Prof. Jorge
Professor Antônio Carlos Carneiro Barroso
 Graduado em Matemática pela UFBA
Graduado em Ciências naturais pela UFBA
Pós graduado em Metodologia e Didática
de ensino Superior
www.ensinodematemtica.blogspot.com.br
www.youtube.com/accbarroso
www.facebook.com/acmatematico
www.twitter.com/profbarroso
Salvador-Ba
Prof. Jorge
Estudo da reta
Prof. Jorge
x
y
O (0, 0)
1º quadrante2º quadrante
3º quadrante 4º quadrante
eixo das
abscissas
eixo das ordenadas
Origem
Plano cartesiano
Prof. Jorge
P
x
y
O
4
3
P(3, 4)
Coordenadas no plano
 3 é a abscissa de P;
 4 é a ordenada de P;
 3 e 4 são as coordenadas
de P;
P(x, y)
 Em geral:
Prof. Jorge
Sinais no plano
x
y
+
+
++
–
–
– –
y = 0
O( 0, 0)
x = 0
Prof. Jorge
Bissetrizes no plano
x
y
y = xy = –x
1ª bissetriz2ª bissetriz
Prof. Jorge
Equação da reta
Prof. Jorge
Equação geral da reta
 A toda reta contida no sistema xOy de coordenadas
cartesianas está associada uma equação de 1.º grau, nas
variáveis x e y. Essa equação se verifica para todos os
pontos da reta, e só eles.
Retas paralelas aos eixos;
Retas não-paralelas aos eixos;
Prof. Jorge
Retas paralelas aos eixos
 A figura mostra duas retas r e s, contidas no plano
cartesiano xOy.
x
y
O 4
2
r
s
 Equação da reta r: x = 4
 Equação da reta s: y = 2
Prof. Jorge
Retas paralelas ao eixo y
 A figura mostra três retas r, s e t, contidas no plano
cartesiano xOy.
x
y
O 3–2
r s  Equação de r: x = –2
1
t
 Equação de s: x = 1
 Equação de t: x = 3
 Geral: retas ∕∕ eixo y:
x = k
 k é a abscissa do ponto em que a reta intercepta o eixo x.
Prof. Jorge
Retas paralelas ao eixo x
 A figura mostra três retas w, u e p, contidas no plano
cartesiano xOy.
x
y
O
3
–1 p
u
 Equação de w: y = 3
2
w  Equação de u: y = 2
 Equação de p: y = –1
 Geral: retas ∕∕ eixo x:
y = h
 h é a ordenada do ponto em que a reta intercepta o eixo y.
Prof. Jorge
Retas não-paralelas aos eixos
 A figura mostra a reta r, contidas no plano cartesiano xOy,
determinada pelos pontos A(2, 1) e B(3, 3).
x
y
O 3
1
r
2
3
P(x, y) ∊ AB A, B e P estão⇒
alinhados
x y 1
1 2 1
3 3 1
= 0
x + 3y + 6 – 3 – 3x – 2y = 0
⇒ y – 2x + 3 = 0
A
B
P(x, y)
Prof. Jorge
Equação geral da reta
 Toda reta do plano cartesiano xOy está associada a uma
equação de 1.º grau Ax + By + C = 0, com A, B e C reais,
sendo A ≠ 0 ou B ≠ 0.
 A equação de uma reta pode ser escrita de infinitas formas,
todas equivalentes.
 2x – y – 3 = 0
 4x – 2y – 6 = 0
 6x – 3y – 9 = 0 ... e assim por diante.
 Cada uma dessas igualdades é uma equação geral da reta.
Prof. Jorge
Exemplos
 Traçar no plano cartesiano xOy, a reta r de equação geral
3x + 2y – 5 = 0.
x = 1 ⇒ 3.1 + 2y – 5 = 0 ⇒ 2y = 2 ⇒ y = 1
x = 3 ⇒ 3.3 + 2y – 5 = 0 ⇒ 2y = –4 ⇒ y = –2
x
y
O
3
1
r
–2
1
Prof. Jorge
Exemplos
 Analisar se M(2, –1) e N(3, 5) são pontos da reta de
equação geral 5x + y – 9 = 0.
⇒ 5.2 + (–1) – 9 = 0
 Para que cada ponto pertença à reta, suas coordenadas devem
satisfazer a equação.
M(2, –1) ⇒ 10 –1 – 9 = 0 ⇒ 0 = 0
⇒ 5.3 + 5 – 9 = 0N(3, 5) ⇒ 15 + 5 – 9 = 0 ⇒ 11 ≠ 0
 Concluímos que M é ponto da reta dada, mas N não é.
Prof. Jorge
Inclinação de uma reta
Prof. Jorge
40 m
Inclinação de uma reta
 Imagine um carro subindo uma rampa reta, conforme
figura. Suponha que para cada 40 m percorridos na
horizontal, a pista se eleve 6 m.
40 m
6 m
α
 O ângulo α que a rampa forma com a horizontal é o ângulo
de inclinação da rampa. O valor de tg α é a inclinação da
rampa.
6 mInclinação = tg α = = 0,15 = 15 %
Prof. Jorge
Inclinação de uma reta
 Vamos analisar agora duas situações extremas.
 Quando o carro percorre um trecho horizontal, dizemos que
a rampa tem inclinação 0 e que o ângulo de inclinação é 0º.
(tg 0o
= 0).
α = 0o
⇒ Inclinação = tg α = tg 0o
= 0
Prof. Jorge
Inclinação de uma reta
 Vamos analisar agora duas situações extremas.
 O auto não sobe uma rampa vertical. Nesse
caso, não se define a inclinação da rampa e o
ângulo de inclinação é 90º. (tg 90º = Não é
definido).
α = 90o
⇓
Inclinação não se define.
Prof. Jorge
Q
Inclinação de uma reta
 Considere uma reta r, não paralela aos eixos x e y, contida
no plano cartesiano xOy.
x
y
O
yQ
yP
xQxP
P
αM
xQ – xP
yQ – yP
Inclinação = tg α
α
yQ– yP
xQ– xP
a = tg α =
∆x
∆y
a =
r
Prof. Jorge
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 30º =
x
y
O
30ºM
3
√3
Prof. Jorge
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 45º = 1
x
y
O
45ºM
Prof. Jorge
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 60º = √3
x
y
O
60ºM
Prof. Jorge
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
x
y
O
120º
M
a = tg 120º = – tg 60º = –√3
Prof. Jorge
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 135º = – tg 45º = – 1
x
y
O
135º
M
Prof. Jorge
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 150º = – tg 30º =
x
y
O
150º
M
3
–√3
Prof. Jorge
Exemplos
 Em cada caso, obter a inclinação e classificar o ângulo α de
inclinação da reta MN.
x
y
O
α
M
N
–2 1
3
5
xN – xM
yN – yM
a = tg α =
1 – (–2)
5 – 3
a =
3
2
a =
a > 0 e α é agudo
(α < 90º)
a) M(–2, 3) e N(1, 5)
Prof. Jorge
Exemplos
 Em cada caso, obter a inclinação e classificar o ângulo α de
inclinação da reta MN.
x
y
O
α
M
N
–2
3
3
xN – xM
yN – yM
a = tg α =
3 – (–2)
–1 – 3
a =
5
– 4
a =
a < 0 e α é obtuso
(90º < α < 180º)
b) M(–2, 3) e N(3, –1)
–1
Prof. Jorge
Exemplos
 Em cada caso, obter a inclinação e classificar o ângulo α de
inclinação da reta MN.
x
y
O
M N
–1 3
3
xN – xM
yN – yM
a = tg α =
1 – (–1)
3 – 3
a =
a = 0
a = 0 ⇒ α = 0º (nulo)
c) M(–1, 3) e N(2, 3)
Prof. Jorge
Exemplos
 Em cada caso, obter a inclinação e classificar o ângulo α de
inclinação da reta MN.
x
y
O
M
N
–1
2
3
xN – xM
yN – yM
a = tg α =
2 – 2
3 – (–1)
a =
a = não é definida
α = 90º (reto)
d) M(2, –1) e N(2, 3)
α
⇓
Prof. Jorge
Inclinação de uma reta - resumo
 O ângulo de inclinação α de uma reta é tal que 0º ≤ α ≤ 180º.
 Sua inclinação a pode ser positiva, negativa ou nula,
conforme a medida do ângulo α (α ≠ 90º).
 α = 0º ⇔ a = 0.
 0º < α < 90º ⇔ a > 0.
 α = 90º a inclinação⇔ a não é definida.
 90º < α < 180º ⇔ a < 0.
Prof. Jorge
Exemplos
 Achar as inclinações das retas r, s e t da figura abaixo.
x
y
O
120º45º 45º
r s
t
 ar = tg 45º = 1
 as = tg 45º = 1  at = tg 120º – √3= – tg 60º =
Prof. Jorge
Equação reduzida da reta
Prof. Jorge
Equação reduzida da reta
 Uma reta é determinada, quando são dados sua inclinação e
um de seus pontos. Suponhamos no plano xOy, uma reta r
que passa por A(2, 3) e têm ângulo de inclinação α = 135º.
 Vamos obter a equação da reta r.
x
y
O
135º
A
2
3
M(x, y)
xM – xA
yM – yA
a = tg 135º = –1.
x – 2
y – 3
–1 =a =
y – 3 = –1(x – 2)
y – 3 = –1x + 2
y = –1x + 5
⇒
y = –x + 5
Prof. Jorge
Equação reduzida da reta – Caso Geral
 Suponhamos que uma reta r de inclinação a = tg α e que passe
pelo ponto P(xP, yP), como mostra a figura.
x
y
O
α
P
xP
yP
M (x, y)
xM – xA
yM – yA
x – xP
y – yP
a =a =
y – yP = a(x – xP)
⇒
⇒ y – yP = ax – axP ⇒ y = ax + (–axP + yP)
⇒ y = ax + b  Equação reduzida da reta
Prof. Jorge
Equação reduzida da reta
 Na equação reduzida y = ax + b, temos:
 Significa que a reta passa pelo ponto (0, b) → ponto do eixo y.
x = 0 ⇒ y = a.0 + b ⇒ y = b
 O coeficiente a é a inclinação da reta; ele é também chamado,
por isso, coeficiente angular da reta.
 O coeficiente b é a ordenada do ponto em que a reta corta o eixo
y; ele é chamado de coeficiente linear da reta.
Prof. Jorge
Exemplos
 Uma equação geral da reta r é 2x – y + 4 = 0. Escrever a
equação na forma reduzida, indicar os coeficientes angular
e linear e representar a reta no plano cartesiano xOy.
O coeficiente angular a = 2 e o coeficiente linear é b = 4.
2x – y + 4 = 0 ⇒ –y = –2x – 4 ⇒ y = 2x + 4
 a = 2, o ângulo de inclinação α < 90º.
 b = 4, a reta intercepta o eixo y no ponto (0, 4).
Vamos obter o ponto em que a reta corta o eixo x. Para isso, vamos
fazer y = 0.
y = 0 ⇒ 2x – 0 + 4 = 0 ⇒ 2x = –4 ⇒ x = –2 ⇒ (–2, 0)
Prof. Jorge
Exemplos
 Veja a representação da reta r: 2x – y + 4 = 0 no plano xOy.
x
y
O
r
–2
4
y = 2x + 4
Prof. Jorge
Exemplos
 O gráfico a seguir mostra uma reta s. Encontrar a equação
reduzida e uma equação geral para essa reta.
x
y
O
s
45º
2
y = ax + b
 A reta corta o eixo y no ponto
de ordenada 2, ponto (0, 2),
logo b = 2.
 α = 180º – 45º = 135º
a = tg 135º = –1.
y = – x + 2
⇒ x + y – 2 = 0
α
Prof. Jorge
Exemplos
 Achar a equação reduzida da reta r que passa pelos pontos
A(–2, 6) e B(1, –3).
xA – xB
yA – yB
–2 – 1
6 –(–3)
a =
∆x
∆y
= =
 Primeiro vamos calcular a inclinação da reta.
–3
9
= ⇒ a = –3
 Utilizando o ponto A(–2, 6), por exemplo, obtemos a equação
fundamental, em seguida a equação reduzida da reta.
y – yP = a(x – xP) ⇒ y – 6 = –3(x + 2)
⇒ y – 6 = –3x – 6 ⇒ y = –3x

Estudodareta 17122016

  • 1.
    Prof. Jorge Professor AntônioCarlos Carneiro Barroso  Graduado em Matemática pela UFBA Graduado em Ciências naturais pela UFBA Pós graduado em Metodologia e Didática de ensino Superior www.ensinodematemtica.blogspot.com.br www.youtube.com/accbarroso www.facebook.com/acmatematico www.twitter.com/profbarroso Salvador-Ba
  • 2.
  • 3.
    Prof. Jorge x y O (0,0) 1º quadrante2º quadrante 3º quadrante 4º quadrante eixo das abscissas eixo das ordenadas Origem Plano cartesiano
  • 4.
    Prof. Jorge P x y O 4 3 P(3, 4) Coordenadasno plano  3 é a abscissa de P;  4 é a ordenada de P;  3 e 4 são as coordenadas de P; P(x, y)  Em geral:
  • 5.
    Prof. Jorge Sinais noplano x y + + ++ – – – – y = 0 O( 0, 0) x = 0
  • 6.
    Prof. Jorge Bissetrizes noplano x y y = xy = –x 1ª bissetriz2ª bissetriz
  • 7.
  • 8.
    Prof. Jorge Equação geralda reta  A toda reta contida no sistema xOy de coordenadas cartesianas está associada uma equação de 1.º grau, nas variáveis x e y. Essa equação se verifica para todos os pontos da reta, e só eles. Retas paralelas aos eixos; Retas não-paralelas aos eixos;
  • 9.
    Prof. Jorge Retas paralelasaos eixos  A figura mostra duas retas r e s, contidas no plano cartesiano xOy. x y O 4 2 r s  Equação da reta r: x = 4  Equação da reta s: y = 2
  • 10.
    Prof. Jorge Retas paralelasao eixo y  A figura mostra três retas r, s e t, contidas no plano cartesiano xOy. x y O 3–2 r s  Equação de r: x = –2 1 t  Equação de s: x = 1  Equação de t: x = 3  Geral: retas ∕∕ eixo y: x = k  k é a abscissa do ponto em que a reta intercepta o eixo x.
  • 11.
    Prof. Jorge Retas paralelasao eixo x  A figura mostra três retas w, u e p, contidas no plano cartesiano xOy. x y O 3 –1 p u  Equação de w: y = 3 2 w  Equação de u: y = 2  Equação de p: y = –1  Geral: retas ∕∕ eixo x: y = h  h é a ordenada do ponto em que a reta intercepta o eixo y.
  • 12.
    Prof. Jorge Retas não-paralelasaos eixos  A figura mostra a reta r, contidas no plano cartesiano xOy, determinada pelos pontos A(2, 1) e B(3, 3). x y O 3 1 r 2 3 P(x, y) ∊ AB A, B e P estão⇒ alinhados x y 1 1 2 1 3 3 1 = 0 x + 3y + 6 – 3 – 3x – 2y = 0 ⇒ y – 2x + 3 = 0 A B P(x, y)
  • 13.
    Prof. Jorge Equação geralda reta  Toda reta do plano cartesiano xOy está associada a uma equação de 1.º grau Ax + By + C = 0, com A, B e C reais, sendo A ≠ 0 ou B ≠ 0.  A equação de uma reta pode ser escrita de infinitas formas, todas equivalentes.  2x – y – 3 = 0  4x – 2y – 6 = 0  6x – 3y – 9 = 0 ... e assim por diante.  Cada uma dessas igualdades é uma equação geral da reta.
  • 14.
    Prof. Jorge Exemplos  Traçarno plano cartesiano xOy, a reta r de equação geral 3x + 2y – 5 = 0. x = 1 ⇒ 3.1 + 2y – 5 = 0 ⇒ 2y = 2 ⇒ y = 1 x = 3 ⇒ 3.3 + 2y – 5 = 0 ⇒ 2y = –4 ⇒ y = –2 x y O 3 1 r –2 1
  • 15.
    Prof. Jorge Exemplos  Analisarse M(2, –1) e N(3, 5) são pontos da reta de equação geral 5x + y – 9 = 0. ⇒ 5.2 + (–1) – 9 = 0  Para que cada ponto pertença à reta, suas coordenadas devem satisfazer a equação. M(2, –1) ⇒ 10 –1 – 9 = 0 ⇒ 0 = 0 ⇒ 5.3 + 5 – 9 = 0N(3, 5) ⇒ 15 + 5 – 9 = 0 ⇒ 11 ≠ 0  Concluímos que M é ponto da reta dada, mas N não é.
  • 16.
  • 17.
    Prof. Jorge 40 m Inclinaçãode uma reta  Imagine um carro subindo uma rampa reta, conforme figura. Suponha que para cada 40 m percorridos na horizontal, a pista se eleve 6 m. 40 m 6 m α  O ângulo α que a rampa forma com a horizontal é o ângulo de inclinação da rampa. O valor de tg α é a inclinação da rampa. 6 mInclinação = tg α = = 0,15 = 15 %
  • 18.
    Prof. Jorge Inclinação deuma reta  Vamos analisar agora duas situações extremas.  Quando o carro percorre um trecho horizontal, dizemos que a rampa tem inclinação 0 e que o ângulo de inclinação é 0º. (tg 0o = 0). α = 0o ⇒ Inclinação = tg α = tg 0o = 0
  • 19.
    Prof. Jorge Inclinação deuma reta  Vamos analisar agora duas situações extremas.  O auto não sobe uma rampa vertical. Nesse caso, não se define a inclinação da rampa e o ângulo de inclinação é 90º. (tg 90º = Não é definido). α = 90o ⇓ Inclinação não se define.
  • 20.
    Prof. Jorge Q Inclinação deuma reta  Considere uma reta r, não paralela aos eixos x e y, contida no plano cartesiano xOy. x y O yQ yP xQxP P αM xQ – xP yQ – yP Inclinação = tg α α yQ– yP xQ– xP a = tg α = ∆x ∆y a = r
  • 21.
    Prof. Jorge Inclinação deuma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 30º = x y O 30ºM 3 √3
  • 22.
    Prof. Jorge Inclinação deuma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 45º = 1 x y O 45ºM
  • 23.
    Prof. Jorge Inclinação deuma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 60º = √3 x y O 60ºM
  • 24.
    Prof. Jorge Inclinação deuma reta  Convém lembrar as tangentes de alguns ângulos importante: x y O 120º M a = tg 120º = – tg 60º = –√3
  • 25.
    Prof. Jorge Inclinação deuma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 135º = – tg 45º = – 1 x y O 135º M
  • 26.
    Prof. Jorge Inclinação deuma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 150º = – tg 30º = x y O 150º M 3 –√3
  • 27.
    Prof. Jorge Exemplos  Emcada caso, obter a inclinação e classificar o ângulo α de inclinação da reta MN. x y O α M N –2 1 3 5 xN – xM yN – yM a = tg α = 1 – (–2) 5 – 3 a = 3 2 a = a > 0 e α é agudo (α < 90º) a) M(–2, 3) e N(1, 5)
  • 28.
    Prof. Jorge Exemplos  Emcada caso, obter a inclinação e classificar o ângulo α de inclinação da reta MN. x y O α M N –2 3 3 xN – xM yN – yM a = tg α = 3 – (–2) –1 – 3 a = 5 – 4 a = a < 0 e α é obtuso (90º < α < 180º) b) M(–2, 3) e N(3, –1) –1
  • 29.
    Prof. Jorge Exemplos  Emcada caso, obter a inclinação e classificar o ângulo α de inclinação da reta MN. x y O M N –1 3 3 xN – xM yN – yM a = tg α = 1 – (–1) 3 – 3 a = a = 0 a = 0 ⇒ α = 0º (nulo) c) M(–1, 3) e N(2, 3)
  • 30.
    Prof. Jorge Exemplos  Emcada caso, obter a inclinação e classificar o ângulo α de inclinação da reta MN. x y O M N –1 2 3 xN – xM yN – yM a = tg α = 2 – 2 3 – (–1) a = a = não é definida α = 90º (reto) d) M(2, –1) e N(2, 3) α ⇓
  • 31.
    Prof. Jorge Inclinação deuma reta - resumo  O ângulo de inclinação α de uma reta é tal que 0º ≤ α ≤ 180º.  Sua inclinação a pode ser positiva, negativa ou nula, conforme a medida do ângulo α (α ≠ 90º).  α = 0º ⇔ a = 0.  0º < α < 90º ⇔ a > 0.  α = 90º a inclinação⇔ a não é definida.  90º < α < 180º ⇔ a < 0.
  • 32.
    Prof. Jorge Exemplos  Acharas inclinações das retas r, s e t da figura abaixo. x y O 120º45º 45º r s t  ar = tg 45º = 1  as = tg 45º = 1  at = tg 120º – √3= – tg 60º =
  • 33.
  • 34.
    Prof. Jorge Equação reduzidada reta  Uma reta é determinada, quando são dados sua inclinação e um de seus pontos. Suponhamos no plano xOy, uma reta r que passa por A(2, 3) e têm ângulo de inclinação α = 135º.  Vamos obter a equação da reta r. x y O 135º A 2 3 M(x, y) xM – xA yM – yA a = tg 135º = –1. x – 2 y – 3 –1 =a = y – 3 = –1(x – 2) y – 3 = –1x + 2 y = –1x + 5 ⇒ y = –x + 5
  • 35.
    Prof. Jorge Equação reduzidada reta – Caso Geral  Suponhamos que uma reta r de inclinação a = tg α e que passe pelo ponto P(xP, yP), como mostra a figura. x y O α P xP yP M (x, y) xM – xA yM – yA x – xP y – yP a =a = y – yP = a(x – xP) ⇒ ⇒ y – yP = ax – axP ⇒ y = ax + (–axP + yP) ⇒ y = ax + b  Equação reduzida da reta
  • 36.
    Prof. Jorge Equação reduzidada reta  Na equação reduzida y = ax + b, temos:  Significa que a reta passa pelo ponto (0, b) → ponto do eixo y. x = 0 ⇒ y = a.0 + b ⇒ y = b  O coeficiente a é a inclinação da reta; ele é também chamado, por isso, coeficiente angular da reta.  O coeficiente b é a ordenada do ponto em que a reta corta o eixo y; ele é chamado de coeficiente linear da reta.
  • 37.
    Prof. Jorge Exemplos  Umaequação geral da reta r é 2x – y + 4 = 0. Escrever a equação na forma reduzida, indicar os coeficientes angular e linear e representar a reta no plano cartesiano xOy. O coeficiente angular a = 2 e o coeficiente linear é b = 4. 2x – y + 4 = 0 ⇒ –y = –2x – 4 ⇒ y = 2x + 4  a = 2, o ângulo de inclinação α < 90º.  b = 4, a reta intercepta o eixo y no ponto (0, 4). Vamos obter o ponto em que a reta corta o eixo x. Para isso, vamos fazer y = 0. y = 0 ⇒ 2x – 0 + 4 = 0 ⇒ 2x = –4 ⇒ x = –2 ⇒ (–2, 0)
  • 38.
    Prof. Jorge Exemplos  Vejaa representação da reta r: 2x – y + 4 = 0 no plano xOy. x y O r –2 4 y = 2x + 4
  • 39.
    Prof. Jorge Exemplos  Ográfico a seguir mostra uma reta s. Encontrar a equação reduzida e uma equação geral para essa reta. x y O s 45º 2 y = ax + b  A reta corta o eixo y no ponto de ordenada 2, ponto (0, 2), logo b = 2.  α = 180º – 45º = 135º a = tg 135º = –1. y = – x + 2 ⇒ x + y – 2 = 0 α
  • 40.
    Prof. Jorge Exemplos  Achara equação reduzida da reta r que passa pelos pontos A(–2, 6) e B(1, –3). xA – xB yA – yB –2 – 1 6 –(–3) a = ∆x ∆y = =  Primeiro vamos calcular a inclinação da reta. –3 9 = ⇒ a = –3  Utilizando o ponto A(–2, 6), por exemplo, obtemos a equação fundamental, em seguida a equação reduzida da reta. y – yP = a(x – xP) ⇒ y – 6 = –3(x + 2) ⇒ y – 6 = –3x – 6 ⇒ y = –3x