Este documento fornece informações sobre geometria analítica, incluindo definições e equações de circunferências, elipses, hipérboles e parábolas. É apresentado o graduado em Matemática e Ciências Naturais da UFBA e seus endereços online.
Graduado em MatemáticaUFBA
Graduado em Ciências Naturais UFBA
www.ensinodematemtica.blogspot.com.br
www.youtube.com/accbarroso
www.facebook.com/acmatematico
www.twitter.com/profbarroso
www.slideshare.net/porqueira
Salvador-Ba
2.
Geometria Analítica: Circunferência
Equaçõesda circunferência - Equação reduzida
Circunferência é o conjunto de todos os pontos de um plano eqüidistantes
de um ponto fixo, desse mesmo plano, denominado centro da circunferência:
Assim, sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência,
a distância de C a P(dCP) é o raio dessa circunferência. Então:
Determinação do centroe do raio da circunferência, dada a
equação geral
Dada a equação geral de uma circunferência, utilizamos o processo de
fatoração de trinômio quadrado perfeito para transformá-la na equação
reduzida e , assim, determinamos o centro e o raio da circunferência.
Para tanto, a equação geral deve obedecer a duas condições:
os coeficientes dos termos x² e y² devem ser iguais a 1;
não deve existir o termo xy.
Então, vamos determinar o centro e o raio da circunferência cuja equação
geral é x² + y² - 6x + 2y - 6 = 0.
Observando a equação, vemos que ela obedece às duas condições.
Assim:
1º passo: agrupamos os termos em x e os termos em y e isolamos o termo
independente
x² - 6x + _ + y² + 2y + _ = 6
2º passo: determinamos os termos que completam os quadrados perfeitos
nas variáveis x e y, somando a ambos os membros as parcelas
correspondentes
Posição de umponto em relação a uma circunferência
Em relação à circunferência de equação ( x - a )2 + ( y - b )2 = r2, o ponto P(m,
n) pode ocupar as seguintes posições:
a) P é exterior à circunferência
b) P pertence à circunferência
Posição de umareta em relação a uma circunferência
Dadas uma reta s: Ax + Bx + C = 0 e uma circunferência de equação ( x - a)2
+ ( y - b)2 = r2, vamos examinar as posições relativas entre s e:
Também podemos determinar a posição de uma reta em relação a uma
circunferência calculando a distância da reta ao centro da circunferência.
Assim, dadas a reta s: Ax + By + C = 0 e a circunferência :
(x - a)2 + ( y - b )2 = r2, temos:
9.
Assim:
Condições de tangênciaentre reta e circunferência
Dados uma circunferência e um ponto P(x, y) do plano, temos:
a) se P pertence à circunferência, então existe uma única reta tangente à
circunferência por P
10.
b) se Pé exterior à circunferência, então existem duas retas tangentes a
ela por P
c) se P é interior à circunferência, então não existe reta tangente à
circunferência passando pelo ponto P
11.
A figura obtidaé uma elipse.
Elipse
Considerando, num plano , dois pontos distintos, F1 e F2 , e
sendo 2a um número real maior que a distância entre F1 e F2,
chamamos de elipse o conjunto dos pontos do plano tais que a
soma das distâncias desses pontos a F1 e F2 seja sempre igual a
2a.
Por exemplo, sendo P, Q, R, S, F1 e F2 pontos de um mesmo
plano e F1F2 < 2a, temos:
12.
Observações:
1ª) A Terradescreve uma trajetória elíptica em torno do sol, que é um dos
focos dessa trajetória.
A lua em torno da terra e os demais satélites em relação a seus respectivos
planetas também apresentam esse comportamento.
2ª) O cometa de Halley segue uma órbita elíptica, tendo o Sol como um dos
focos.
3ª) As elipses são chamadas cônicas porque ficam configuradas pelo corte
feito em um cone circular reto por um plano oblíquo em relação à sua base.
