SlideShare uma empresa Scribd logo
1 de 50
26/10/2012
2

                 Trigonometria



O significado da palavra trigonometria, vem do
grego e resulta da conjunção de três palavras:
                  Tri – três
              Gonos – ângulo
               Metrein - medir

Trigonometria significa, o estudo das medidas
              dos triângulos.
3
4
Aplicações da Trigonometria
5
7
                            Triângulo retângulo

     Triângulo retângulo é todo triângulo que apresenta um
            ângulo reto, ou seja, um ângulo de 90°.

cateto                                                        hipotenu
                  cateto
                                           cateto                sa




                                                             cateto
           hipotenu
              sa
             A hipotenusa é sempre o maior lado do triângulo retângulo;
         Em qualquer triângulo, a soma dos ângulos internos é sempre 180°;
    Como num triângulo retângulo um dos ângulos é reto, a soma dos outros
           dois ângulos agudos (menores que 90º) é sempre 90°;
   Quando a soma de dois ângulos internos é igual a 90°, dizemos que esses
                     ângulos são complementares.
8


                    Teorema de Pitágoras


Em todo triângulo retângulo, o quadrado da medida da hipotenusa é
       igual a soma dos quadrados das medidas dos catetos.




                   a=5
b=3                                         a 2 =b 2 +c 2
                                            52 =3 2+ 4 2
                                            25=9+ 16
                                            25=25
                 c=4
12
  Relações Trigonométricas num triângulo retângulo


Seno                                      Cosseno
                   Tangente
13

Exemplo de aplicação:
15




Exemplo de
aplicação:
17
Exemplo de aplicação:
18
Cálculo de seno, cosseno e tangente dos ângulos
                    notáveis

        Seno, cosseno e tangente de 30° e 60º

                                       cateto oposto
                              senα=
                                       hipotenusa

                                       cateto adjacente
                              cosα=
                                       hipotenusa

                                      cateto oposto
                              tgα =
                                      cateto adjacente


                          2
19
Seno, cosseno e tangente de 45°


                           cateto oposto
                   senα=
                           hipotenusa

                           cateto adjacente
                   cosα=
                           hipotenusa

                          cateto oposto
                   tgα=
                          cateto adjacente
20


Construção da Tabela
   Trigonométrica
21
Relações entre seno, cosseno e tangente
22
23



Observe a situação a seguir:
Um fio elétrico será instalado entre um poste P e uma casa, separados
por um lago em um terreno plano. Como calcular o comprimento do
fio necessário para a instalação?



Pela necessidade de solucionar
problemas relacionados a triângulos
que não são retângulos, se
desenvolveram formas de trabalhar
com senos e cossenos de ângulos
obtusos ( maiores que 90°).
24

Teorema ou Lei dos Senos




A lei dos senos pode ser utilizada em
qualquer triângulo. No caso de
triângulos retângulos, basta considerar
sen 90° = 1.
25

                  Aplicação da Lei dos Senos




A Lei dos Senos é geralmente usada, quando são conhecidos 2 ângulos internos
e a medida do cateto oposto a um desses ângulos.
26

                   Teorema ou Lei dos Cossenos




A Lei dos Cossenos é geralmente usada, quando são conhecidas as medidas de
dois lados e o ângulo formado por eles.
27

Exemplo:
28

Área de um triângulo
29
Existem problemas em que se deseja calcular a área de um triângulo
e não são conhecidas as medidas da base e altura. Nesses casos,
a área pode ser calculada de duas maneiras diferentes:

   1ª maneira: Área de um triângulo em função da medidas de
        dois lados e do ângulo compreendido entre eles.
30


2ª maneira: Fórmula de Heron
31
38
CIRCUNFERÊNCIA TRIGONOMÉTRICA
CIRCUNFERÊNCIA TRIGONOMÉTRICA:
                          Arcos Simétricos
                                      π
                               90°=
                                      2
  IIQ :180 ° −α                                     IQ : α
         π−α




       180°= π
                                              360°=2π



IIIQ :180°+ α
                                                   IV :360 °−α
        π+α
                                                         2 π-α
                                      3π
                              270°=
                                       2
42



Sinal COSSENO:
                              90°

                     120° =           =
               135° =                60°    =
                                           45°
            150° =
                                                  =
                                                 30°

  Cosseno
                                                  =2π=360 °




            210° =                                = 330°
              225° =                      = 315°
                     240° =          = 300°


                              270°
43



Sinal TANGENTE:
                                               Tangente
                          90°

                 120° =           =
           135° =                60°    =
                                       45°
        150° =
                                              =
                                             30°

                                              =2π=360 °




        210° =                                = 330°
          225° =                      = 315°
                 240° =          = 300°


                          270°
44
Sinal SENO:                   Seno
                                     90°
                                                      Tangente
                     120° =                   = 60°
               135° =                             = 45°
            150° =
                                                       = 30°


  Cosseno                                             =2π=360 °




            210° =                                        = 330°
              225° =                             = 315°
                     240° =                 = 300°


                                     270°
45

              OUTRAS RAZÕES TRIGONOMÉTRICAS


                                                               1
Secante: o sinal da secante é o mesmo do cosseno    sec x=
                                                             cos x


 Cossecante: o sinal da cossecante é o mesmo do
                                                                 1
                                                   cossec x=
                      seno                                     sen x



 Cotangente: o sinal da cotangente é o mesmo da
                                                              cos x
                                                    cot gx=
                    tangente.                                 sen x
Para iniciar desenhando a circunferência clique em
"círculo de raio fixo", como mostra a figura abaixo.
1) Nomear o circulo, dando 1 ao tamanho do RAIO
2) Personalizar cor e estilo
3) Usar botão direito e janela de edição para acertar informações do
centro do círculo
Por uma questão de conveniência, o centro de nossa circunferência será
a origem. Para determinar o centro como o ponto (0,0) basta alterar os
valores de x e y para 0, na janela de edição desse ponto.


Para uma visualização com os eixos coordenados basta clicar na opção
exibir grade ,no menu de comandos do software.

Localizaremos tambémos pontos (1,0), (0,1), (-1,0) e (0,-1). Para localizá-
los, clique na opção ponto , no menu de comandos. Para editá-los, basta
clicar com o botão direito do mouse e digitar a coordenada do ponto em
"nome".

Caso o nome do ponto - ou de qualquer outro objeto - não esteja
aparecendo, clique em exibir nomes dos objetos , na janela de edição do
próprio objeto.

Veja figura a seguir:
Desenharemos agora retas que "passam em cima" dos eixos
coordenados (essa construção será feita para auxiliar futuramente
na construção do triângulo, onde estudaremos as funções seno e
cosseno).

Assim, para construir essas retas basta clicar em reta . Clique no
ponto (-1, 0) e logo após em (1, 0) para construir a reta r que "passa
em cima" do eixo das abscissas - ou primeiro em (1, 0) e depois em (-
1, 0).

Para construir a reta s, que "passa em cima" do eixo das ordenadas,
basta selecionar a opção perpendicular . Clique então sobre a reta
construída anteriormente e logo após clique no ponto (0, 1) - ou no
ponto (0, -1). (Poderíamos também construir essa segunda reta da
mesma maneira como construímos a primeira)

Obs: Para visualizar se as retas foram de fato construídas, selecione
exibir grade duas vezes, para que os eixos coordenados sejam
ocultos.

Veja figura a seguir:
Para a construção do triângulo, primeiro devemos construir um ponto P
sobre a circunferência - escolheremos aqui um ponto localizado no
primeiro quadrante.

Logo após, vamos construir uma reta que seja paralela à reta r e passe
por P. Construiremos também uma reta que seja paralela à reta s
passando por P. Para construir uma reta paralela à outra, clique em
paralela .

Essa construção está representada abaixo:
Para a construção do triângulo, selecione a opção polígono . Clique na
origem, no ponto P, na interseção das retas s e paralela-s e finalize o
triângulo clicando novamente na origem.

Você pode editar o triângulo clicando com o botão direito do mouse
sobre ele.

Você pode também determinar o ângulo compreendido entre P, a
origem e o eixo das abscissas. Para tanto, basta, primeiramente,
desenhar um ponto Q sobre o eixo x perto da origem. Clique em ângulo
e selecione esses três vértices que irão compreender esse ângulo.
Você pode editar também o ângulo, selecionando nele com o botão
direito do mouse sobre ele. Para permitir uma visão do ângulo menos
"poluída", você pode ocultar esse ponto Q, editando-o.
Você pode animar sua construção! Para isso, clique em animar um ponto . Em
       seguida, clique no ponto P, no círculo e novamente no ponto P.
Continuação....
EXEMPLO DE APLICAÇÃO

I) Seno e Cosseno de um arco

1. Utilizando a opção mover ponto no menu de comandos,
você pode mover o ponto P e observar o que ocorre com
suas coordenadas.
a) Mova o ponto P até que o ângulo formado seja de 45º (o
ângulo é formado por P, origem e eixo das abscissas).
Tente estimar o valor do seno deste ângulo, através das
relações no triângulo retângulo (lembre-se de que o raio da
circunferência mede 1). Tente estimar também o valor do
cosseno de 45º.
b) De modo semelhante, estime o valor do seno e do
cosseno de 30º.

2. Quando consideramos uma circunferência de raio igual a
1, a que conclusão podemos chegar sobre as coordenadas
do ponto P, ou seja, qual o significado da coordenada x do
ponto P? Qual o significado da coordenada y desse ponto?
EXEMPLO DE APLICAÇÃO...


3. Considere agora o primeiro quadrante (ângulos entre 0 e 90º) do
círculo. Os valores para o seno de um arco (arco é o "pedacinho"
da circunferência de extremos (1,0) e P, como se fosse a borda de
uma fatia de pizza) nesse quadrante são positivos ou negativos?
Quanto aos valores do cosseno, são positivos ou negativos?

4. Considere agora o segundo quadrante (ângulos entre 90º e 180º).
Observe que os quadrantes do círculo trigonométrico são
deteminados no sentido anti-horário. Os valores para o seno de um
arco nesse quadrante são positivos ou negativos? Quanto aos
valores do cosseno, são positivos ou negativos?

5. Considere agora o terceiro quadrante (ângulos entre 180º e
270º). Os valores para o seno de um arco nesse quadrante são
positivos ou negativos? Quanto aos valores do cosseno, são
positivos ou negativos?
EXEMPLO DE APLICAÇÃO...


6. Considere agora o quarto quadrante (ângulos entre 270º e
360º). Os valores para o seno de um arco nesse quadrante são
positivos ou negativos? Quanto aos valores do cosseno, são
positivos ou negativos?

7. Para determinar o sinal do seno de um arco, basta olharmos
até que quadrante um arco está desenhado. O valor do seno de
um arco é medido através de qual eixo coordenado? Em quais
quadrantes o valor do seno será positivo? Onde ele será
negativo? Por quê?

8. Para determinar o sinal do cosseno de um arco, basta olharmos
até que quadrante um arco está desenhado. O valor do cosseno
de um arco é medido através de qual eixo coordenado? Em quais
quadrantes o valor do cosseno será positivo? Onde ele será
negativo? Por quê?
EXEMPLO DE APLICAÇÃO...


9. Utilizando a construção feita no Régua e Compasso,
determine o valor máximo do seno de um arco. Detemine
também o valor mínimo. Com relação ao cosseno, qual seu
valor máximo e mínimo?

10. Determine o seno e o cosseno dos seguintes ângulos:

a) 0º   b) 90º c) 180º d) 270º e) 360º

11. Disponha em ordem crescente o seno e o cosseno dos
seguintes ângulos: 20º, 170º, 260º, 300º.

12. Disponha em ordem crescente os seguintes números reais:

a) sen 50º, sen 100º, sen 200º, sen 300º
b) cos 50º, cos 100º, cos 200º, cos 300º
REDUÇÃO AO PRIMEIRO QUADRANTE
Podemos obter valores de senos e cossenos de arcos dos 2º, 3º e 4º
quadrantes, usando os valores do 1º quadrante. Assim, observe as
figuras abaixo e determine:

a) os ângulos que estão faltando (aqueles que possuem um ponto de
interrogação)

b) o valor do seno e do cosseno dos quatro ângulos de cada figura
Considerações Finais


Este trabalho não foi montado com ideias exclusivamente
minhas. Fiz diversas pesquisas na INTERNET buscando
situações semelhantes àquelas que tinham relação com o meu
planejamento original.

Este trabalho não é uma cópia, mas estão aqui presentes
diversos elementos idênticos aos utilizados pelos seus
criadores.

Uma vez disponível na REDE, o material encontrado está
destinado ao aprendizado do conteúdo.

Numa eventual aula, com recursos digitais, não está
descartada a hipótese de substituir este trabalho pelo acesso
direto a alguns links citados nas referências.

JULIO CESAR FACINA NETTO
Referências


http://pt.wikipedia.org/wiki/Projeto_de_aprendizagem

http://programaamigodevalor.ning.com/?
utm_source=google&utm_medium=cpc&utm_term=educacao&utm_campaign=amigo_valor


http://www2.mat.ufrgs.br/~mat01074/20072/grupos/quefren_queops/lista_rec.htm

http://stg2.novoser.com.br/SER_PP'%20CDConvSim/000895/trigonometria4.swf

http://www2.mat.ufrgs.br/~mat01074/20072/grupos/quefren_queops/tutorial_rec.htm

 http://www.serprofessoruniversitario.pro.br/m%C3%B3dulos/metodologia-da-
 pesquisa/instrumentos-de-coleta-de-dados-em-pesquisas-educacionais#.UHm5N2-jatZ

 http://www.google.com.br/url?
 sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F
 %2Fwww.pmerechim.rs.gov.br%2Fuploads%2Ffiles%2FRevis%25C3%25A3
Trigonometria e triângulos retângulos

Mais conteúdo relacionado

Mais procurados (20)

Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
 
Triângulos
TriângulosTriângulos
Triângulos
 
Plano cartesiano ppt
Plano cartesiano pptPlano cartesiano ppt
Plano cartesiano ppt
 
Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)
 
Relações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo RetânguloRelações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo Retângulo
 
Slide aula angulos
Slide aula angulosSlide aula angulos
Slide aula angulos
 
ÁREAS E PERÍMETROS
ÁREAS E PERÍMETROS ÁREAS E PERÍMETROS
ÁREAS E PERÍMETROS
 
Funções
FunçõesFunções
Funções
 
Prismas
PrismasPrismas
Prismas
 
6º aula congruência de triângulos
6º aula   congruência de triângulos6º aula   congruência de triângulos
6º aula congruência de triângulos
 
4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos
 
Razao e proporção
Razao e proporçãoRazao e proporção
Razao e proporção
 
Quadrilateros.Ppt
Quadrilateros.PptQuadrilateros.Ppt
Quadrilateros.Ppt
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 
Congruência de triângulos
Congruência de triângulos Congruência de triângulos
Congruência de triângulos
 
Teorema de Tales
Teorema de TalesTeorema de Tales
Teorema de Tales
 
Aula de Geometria
Aula de GeometriaAula de Geometria
Aula de Geometria
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
 
Potenciação
PotenciaçãoPotenciação
Potenciação
 
Pirâmides
PirâmidesPirâmides
Pirâmides
 

Destaque

Trigonometria – 9° ano
Trigonometria – 9° anoTrigonometria – 9° ano
Trigonometria – 9° anoManuela Avelar
 
Problemas e Aplicações das Razões Trigonométricas
Problemas e Aplicações das Razões TrigonométricasProblemas e Aplicações das Razões Trigonométricas
Problemas e Aplicações das Razões TrigonométricasVivian de Paula
 
Trigonometria sem mistérios - Primeiro Passo
Trigonometria sem mistérios -  Primeiro PassoTrigonometria sem mistérios -  Primeiro Passo
Trigonometria sem mistérios - Primeiro PassoOrientador
 
Problemas de trigonometria
Problemas de trigonometriaProblemas de trigonometria
Problemas de trigonometriaguesta4ffaa
 
Trigonometría soluciones 1(versión ok)
Trigonometría soluciones 1(versión ok)Trigonometría soluciones 1(versión ok)
Trigonometría soluciones 1(versión ok)jcremiro
 
Trigonometria resolvidos
Trigonometria resolvidosTrigonometria resolvidos
Trigonometria resolvidoscon_seguir
 
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo RetânguloTrigonometria no Triângulo Retângulo
Trigonometria no Triângulo RetânguloVera Gonçalves
 
Problemas trigonometria
Problemas trigonometriaProblemas trigonometria
Problemas trigonometriaconchi Gz
 
Inecuacións
InecuaciónsInecuacións
Inecuaciónsconchi Gz
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retânguloUbirajara Neves
 
Relações Trigonométricas No Triângulo Retângulo
Relações Trigonométricas No Triângulo RetânguloRelações Trigonométricas No Triângulo Retângulo
Relações Trigonométricas No Triângulo RetânguloLedianeZeus
 
RelaçõEs Trigonometricas
RelaçõEs TrigonometricasRelaçõEs Trigonometricas
RelaçõEs Trigonometricasguest0eac51
 
TRIGONOMETRIA - TEORIA, APLICAÇÕES E EXERCÍCIOS RESOLVIDOS PASSO A PASSO
TRIGONOMETRIA - TEORIA, APLICAÇÕES E EXERCÍCIOS RESOLVIDOS PASSO A PASSOTRIGONOMETRIA - TEORIA, APLICAÇÕES E EXERCÍCIOS RESOLVIDOS PASSO A PASSO
TRIGONOMETRIA - TEORIA, APLICAÇÕES E EXERCÍCIOS RESOLVIDOS PASSO A PASSODanillo Rodrigues
 

Destaque (20)

Trigonometria – 9° ano
Trigonometria – 9° anoTrigonometria – 9° ano
Trigonometria – 9° ano
 
Problemas e Aplicações das Razões Trigonométricas
Problemas e Aplicações das Razões TrigonométricasProblemas e Aplicações das Razões Trigonométricas
Problemas e Aplicações das Razões Trigonométricas
 
Trigonometria sem mistérios - Primeiro Passo
Trigonometria sem mistérios -  Primeiro PassoTrigonometria sem mistérios -  Primeiro Passo
Trigonometria sem mistérios - Primeiro Passo
 
Problemas de trigonometria
Problemas de trigonometriaProblemas de trigonometria
Problemas de trigonometria
 
Problemas De Trigonometria
Problemas De TrigonometriaProblemas De Trigonometria
Problemas De Trigonometria
 
Trigonometría soluciones 1(versión ok)
Trigonometría soluciones 1(versión ok)Trigonometría soluciones 1(versión ok)
Trigonometría soluciones 1(versión ok)
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Trigonometria resolvidos
Trigonometria resolvidosTrigonometria resolvidos
Trigonometria resolvidos
 
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo RetânguloTrigonometria no Triângulo Retângulo
Trigonometria no Triângulo Retângulo
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Problemas trigonometria
Problemas trigonometriaProblemas trigonometria
Problemas trigonometria
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Inecuacións
InecuaciónsInecuacións
Inecuacións
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
 
Relações Trigonométricas No Triângulo Retângulo
Relações Trigonométricas No Triângulo RetânguloRelações Trigonométricas No Triângulo Retângulo
Relações Trigonométricas No Triângulo Retângulo
 
Trigonometria 1
Trigonometria 1Trigonometria 1
Trigonometria 1
 
RelaçõEs Trigonometricas
RelaçõEs TrigonometricasRelaçõEs Trigonometricas
RelaçõEs Trigonometricas
 
TRIGONOMETRIA - TEORIA, APLICAÇÕES E EXERCÍCIOS RESOLVIDOS PASSO A PASSO
TRIGONOMETRIA - TEORIA, APLICAÇÕES E EXERCÍCIOS RESOLVIDOS PASSO A PASSOTRIGONOMETRIA - TEORIA, APLICAÇÕES E EXERCÍCIOS RESOLVIDOS PASSO A PASSO
TRIGONOMETRIA - TEORIA, APLICAÇÕES E EXERCÍCIOS RESOLVIDOS PASSO A PASSO
 
Trigonometria 2
Trigonometria  2Trigonometria  2
Trigonometria 2
 

Semelhante a Trigonometria e triângulos retângulos

Trigonometria
TrigonometriaTrigonometria
Trigonometriaohqe
 
Angulos e suas relações trigonométricas
Angulos e suas relações trigonométricasAngulos e suas relações trigonométricas
Angulos e suas relações trigonométricastrigono_metria
 
Trigonometria exercícios resolvidos e teoria
Trigonometria   exercícios resolvidos e teoriaTrigonometria   exercícios resolvidos e teoria
Trigonometria exercícios resolvidos e teoriatrigono_metria
 
Apostila de trigonometra
Apostila de trigonometraApostila de trigonometra
Apostila de trigonometraefagury
 
trigonometria_no_triangulo_retangulo.pdf
trigonometria_no_triangulo_retangulo.pdftrigonometria_no_triangulo_retangulo.pdf
trigonometria_no_triangulo_retangulo.pdfsilviofabi2
 
Trigonometria triangulo retangulo
Trigonometria triangulo retanguloTrigonometria triangulo retangulo
Trigonometria triangulo retanguloErenilson Marinho
 
Trigonometria para 1º ano 1ª parte
Trigonometria para 1º ano 1ª parteTrigonometria para 1º ano 1ª parte
Trigonometria para 1º ano 1ª parteRosana Santos Quirino
 
www.aulasapoio.com - Matemática - Ciclo Trigonométrico
www.aulasapoio.com - Matemática - Ciclo Trigonométricowww.aulasapoio.com - Matemática - Ciclo Trigonométrico
www.aulasapoio.com - Matemática - Ciclo TrigonométricoAulas Apoio
 
Identificando os quadrantes do ciclo trigonométrico
Identificando os quadrantes do ciclo trigonométricoIdentificando os quadrantes do ciclo trigonométrico
Identificando os quadrantes do ciclo trigonométricotrigono_metria
 
TriâNgulo RetâNgulo
TriâNgulo RetâNguloTriâNgulo RetâNgulo
TriâNgulo RetâNguloguest4b9715
 
Trigonometria 090523202242-phpapp02
Trigonometria 090523202242-phpapp02Trigonometria 090523202242-phpapp02
Trigonometria 090523202242-phpapp02Ronoaldo Cavalcante
 
www.aulaparticularonline.net.br - Matemática - Ciclo Trigonométrico e Razões...
www.aulaparticularonline.net.br - Matemática -  Ciclo Trigonométrico e Razões...www.aulaparticularonline.net.br - Matemática -  Ciclo Trigonométrico e Razões...
www.aulaparticularonline.net.br - Matemática - Ciclo Trigonométrico e Razões...Lucia Silveira
 
www.TutoresReforcoEscolar.Com.Br - Matemática - Ciclo Trigonométrico
www.TutoresReforcoEscolar.Com.Br - Matemática -  Ciclo Trigonométricowww.TutoresReforcoEscolar.Com.Br - Matemática -  Ciclo Trigonométrico
www.TutoresReforcoEscolar.Com.Br - Matemática - Ciclo TrigonométricoManuela Mendes
 
www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...
www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...
www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...Clarice Leclaire
 
Triângulo retângulo1
Triângulo retângulo1Triângulo retângulo1
Triângulo retângulo1rangel freitas
 
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdfAula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdfRafaelVictorMorenoPo
 

Semelhante a Trigonometria e triângulos retângulos (20)

Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Angulos e suas relações trigonométricas
Angulos e suas relações trigonométricasAngulos e suas relações trigonométricas
Angulos e suas relações trigonométricas
 
Trigonometria exercícios resolvidos e teoria
Trigonometria   exercícios resolvidos e teoriaTrigonometria   exercícios resolvidos e teoria
Trigonometria exercícios resolvidos e teoria
 
Apostila de trigonometra
Apostila de trigonometraApostila de trigonometra
Apostila de trigonometra
 
trigonometria_no_triangulo_retangulo.pdf
trigonometria_no_triangulo_retangulo.pdftrigonometria_no_triangulo_retangulo.pdf
trigonometria_no_triangulo_retangulo.pdf
 
Triângulo retângulo
Triângulo retânguloTriângulo retângulo
Triângulo retângulo
 
Plano de aula_trigonometria_9_ano
Plano de aula_trigonometria_9_anoPlano de aula_trigonometria_9_ano
Plano de aula_trigonometria_9_ano
 
Trigonometria triangulo retangulo
Trigonometria triangulo retanguloTrigonometria triangulo retangulo
Trigonometria triangulo retangulo
 
Trigonometria para 1º ano 1ª parte
Trigonometria para 1º ano 1ª parteTrigonometria para 1º ano 1ª parte
Trigonometria para 1º ano 1ª parte
 
www.aulasapoio.com - Matemática - Ciclo Trigonométrico
www.aulasapoio.com - Matemática - Ciclo Trigonométricowww.aulasapoio.com - Matemática - Ciclo Trigonométrico
www.aulasapoio.com - Matemática - Ciclo Trigonométrico
 
M4 41 vb
M4 41 vbM4 41 vb
M4 41 vb
 
Identificando os quadrantes do ciclo trigonométrico
Identificando os quadrantes do ciclo trigonométricoIdentificando os quadrantes do ciclo trigonométrico
Identificando os quadrantes do ciclo trigonométrico
 
TriâNgulo RetâNgulo
TriâNgulo RetâNguloTriâNgulo RetâNgulo
TriâNgulo RetâNgulo
 
Trigonometra
TrigonometraTrigonometra
Trigonometra
 
Trigonometria 090523202242-phpapp02
Trigonometria 090523202242-phpapp02Trigonometria 090523202242-phpapp02
Trigonometria 090523202242-phpapp02
 
www.aulaparticularonline.net.br - Matemática - Ciclo Trigonométrico e Razões...
www.aulaparticularonline.net.br - Matemática -  Ciclo Trigonométrico e Razões...www.aulaparticularonline.net.br - Matemática -  Ciclo Trigonométrico e Razões...
www.aulaparticularonline.net.br - Matemática - Ciclo Trigonométrico e Razões...
 
www.TutoresReforcoEscolar.Com.Br - Matemática - Ciclo Trigonométrico
www.TutoresReforcoEscolar.Com.Br - Matemática -  Ciclo Trigonométricowww.TutoresReforcoEscolar.Com.Br - Matemática -  Ciclo Trigonométrico
www.TutoresReforcoEscolar.Com.Br - Matemática - Ciclo Trigonométrico
 
www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...
www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...
www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...
 
Triângulo retângulo1
Triângulo retângulo1Triângulo retângulo1
Triângulo retângulo1
 
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdfAula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
 

Último

Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOMarcosViniciusLemesL
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃOLEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃOColégio Santa Teresinha
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 anoAdelmaTorres2
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxLuizHenriquedeAlmeid6
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdfJorge Andrade
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfHenrique Pontes
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresaulasgege
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasCassio Meira Jr.
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
FCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirFCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirIedaGoethe
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesMary Alvarenga
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditaduraAdryan Luiz
 
geografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundogeografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundonialb
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfIedaGoethe
 

Último (20)

Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
 
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃOLEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autores
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades Motoras
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
FCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirFCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimir
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das Mães
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditadura
 
geografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundogeografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundo
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdf
 

Trigonometria e triângulos retângulos

  • 2. 2 Trigonometria O significado da palavra trigonometria, vem do grego e resulta da conjunção de três palavras: Tri – três Gonos – ângulo Metrein - medir Trigonometria significa, o estudo das medidas dos triângulos.
  • 3. 3
  • 5. 5
  • 6. 7 Triângulo retângulo Triângulo retângulo é todo triângulo que apresenta um ângulo reto, ou seja, um ângulo de 90°. cateto hipotenu cateto cateto sa cateto hipotenu sa A hipotenusa é sempre o maior lado do triângulo retângulo; Em qualquer triângulo, a soma dos ângulos internos é sempre 180°; Como num triângulo retângulo um dos ângulos é reto, a soma dos outros dois ângulos agudos (menores que 90º) é sempre 90°; Quando a soma de dois ângulos internos é igual a 90°, dizemos que esses ângulos são complementares.
  • 7. 8 Teorema de Pitágoras Em todo triângulo retângulo, o quadrado da medida da hipotenusa é igual a soma dos quadrados das medidas dos catetos. a=5 b=3 a 2 =b 2 +c 2 52 =3 2+ 4 2 25=9+ 16 25=25 c=4
  • 8. 12 Relações Trigonométricas num triângulo retângulo Seno Cosseno Tangente
  • 12. 18 Cálculo de seno, cosseno e tangente dos ângulos notáveis Seno, cosseno e tangente de 30° e 60º cateto oposto senα= hipotenusa cateto adjacente cosα= hipotenusa cateto oposto tgα = cateto adjacente 2
  • 13. 19 Seno, cosseno e tangente de 45° cateto oposto senα= hipotenusa cateto adjacente cosα= hipotenusa cateto oposto tgα= cateto adjacente
  • 14. 20 Construção da Tabela Trigonométrica
  • 15. 21 Relações entre seno, cosseno e tangente
  • 16. 22
  • 17. 23 Observe a situação a seguir: Um fio elétrico será instalado entre um poste P e uma casa, separados por um lago em um terreno plano. Como calcular o comprimento do fio necessário para a instalação? Pela necessidade de solucionar problemas relacionados a triângulos que não são retângulos, se desenvolveram formas de trabalhar com senos e cossenos de ângulos obtusos ( maiores que 90°).
  • 18. 24 Teorema ou Lei dos Senos A lei dos senos pode ser utilizada em qualquer triângulo. No caso de triângulos retângulos, basta considerar sen 90° = 1.
  • 19. 25 Aplicação da Lei dos Senos A Lei dos Senos é geralmente usada, quando são conhecidos 2 ângulos internos e a medida do cateto oposto a um desses ângulos.
  • 20. 26 Teorema ou Lei dos Cossenos A Lei dos Cossenos é geralmente usada, quando são conhecidas as medidas de dois lados e o ângulo formado por eles.
  • 22. 28 Área de um triângulo
  • 23. 29 Existem problemas em que se deseja calcular a área de um triângulo e não são conhecidas as medidas da base e altura. Nesses casos, a área pode ser calculada de duas maneiras diferentes: 1ª maneira: Área de um triângulo em função da medidas de dois lados e do ângulo compreendido entre eles.
