Graduado em Matemática UFBA
Graduado em Ciências Naturais UFBA
www.ensinodematemtica.blogspot.com.br
www.youtube.com/accbarroso
www.facebook.com/acmatematico
www.twitter.com/profbarroso
www.slideshare.net/porqueira
Salvador-Ba
Geometria Analítica: Circunferência
   
Equações da circunferência - Equação reduzida
    Circunferência é o conjunto de todos os pontos de um plano eqüidistantes 
de um ponto fixo, desse mesmo plano, denominado centro da circunferência:
 
   Assim, sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, 
a distância de C a P(dCP) é o raio dessa circunferência. Então:
 
 
   
Portanto, (x - a)² + (y - b)² =r² é a equação reduzida da circunferência e permite 
determinar os elementos essenciais para a construção da circunferência: as 
coordenadas do centro e o raio.
Observação: Quando o centro da circunfer6encia estiver na origem                
( C(0,0)), a equação da circunferência será x² + y² = r² .
Equação geral
   Desenvolvendo a equação reduzida, obtemos a equação geral da circunferência:
 
    Como exemplo, vamos determinar a equação geral da circunferência de 
centro C(2, -3) e raio r = 4.
   A equação reduzida da circunferência é:
( x - 2 )² +( y + 3 )² = 16
   Desenvolvendo os quadrados dos binômios, temos:
 
Determinação do centro e do raio da circunferência, dada a
equação geral
   Dada a equação geral de uma circunferência, utilizamos o processo de 
fatoração de trinômio quadrado perfeito para transformá-la na equação 
reduzida e , assim, determinamos o centro e o raio da circunferência.
   Para tanto, a equação geral deve obedecer a duas condições:
os coeficientes dos termos x² e y² devem ser iguais a 1; 
não deve existir o termo xy. 
   Então, vamos determinar o centro e o raio da circunferência cuja equação 
geral é x² + y² - 6x + 2y - 6 = 0.
   Observando a equação, vemos que ela obedece às duas condições. 
Assim:
1º passo: agrupamos os termos em x e os termos em y e isolamos o termo 
independente 
x² - 6x + _ + y² + 2y + _ = 6
2º passo: determinamos os termos que completam os quadrados perfeitos 
nas variáveis x e y, somando a ambos os membros as parcelas 
correspondentes  
3º passo: fatoramos os trinômios quadrados perfeitos
( x - 3 ) ² + ( y + 1 ) ² = 16
4º passo: obtida a equação reduzida, determinamos o centro e o 
raio 
Posição de um ponto em relação a uma circunferência
   Em relação à circunferência de equação ( x - a )2 + ( y - b )2 = r2, o ponto P(m, 
n) pode ocupar as seguintes posições:
a) P é exterior à circunferência
  
b) P pertence à circunferência
 
Assim, para determinar a posição de um ponto P(m, n) em relação a uma 
circunferência, basta substituir as coordenadas de P na expressão ( x - a )2 + 
( y - b )2 - r2:
se ( m - a)2 + ( n - b)2 - r2 > 0, então P é exterior à circunferência; 
  se ( m - a)2 + ( n - b)2 - r2 =    0, então P pertence à circunferência; 
se ( m - a)2 + ( n - b)2 - r2 < 0, então P é interior à circunferência.
c) P é interior à circunferência
Posição de uma reta em relação a uma circunferência
Dadas uma reta s: Ax + Bx + C = 0 e uma circunferência de equação ( x - a)2
+ ( y - b)2 = r2, vamos examinar as posições relativas entre s e:
Também podemos determinar a posição de uma reta em relação a uma
circunferência calculando a distância da reta ao centro da circunferência.
Assim, dadas a reta s: Ax + By + C = 0 e a circunferência :
(x - a)2 + ( y - b )2 = r2, temos:
Assim:
Condições de tangência entre reta e circunferência
Dados uma circunferência e um ponto P(x, y) do plano, temos:
a) se P pertence à circunferência, então existe uma única reta tangente à
circunferência por P
b) se P é exterior à circunferência, então existem duas retas tangentes a
ela por P
c) se P é interior à circunferência, então não existe reta tangente à
circunferência passando pelo ponto P
A figura obtida é uma elipse.
Elipse
Considerando, num plano , dois pontos distintos, F1 e F2 , e
sendo 2a um número real maior que a distância entre F1 e F2,
chamamos de elipse o conjunto dos pontos do plano tais que a
soma das distâncias desses pontos a F1 e F2 seja sempre igual a
2a.
Por exemplo, sendo P, Q, R, S, F1 e F2 pontos de um mesmo
plano e F1F2 < 2a, temos:
Observações:
1ª) A Terra descreve uma trajetória elíptica em torno do sol, que é um dos
focos dessa trajetória.
A lua em torno da terra e os demais satélites em relação a seus respectivos
planetas também apresentam esse comportamento.
2ª) O cometa de Halley segue uma órbita elíptica, tendo o Sol como um dos
focos.
3ª) As elipses são chamadas cônicas porque ficam configuradas pelo corte
feito em um cone circular reto por um plano oblíquo em relação à sua base.
Elementos
Observe a elipse a seguir. Nela, consideramos os seguintes elementos:
focos : os pontos F1 e F2
centro: o ponto O, que é o ponto médio de
semi-eixo maior: a
semi-eixo menor: b
semidistância focal: c
vértices: os pontos A1, A2, B1, B2
eixo maior:
eixo menor:
distância focal:
Relação fundamental
Na figura acima, aplicando o Teorema de Pitágoras ao
tri6angulo OF2B2 , retângulo em O, podemos escrever a seguinte
relação fundamental:
a2
=b2
+ c2
Excentricidade
Chamamos de excentricidade o número real e tal que:
Pela definição de elipse, 2c < 2a, então c < a e,
conseqüentemente, 0 < e < 1.
Observação:Quando os focos são muito próximos, ou seja, c é
muito pequeno, a elipse se aproxima de uma circunferência.
Equações
   Vamos considerar os seguintes casos:
a) elipse com centro na origem e eixo maior horizontal
Sendo c a semidistância focal, os focos da elipse são F1(-c, 0) e F2(c,
0):
Aplicando a definição de elipse , obtemos a equação da elipse:
b) elipse com centro na origem e eixo maior vertical
Nessas condições, a equação da elipse é:
Hipérbole
Considerando, num plano , dois pontos distintos, F1
e F2
, e sendo 2a
um número real menor que a distância entre F1
e F2
, chamamos de
hipérbole o conjunto dos pontos do plano tais que o módulo da
diferença das distâncias desses pontos a F1
e F2
seja sempre igual a 2a.
Por exemplo, sendo P, Q, R, S, F1 e F2 pontos de um mesmo plano e
F1
F2
= 2c, temos:
l
e
s
ã
o
d
e
t
e
r
m
i
n
a
d
o
s
p
o
r
u
m
p
l
a
n
o
p
a
r
a
l
e
l
o
a
o
e
i
x
i
s
r
a
m
o
s
d
a
h
i
p
é
r
b
o
l
e
s
ã
o
d
e
t
e
r
m
i
n
a
d
o
s
p
o
r
u
m
p
l
a
A figura obtida é uma hipérbole. Observação:Os dois ramos da hipérbole são
determinados por um plano paralelo ao eixo de simetria de dois cones
circulares retos e opostos pelo vértice:
Elementos
Observe a hipérbole representada a seguir. Nela, temos os seguintes
elementos:
focos: os pontos F1 e F2
vértices: os pontos A1 e A2
centro da hipérbole: o ponto O, que é o ponto médio de
semi-eixo real: a
semi-eixo imaginário: b
semidistância focal: c
semi-eixo real: a
semi-eixo imaginário: b
semidistância focal: c
distância focal:
eixo real:
eixo imaginário:
Excentricidade
        Chamamos de excentricidade o número real e tal que:
Como c > a, temos e > 1.
Equações
   Vamos considerar os seguintes casos:
a) hipérbole com centro na origem e focos no eixo Ox
Aplicando a definição de hipérbole:
Obtemos a equação da hipérbole:
F1 (-c, 0)
F2 ( c, 0)
b) hipérbole com centro na origem e focos
no eixo Oy
Nessas condições, a equação da
hipérbole é:
Hipérbole eqüilátera
Uma hipérbole é chamada eqüilátera
quando as medidas dos semi-eixos real e
imaginário são iguais:
a = b
Equação
    Vamos considerar os seguintes casos:
a) eixo real horizontal e C(0, 0)
As assíntotas passam pela origem e têm coeficiente angular
; logo, suas equações são da forma:
b) eixo vertical e C(0, 0)
As assíntotas passam pela origem e têm coeficiente angular
; logo, suas equações são da forma:
Parábola
    Dados uma reta d e um ponto F                 , de um plano      , 
chamamos de parábola o conjunto de pontos do plano       eqüidistantes 
de F e d.
   Assim, sendo, por exemplo, F, P, Q e R pontos de um plano       e d 
uma reta desse mesmo plano, de modo que nenhum ponto pertença a 
d, temos:
Observações:
1ª) A parábola é obtida seccionando-se obliquamente um cone circular reto:
2ª) Os telescópios refletores mais simples têm espelhos com
secções planas parabólicas.
3ª) As trajetórias de alguns cometas são parábolas, sendo que o Sol
ocupa o foco.
4ª) A superfície de um líquido contido em um cilindro que gira em
torno de seu eixo com velocidade constante é parabólica.
Elementos
   Observe a parábola representada a seguir. Nela, temos os
seguintes elementos:
foco: o ponto F 
diretriz: a reta d 
vértice: o ponto V 
parâmetro: p 
    Então, temos que:
o vértice V e o foco F ficam numa mesma reta, o eixo de simetria e. 
                Assim, sempre temos .
•DF =p 
•V é o ponto médio de                                      
Equações
   Vamos considerar os seguintes casos:
a) parábola com vértice na origem, concavidade para a direita e 
eixo de simetria horizontal
• Como a reta d tem equação                  e na parábola temos:
•              ; 
• P(x, y); 
• dPF = dPd ( definição); 
•         obtemos, então, a equação da parábola: y2
 = 2px
• b) parábola com vértice na origem, 
concavidade para a esquerda e eixo de 
simetria horizontal
• Nessas condições, a equação da parábola 
é: y² = -2px
c) parábola com vértice na origem, 
concavidade para cima e eixo de simetria 
vertical, a equação é: x²=2py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• d) parábola com vértice na origem, concavidade para baixo e 
eixo de simetria vertical
x²= - 2py

Sessão de cônicas 17122016