Elementos
Observe a elipse a seguir. Nela, consideramos os seguintes elementos:
13.
focos : ospontos F1 e F2
centro: o ponto O, que é o ponto médio de
semi-eixo maior: a
semi-eixo menor: b
semidistância focal: c
vértices: os pontos A1, A2, B1, B2
eixo maior:
eixo menor:
distância focal:
Relação fundamental
Na figura acima, aplicando o Teorema de Pitágoras ao
tri6angulo OF2B2 , retângulo em O, podemos escrever a seguinte
relação fundamental:
a2
=b2
+ c2
14.
Excentricidade
Chamamos de excentricidadeo número real e tal que:
Pela definição de elipse, 2c < 2a, então c < a e,
conseqüentemente, 0 < e < 1.
Observação:Quando os focos são muito próximos, ou seja, c é
muito pequeno, a elipse se aproxima de uma circunferência.
15.
Equações
Vamos considerar osseguintes casos:
a) elipse com centro na origem e eixo maior horizontal
Sendo c a semidistância focal, os focos da elipse são F1(-c, 0) e F2(c,
0):
Aplicando a definição de elipse , obtemos a equação da elipse:
16.
b) elipse comcentro na origem e eixo maior vertical
Nessas condições, a equação da elipse é:
Hipérbole
Considerando, num plano , dois pontos distintos, F1
e F2
, e sendo 2a
um número real menor que a distância entre F1
e F2
, chamamos de
hipérbole o conjunto dos pontos do plano tais que o módulo da
diferença das distâncias desses pontos a F1
e F2
seja sempre igual a 2a.
Por exemplo, sendo P, Q, R, S, F1 e F2 pontos de um mesmo plano e
F1
F2
= 2c, temos:
Elementos
Observe a hipérbolerepresentada a seguir. Nela, temos os seguintes
elementos:
focos: os pontos F1 e F2
vértices: os pontos A1 e A2
centro da hipérbole: o ponto O, que é o ponto médio de
semi-eixo real: a
semi-eixo imaginário: b
semidistância focal: c
19.
semi-eixo real: a
semi-eixoimaginário: b
semidistância focal: c
distância focal:
eixo real:
eixo imaginário:
Excentricidade
Chamamos de excentricidade o número real e tal que:
Como c > a, temos e > 1.
Equações
Vamos considerar os seguintes casos:
a) hipérbole com centro na origem e focos no eixo Ox
20.
Aplicando a definiçãode hipérbole:
Obtemos a equação da hipérbole:
F1 (-c, 0)
F2 ( c, 0)
21.
b) hipérbole comcentro na origem e focos
no eixo Oy
Nessas condições, a equação da
hipérbole é:
Hipérbole eqüilátera
Uma hipérbole é chamada eqüilátera
quando as medidas dos semi-eixos real e
imaginário são iguais:
a = b
22.
Equação
Vamos considerar osseguintes casos:
a) eixo real horizontal e C(0, 0)
As assíntotas passam pela origem e têm coeficiente angular
; logo, suas equações são da forma:
b) eixo vertical e C(0, 0)
As assíntotas passam pela origem e têm coeficiente angular
; logo, suas equações são da forma:
Parábola
Dados uma reta d e um ponto F , de um plano ,
chamamos de parábola o conjunto de pontos do plano eqüidistantes
de F e d.
Assim, sendo, por exemplo, F, P, Q e R pontos de um plano e d
uma reta desse mesmo plano, de modo que nenhum ponto pertença a
d, temos:
2ª) Os telescópiosrefletores mais simples têm espelhos com
secções planas parabólicas.
3ª) As trajetórias de alguns cometas são parábolas, sendo que o Sol
ocupa o foco.
4ª) A superfície de um líquido contido em um cilindro que gira em
torno de seu eixo com velocidade constante é parabólica.
Elementos
Observe a parábola representada a seguir. Nela, temos os
seguintes elementos: