para os quais ela se anula.
y=f(x)=0
Exemplo: na função y=x²-4x+3, que acima
acabamos de determinar as coordenadas de
seus vértices, as raízes da função serão x=1 e
x`=3.
Vejamos o gráfico:
O gráfico:
Resolva a função:
Notem que quando x=1 e x`=3, a parábola intercepta
("corta") o eixo x.
Como determinar a raiz ou zero da função do 2º
grau?
Simplesmente aplicando a resolução de equações do 2º
grau, já vista na seção anterior.
Exemplo: determine a raiz da função y=x²+5x+6:
Fazendo y=f(x)=0, temos x²+5x+6=0
Agora basta resolver a equação aplicando a fórmula de
Bháskara.
x²+5x+6=0
Acharemos que x = -2 e x` = -3.
Concavidade da parábola
Explicarei esta parte com um simples desenho.
a>0a<0Os desenhos até que ficaram bonitinhos,
mas isso não importa neste momento. O que
nos importa agora é que quando a>0, a
concavidade da parábola está voltada para cima
(carinha feliz) e quando a<0, a parábola está
voltada para baixo (carinha triste).
Exemplos:
y = f(x) = x² - 4
y = f(x) = -x² + 4
Nota:
Quando a concavidade está voltada para cima (a>0), o
vértice representa o valor mínimo da função. Quando a
concavidade está voltada para baixo (a<0), o vértice
representa o valor máximo.
Quando o discriminante é igual a zero
Quando o valor de , o vértice a parábola encontra-se no
eixo x. A coordenada y será igual a zero.
Exemplo: y=f(x)=x²+2x+1
x²+2x+1=0
x=x`=-b/2a=-1
As coordenadas do vértice serão V=(-1,0)
Gráfico:
Estudo do delta:
Quando o descriminante é maior que zero
Quando o valor de , a parábola intercepta o eixo
x em dois pontos. (São as raízes ou zeros da
função vistos anteriormente).
Exemplo: y = f(x) = x²-4x+3
x²-4x+3=0
x=1, x`=3
Gráfico:
Gráfico:
Delta<0
Quando o discriminante é menor que
zero
Quando o valor de , a parábola não
intercepta o eixo x. Não há raízes ou
zeros da função.
Exemplo: y = f(x) = x²-x+2
x²-x+2=0
Gráfico:
a>0 e a<0
Olhe o gráfico:
Esboçando o gráfico
Para finalizarmos (ufa!), vamos desenhar
o gráfico da função
y=-x²-4x-3
1ª etapa: Raízes ou zeros da função
-x²-4x-3=0
Aplicando a fórmula de Bháskara
x=-1, x`=-3
Veja as etapas:
2ª etapa: Coordenadas do vértice
Coordenada x (=-b/2a): -(-4)/2.(-1)=-2
Coordenada y: Basta substituir o valor de x
obtido na função
y = -x²-4x-3 = -(-2)²-4.(-2)-3 = -4+8-3 = 1
Portanto, V=(-2,1)
3ª etapa: Concavidade da parábola
y=-x²-4x-3
Como a=-1<0, a concavidade estará voltada
para baixo
Olhe o gráfico:
Exercício:
1) As equações abaixo definem funções
do 2º grau. Para cada uma dessas
funções, ache as coordenadas do vértice
que a representa:
a) f(x)= x² - 4x + 5
b) f(x)= x² +4x - 6
c) f(x)= 2x² +5x - 4
d) f(x)= -x² + 6x - 2
e) f(x)= -x² - 4x +1
Resolva:
2) Determine, se existirem, os zeros reais
das funções seguintes:
a) f(x)= 3x² - 7x + 2
b) f(x)= -x² + 3x - 4
c) f(x)= -x² + 3/2x + 1
d) f(x)= x² -4
e) f(x)= 3x²
Não existe zeros em (b)
Antonio Carlos carneiro Barroso:
3) Construa o gráfico das seguintes
funções:
a) f(x)= x² - 16x + 63
b) f(x)= 2x² - 7x + 3
c) f(x)= 4x² - 4x +1
d) f(x)= -x² + 4x - 5
e) f(x)= -2x² +8x- 6
Faça:
4) Em uma partida de vôlei, um jogador deu um
saque em que a bola atingiu uma altura h em
metros, num tempo t, em segundos, de acordo
com a relação h(t) = -t² + 8t.
a) Em que instante a bola atingiu a altura
máxima?
[Nota]: observem o vértice
b) De quantos metros foi a altura máxima
alcançada pela bola?
c) Esboce o gráfico que represente esta
situação.
Respostas: 4: a)4s; b) 16m
Função do 1º grau:
Vamos iniciar o estudo da função do 1º grau, lembrando
o que é uma correspondência:
Correspondência: é qualquer conjunto de pares
ordenados onde o primeiro elemento pertence ao
primeiro conjunto dado e o segundo elemento pertence
ao segundo conjunto dado.
Assim: Dado os conjuntos A={1,2,3} e B={1,2,3,4,5,6}
consideremos a correspondência de A em B, de tal
modo que cada elemento do conjunto A se associa no
conjunto B com o seu sucessor. Assim ; ; . A
correspondência por pares ordenados seria:

Noção de função:
Veja os diagramas:
Uma função todo elemento de A tem
imagem única em B.
Analisando os diagramas acima:
O diagrama 1 não satisfaz a condição (1);
os diagramas 3, 4 e 5 não satisfazem a
condição (2).
Logo, somente o diagrama 2 representa
uma função
Domínio, imagem e contra domínio
Observe o diagrama:
Função:
 Chamemos esta função de f, logo o conjunto de pares ordenados
serão:
 f={(1,2),(2,3),(3,4)}
 O conjunto X={1,2,3} denomina-se domínio da função f.
 D(F)=X
 O conjunto Y={1,2,3,4,5} denomina-se contradomínio da função f.
 C(F)=Y
 Dizemos que 2 é a imagem de 1 pela função f.
 f(1)=2
 Ainda, f(2)=3 e f(3)=4.
 Logo o conjunto das imagens de f e dado por:
 Im(f)={2,3,4}
Determinação de função:
Observe a figura:
Veja:
Associe cada elemento de X com um
elemento de y:
Determine a imagem de cada função:
a) D(f) = {1,2,3}
y = f(x) = x + 1
[Sol] f(1) = 1+1 = 2
f(2) = 2+1 = 3
f(3) =3+1 = 4
Logo: Im(f)={2,3,4}
b) D(f) = {1,3,5}
y = f(x) = x²
[Sol] f(1) = 1² = 1
f(3) = 3² = 9
f(5) = 5² = 25
Logo: Im(f)={1,9,25}
Plano cartesiano :
Eixo Cartesiano:
Eixos x e y:
Consideremos dois eixos x e y
perpendiculares em 0, os quais
determinam o plano A.
Dado um plano P qualquer, pertencente
ao plano A, conduzamos por ele duas
retas:
x // x' e y // y'
Denominemos P1 a interseção de x com
y' e P2 a interseção de y com x'
Continuação:
Nessas condições, definimos:
- Abscissa de P é um número real representado por P1
- Ordenada de P é um número real representado por P2
- A coordenada de P são números reais x' e y' ,
geralmente indicados na forma de par ordenado ( x' , y' )
- O eixo das abscissas é o eixo x
- O eixo das ordenadas é o eixo y
- A origem do sistema é o ponto 0
- Plano cartesiano é o plano A.
Depois dessa revisão veja a função do 1º
grau:
Exemplo:
Numa loja, o salário fixo mensal de um
vendedor é 500 reais. Além disso, ele recebe de
comissão 50 reais por produto vendido.
a) Escreva uma equação que expresse o ganho
mensal y desse vendedor, em função do
número x de produto vendido.
[Sol] y=salário fixo + comissão
y=500 + 50x
Cont.
Quanto ele ganhará no final do mês se
vendeu 4 produtos?
[Sol] y=500+50x , onde x=4
y=500+50.4 = 500+200 = 700
Quantos produtos ele vendeu se no final
do mês recebeu 1000 reais?
[Sol] y=500+50x , onde y=1000
1000=500+50x » 50x=1000-500 »
50x=500 » x=10
Cont.
A relação assim definida por uma
equação do 1º grau é denominada função
do 1º grau, sendo dada por:
y=f(x)=ax+b com ,a e b pertencente
aos números reais

Gráfico:
Gráfico da função do 1º grau:
O gráfico de uma função do 1º grau de R em R
é uma reta.
Exemplo:
1) Construa o gráfico da função determinada por
f(x)=x+1:
[Sol] Atribuindo valores reais para x, obtemos
seus valores correspondentes para y.
Olhe os pares:
O conjunto dos pares ordenados determinados é f={(-2,-1),
(-1,0),(0,1),(1,2),(2,3)}
2º Exemplo:
Construa o gráfico da função determinada por
f(x)=-x+1.
[Sol] Atribuindo valores reais para x, obtemos
seus valores correspondentes para y.
xy=f(x)=-x+1-2 3-1 20 11 02-1O conjunto dos
pares ordenados determinados é f={(-2,3),(-1,2),
(0,1),(1,0),(2,-1)}
Continuação:
O gráfico:
y = x+1 ( a> 0 ) ; onde a = 1
Função crescente:
y = -x+1 ( a<0 ); onde a=-1
Função decrescente:
Raízes ou zeros:
Para determinarmos a raiz ou zero de uma
função do 1º grau, definida pela equação
y=ax+b, como a é diferente de 0, basta
obtermos o ponto de intersecção da equação
com o eixo x, que terá como coordenada o par
ordenado (x,0).
1) Considere a função dada pela equação
y=x+1, determine a raiz desta função.
[Sol] Basta determinar o valor de x para termos
y=0
x+1=0 » x=-1
Dizemos que -1 é a raiz ou zero da função
Veja a raiz dessa função:
Onde corta o eixo x é a raiz da função
Determine a raiz da função y=-x+1 e
esboce o gráfico
Veja:
Sinal de uma função de 1º grau
 a>o e a<o
Cont.
Note que para x=-b/a, f(x)=0 (zero da função).
Para x>-b/a, f(x) tem o mesmo sinal de a. Para
x<-b/a, f(x) tem o sinal contrário ao de a.
Exemplos:
1) Determine o intervalo das seguintes funções
para que f(x)>0 e f(x)<0.
a) y=f(x)=x+1
[Sol] x+1>0 » x>-1
Logo, f(x) será maior que 0 quando x>-1
 x+1<0 » x<-1
Logo, f(x) será menor que 0 quando x<-1
2º exemplo:
b) y=f(x)=-x+1
[Sol]* -x+1>0 » -x>-1 » x<1
Logo, f(x) será maior que 0 quando x<1
 -x+1<0 » -x<-1 » x>1
Logo, f(x) será menor que 0 quando
x>1
(*ao multiplicar por -1, inverte-se o sinal
da desigualdade
Exercício:
) Represente graficamente a função
definida por:
a) f(x) = 2x-1
b) f(x) = -1/2x+3
c) f(x) = 4x
d) f(x) = 1/3x+2
e) f(x) = -3x+6
Cont.
2) Determine a raiz ou zero de cada uma
das seguintes equações:
a) f(x) = 2x+5
b) f(x) = -x+2
c) f(x) = 1/3x+3
d) f(x) = 1-5x
e) f(x) = 4x
Determine a expressão da função
representada pelo gráfico abaixo:
Faça:
Cont.
Pelo gráfico, concluímos:
Quando x=0, y=2; portanto, o valor de b na
expressão é igual a 2
Quando y=0, x=-4 (raiz ou zero da função)
Substituindo os valores em y=ax+b:
0 = -4a + 2
a = 1/2
Logo, a expressão é y = 1/2x+2.
Determine as expressões que as
definem.
Descreva as funções abaixo.

Função de 2º grau 17122016

  • 1.
    Função do 2ºgrau Função do 2º grau A função do 2º grau, também denominada função quadrática, é definida pela expressão do tipo: y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e Exemplos: a) y=x²+3x+2 ( a=1; b=3; c=2 ) b) y=x² ( a=1; b=0; c=0 ) c) y=x²-4 ( a=1; b=0; c=-4 )
  • 2.
    Conteúdo para 8ªsérie Professor Antônio Carlos Carneiro Barroso Graduado em Matemática pela UFBA Graduado em Ciências naturais pela UFBA Pós graduado em Metodologia e Didática de ensino Superior www.ensinodematemtica.blogspot.com.br www.youtube.com/accbarroso www.facebook.com/acmatematico www.twitter.com/profbarroso Salvador-Ba
  • 3.
    Gráficos: Gráfico de umafunção do 2º grau: O gráfico de uma função quadrática é uma parábola Podemos visualizar uma parábola em um parque de diversões, simplesmente olhando para a montanha russa.  Sua representação gráfica é dada em torno de eixos:
  • 4.
  • 5.
  • 6.
    Observe os pontos: Notem que os pontos: A e A`, B e B`, C e C` são simétricos (estão a mesma distância do eixo de simetria). O ponto V representa o vértice da parábola, é a partir dele que determinamos todos os outros pontos. Coordenadas do vértice  A coordenada x do vértice da parábola pode ser determinada por .  Exemplo: Determine as coordenada do vértice da parábola y=x²-4x+3 Temos: a=1, b=-4 e c=3 Logo, a coordenada x será igual a 2, mas e a coordenada y?
  • 7.
    Fique atento: Simples: Vamossubstituir o valor obtido da coordenada x e determinar o valor da coordenada y. Assim, para determinarmos a coordenada y da parábola y=x²-4x+3, devemos substituir o valor de x por 2. y = (2)²-4.(2)+3 = 4-8+3=-1 Logo, as coordenadas do vértice serão V=(2,-1) Portanto, para determinarmos as coordenadas do vértice de uma parábola, achamos o valor da coordenada x (através de x=-b/2a) e substituindo este valor na função, achamos a coordenada y!!!
  • 8.
    Raízes: Raízes (ou zeros)da função do 2º grau Denominam-se raízes da função do 2º grau os valores de x para os quais ela se anula. y=f(x)=0 Exemplo: na função y=x²-4x+3, que acima acabamos de determinar as coordenadas de seus vértices, as raízes da função serão x=1 e x`=3. Vejamos o gráfico:
  • 9.
  • 10.
    Resolva a função: Notemque quando x=1 e x`=3, a parábola intercepta ("corta") o eixo x. Como determinar a raiz ou zero da função do 2º grau? Simplesmente aplicando a resolução de equações do 2º grau, já vista na seção anterior. Exemplo: determine a raiz da função y=x²+5x+6: Fazendo y=f(x)=0, temos x²+5x+6=0 Agora basta resolver a equação aplicando a fórmula de Bháskara. x²+5x+6=0 Acharemos que x = -2 e x` = -3.
  • 11.
    Concavidade da parábola Explicareiesta parte com um simples desenho. a>0a<0Os desenhos até que ficaram bonitinhos, mas isso não importa neste momento. O que nos importa agora é que quando a>0, a concavidade da parábola está voltada para cima (carinha feliz) e quando a<0, a parábola está voltada para baixo (carinha triste). Exemplos:
  • 12.
    y = f(x)= x² - 4
  • 13.
    y = f(x)= -x² + 4
  • 14.
    Nota: Quando a concavidadeestá voltada para cima (a>0), o vértice representa o valor mínimo da função. Quando a concavidade está voltada para baixo (a<0), o vértice representa o valor máximo. Quando o discriminante é igual a zero Quando o valor de , o vértice a parábola encontra-se no eixo x. A coordenada y será igual a zero. Exemplo: y=f(x)=x²+2x+1 x²+2x+1=0 x=x`=-b/2a=-1 As coordenadas do vértice serão V=(-1,0)
  • 15.
  • 16.
    Estudo do delta: Quandoo descriminante é maior que zero Quando o valor de , a parábola intercepta o eixo x em dois pontos. (São as raízes ou zeros da função vistos anteriormente). Exemplo: y = f(x) = x²-4x+3 x²-4x+3=0 x=1, x`=3 Gráfico:
  • 17.
  • 18.
    Delta<0 Quando o discriminanteé menor que zero Quando o valor de , a parábola não intercepta o eixo x. Não há raízes ou zeros da função. Exemplo: y = f(x) = x²-x+2 x²-x+2=0
  • 19.
  • 20.
  • 21.
    Olhe o gráfico: Esboçandoo gráfico Para finalizarmos (ufa!), vamos desenhar o gráfico da função y=-x²-4x-3 1ª etapa: Raízes ou zeros da função -x²-4x-3=0 Aplicando a fórmula de Bháskara x=-1, x`=-3
  • 22.
    Veja as etapas: 2ªetapa: Coordenadas do vértice Coordenada x (=-b/2a): -(-4)/2.(-1)=-2 Coordenada y: Basta substituir o valor de x obtido na função y = -x²-4x-3 = -(-2)²-4.(-2)-3 = -4+8-3 = 1 Portanto, V=(-2,1) 3ª etapa: Concavidade da parábola y=-x²-4x-3 Como a=-1<0, a concavidade estará voltada para baixo
  • 23.
  • 24.
    Exercício: 1) As equaçõesabaixo definem funções do 2º grau. Para cada uma dessas funções, ache as coordenadas do vértice que a representa: a) f(x)= x² - 4x + 5 b) f(x)= x² +4x - 6 c) f(x)= 2x² +5x - 4 d) f(x)= -x² + 6x - 2 e) f(x)= -x² - 4x +1
  • 25.
    Resolva: 2) Determine, seexistirem, os zeros reais das funções seguintes: a) f(x)= 3x² - 7x + 2 b) f(x)= -x² + 3x - 4 c) f(x)= -x² + 3/2x + 1 d) f(x)= x² -4 e) f(x)= 3x² Não existe zeros em (b)
  • 26.
    Antonio Carlos carneiroBarroso: 3) Construa o gráfico das seguintes funções: a) f(x)= x² - 16x + 63 b) f(x)= 2x² - 7x + 3 c) f(x)= 4x² - 4x +1 d) f(x)= -x² + 4x - 5 e) f(x)= -2x² +8x- 6
  • 27.
    Faça: 4) Em umapartida de vôlei, um jogador deu um saque em que a bola atingiu uma altura h em metros, num tempo t, em segundos, de acordo com a relação h(t) = -t² + 8t. a) Em que instante a bola atingiu a altura máxima? [Nota]: observem o vértice b) De quantos metros foi a altura máxima alcançada pela bola? c) Esboce o gráfico que represente esta situação. Respostas: 4: a)4s; b) 16m
  • 28.
    Função do 1ºgrau: Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro conjunto dado e o segundo elemento pertence ao segundo conjunto dado. Assim: Dado os conjuntos A={1,2,3} e B={1,2,3,4,5,6} consideremos a correspondência de A em B, de tal modo que cada elemento do conjunto A se associa no conjunto B com o seu sucessor. Assim ; ; . A correspondência por pares ordenados seria: 
  • 29.
  • 30.
    Uma função todoelemento de A tem imagem única em B. Analisando os diagramas acima: O diagrama 1 não satisfaz a condição (1); os diagramas 3, 4 e 5 não satisfazem a condição (2). Logo, somente o diagrama 2 representa uma função
  • 31.
    Domínio, imagem econtra domínio Observe o diagrama:
  • 32.
    Função:  Chamemos estafunção de f, logo o conjunto de pares ordenados serão:  f={(1,2),(2,3),(3,4)}  O conjunto X={1,2,3} denomina-se domínio da função f.  D(F)=X  O conjunto Y={1,2,3,4,5} denomina-se contradomínio da função f.  C(F)=Y  Dizemos que 2 é a imagem de 1 pela função f.  f(1)=2  Ainda, f(2)=3 e f(3)=4.  Logo o conjunto das imagens de f e dado por:  Im(f)={2,3,4}
  • 33.
  • 34.
    Veja: Associe cada elementode X com um elemento de y:
  • 35.
    Determine a imagemde cada função: a) D(f) = {1,2,3} y = f(x) = x + 1 [Sol] f(1) = 1+1 = 2 f(2) = 2+1 = 3 f(3) =3+1 = 4 Logo: Im(f)={2,3,4} b) D(f) = {1,3,5} y = f(x) = x² [Sol] f(1) = 1² = 1 f(3) = 3² = 9 f(5) = 5² = 25 Logo: Im(f)={1,9,25}
  • 36.
  • 37.
    Eixos x ey: Consideremos dois eixos x e y perpendiculares em 0, os quais determinam o plano A. Dado um plano P qualquer, pertencente ao plano A, conduzamos por ele duas retas: x // x' e y // y' Denominemos P1 a interseção de x com y' e P2 a interseção de y com x'
  • 38.
    Continuação: Nessas condições, definimos: -Abscissa de P é um número real representado por P1 - Ordenada de P é um número real representado por P2 - A coordenada de P são números reais x' e y' , geralmente indicados na forma de par ordenado ( x' , y' ) - O eixo das abscissas é o eixo x - O eixo das ordenadas é o eixo y - A origem do sistema é o ponto 0 - Plano cartesiano é o plano A.
  • 39.
    Depois dessa revisãoveja a função do 1º grau: Exemplo: Numa loja, o salário fixo mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que expresse o ganho mensal y desse vendedor, em função do número x de produto vendido. [Sol] y=salário fixo + comissão y=500 + 50x
  • 40.
    Cont. Quanto ele ganharáno final do mês se vendeu 4 produtos? [Sol] y=500+50x , onde x=4 y=500+50.4 = 500+200 = 700 Quantos produtos ele vendeu se no final do mês recebeu 1000 reais? [Sol] y=500+50x , onde y=1000 1000=500+50x » 50x=1000-500 » 50x=500 » x=10
  • 41.
    Cont. A relação assimdefinida por uma equação do 1º grau é denominada função do 1º grau, sendo dada por: y=f(x)=ax+b com ,a e b pertencente aos números reais 
  • 42.
    Gráfico: Gráfico da funçãodo 1º grau: O gráfico de uma função do 1º grau de R em R é uma reta. Exemplo: 1) Construa o gráfico da função determinada por f(x)=x+1: [Sol] Atribuindo valores reais para x, obtemos seus valores correspondentes para y.
  • 43.
    Olhe os pares: Oconjunto dos pares ordenados determinados é f={(-2,-1), (-1,0),(0,1),(1,2),(2,3)}
  • 44.
    2º Exemplo: Construa ográfico da função determinada por f(x)=-x+1. [Sol] Atribuindo valores reais para x, obtemos seus valores correspondentes para y. xy=f(x)=-x+1-2 3-1 20 11 02-1O conjunto dos pares ordenados determinados é f={(-2,3),(-1,2), (0,1),(1,0),(2,-1)}
  • 45.
  • 46.
    y = x+1( a> 0 ) ; onde a = 1 Função crescente:
  • 47.
    y = -x+1( a<0 ); onde a=-1 Função decrescente:
  • 48.
    Raízes ou zeros: Paradeterminarmos a raiz ou zero de uma função do 1º grau, definida pela equação y=ax+b, como a é diferente de 0, basta obtermos o ponto de intersecção da equação com o eixo x, que terá como coordenada o par ordenado (x,0). 1) Considere a função dada pela equação y=x+1, determine a raiz desta função. [Sol] Basta determinar o valor de x para termos y=0 x+1=0 » x=-1 Dizemos que -1 é a raiz ou zero da função
  • 49.
    Veja a raizdessa função: Onde corta o eixo x é a raiz da função
  • 50.
    Determine a raizda função y=-x+1 e esboce o gráfico Veja:
  • 51.
    Sinal de umafunção de 1º grau  a>o e a<o
  • 52.
    Cont. Note que parax=-b/a, f(x)=0 (zero da função). Para x>-b/a, f(x) tem o mesmo sinal de a. Para x<-b/a, f(x) tem o sinal contrário ao de a. Exemplos: 1) Determine o intervalo das seguintes funções para que f(x)>0 e f(x)<0. a) y=f(x)=x+1 [Sol] x+1>0 » x>-1 Logo, f(x) será maior que 0 quando x>-1  x+1<0 » x<-1 Logo, f(x) será menor que 0 quando x<-1
  • 53.
    2º exemplo: b) y=f(x)=-x+1 [Sol]*-x+1>0 » -x>-1 » x<1 Logo, f(x) será maior que 0 quando x<1  -x+1<0 » -x<-1 » x>1 Logo, f(x) será menor que 0 quando x>1 (*ao multiplicar por -1, inverte-se o sinal da desigualdade
  • 54.
    Exercício: ) Represente graficamentea função definida por: a) f(x) = 2x-1 b) f(x) = -1/2x+3 c) f(x) = 4x d) f(x) = 1/3x+2 e) f(x) = -3x+6
  • 55.
    Cont. 2) Determine araiz ou zero de cada uma das seguintes equações: a) f(x) = 2x+5 b) f(x) = -x+2 c) f(x) = 1/3x+3 d) f(x) = 1-5x e) f(x) = 4x
  • 56.
    Determine a expressãoda função representada pelo gráfico abaixo: Faça:
  • 57.
    Cont. Pelo gráfico, concluímos: Quandox=0, y=2; portanto, o valor de b na expressão é igual a 2 Quando y=0, x=-4 (raiz ou zero da função) Substituindo os valores em y=ax+b: 0 = -4a + 2 a = 1/2 Logo, a expressão é y = 1/2x+2.
  • 58.
    Determine as expressõesque as definem. Descreva as funções abaixo.