  • 25. 31
  • 27. CIRCUNFERÊNCIA TRIGONOMÉTRICA: Arcos Simétricos π 90°= 2 IIQ :180 ° −α IQ : α π−α 180°= π 360°=2π IIIQ :180°+ α IV :360 °−α π+α 2 π-α 3π 270°= 2
  • 28. 42 Sinal COSSENO: 90° 120° = = 135° = 60° = 45° 150° = = 30° Cosseno =2π=360 ° 210° = = 330° 225° = = 315° 240° = = 300° 270°
  • 29. 43 Sinal TANGENTE: Tangente 90° 120° = = 135° = 60° = 45° 150° = = 30° =2π=360 ° 210° = = 330° 225° = = 315° 240° = = 300° 270°
  • 30. 44 Sinal SENO: Seno 90° Tangente 120° = = 60° 135° = = 45° 150° = = 30° Cosseno =2π=360 ° 210° = = 330° 225° = = 315° 240° = = 300° 270°
  • 31. 45 OUTRAS RAZÕES TRIGONOMÉTRICAS 1 Secante: o sinal da secante é o mesmo do cosseno sec x= cos x Cossecante: o sinal da cossecante é o mesmo do 1 cossec x= seno sen x Cotangente: o sinal da cotangente é o mesmo da cos x cot gx= tangente. sen x
  • 32. Para iniciar desenhando a circunferência clique em "círculo de raio fixo", como mostra a figura abaixo.
  • 33. 1) Nomear o circulo, dando 1 ao tamanho do RAIO 2) Personalizar cor e estilo 3) Usar botão direito e janela de edição para acertar informações do centro do círculo
  • 34. Por uma questão de conveniência, o centro de nossa circunferência será a origem. Para determinar o centro como o ponto (0,0) basta alterar os valores de x e y para 0, na janela de edição desse ponto. Para uma visualização com os eixos coordenados basta clicar na opção exibir grade ,no menu de comandos do software. Localizaremos tambémos pontos (1,0), (0,1), (-1,0) e (0,-1). Para localizá- los, clique na opção ponto , no menu de comandos. Para editá-los, basta clicar com o botão direito do mouse e digitar a coordenada do ponto em "nome". Caso o nome do ponto - ou de qualquer outro objeto - não esteja aparecendo, clique em exibir nomes dos objetos , na janela de edição do próprio objeto. Veja figura a seguir:
  • 35.
  • 36. Desenharemos agora retas que "passam em cima" dos eixos coordenados (essa construção será feita para auxiliar futuramente na construção do triângulo, onde estudaremos as funções seno e cosseno). Assim, para construir essas retas basta clicar em reta . Clique no ponto (-1, 0) e logo após em (1, 0) para construir a reta r que "passa em cima" do eixo das abscissas - ou primeiro em (1, 0) e depois em (- 1, 0). Para construir a reta s, que "passa em cima" do eixo das ordenadas, basta selecionar a opção perpendicular . Clique então sobre a reta construída anteriormente e logo após clique no ponto (0, 1) - ou no ponto (0, -1). (Poderíamos também construir essa segunda reta da mesma maneira como construímos a primeira) Obs: Para visualizar se as retas foram de fato construídas, selecione exibir grade duas vezes, para que os eixos coordenados sejam ocultos. Veja figura a seguir:
  • 37.
  • 38. Para a construção do triângulo, primeiro devemos construir um ponto P sobre a circunferência - escolheremos aqui um ponto localizado no primeiro quadrante. Logo após, vamos construir uma reta que seja paralela à reta r e passe por P. Construiremos também uma reta que seja paralela à reta s passando por P. Para construir uma reta paralela à outra, clique em paralela . Essa construção está representada abaixo:
  • 39. Para a construção do triângulo, selecione a opção polígono . Clique na origem, no ponto P, na interseção das retas s e paralela-s e finalize o triângulo clicando novamente na origem. Você pode editar o triângulo clicando com o botão direito do mouse sobre ele. Você pode também determinar o ângulo compreendido entre P, a origem e o eixo das abscissas. Para tanto, basta, primeiramente, desenhar um ponto Q sobre o eixo x perto da origem. Clique em ângulo e selecione esses três vértices que irão compreender esse ângulo. Você pode editar também o ângulo, selecionando nele com o botão direito do mouse sobre ele. Para permitir uma visão do ângulo menos "poluída", você pode ocultar esse ponto Q, editando-o.
  • 40.
  • 41. Você pode animar sua construção! Para isso, clique em animar um ponto . Em seguida, clique no ponto P, no círculo e novamente no ponto P.
  • 43. EXEMPLO DE APLICAÇÃO I) Seno e Cosseno de um arco 1. Utilizando a opção mover ponto no menu de comandos, você pode mover o ponto P e observar o que ocorre com suas coordenadas. a) Mova o ponto P até que o ângulo formado seja de 45º (o ângulo é formado por P, origem e eixo das abscissas). Tente estimar o valor do seno deste ângulo, através das relações no triângulo retângulo (lembre-se de que o raio da circunferência mede 1). Tente estimar também o valor do cosseno de 45º. b) De modo semelhante, estime o valor do seno e do cosseno de 30º. 2. Quando consideramos uma circunferência de raio igual a 1, a que conclusão podemos chegar sobre as coordenadas do ponto P, ou seja, qual o significado da coordenada x do ponto P? Qual o significado da coordenada y desse ponto?
  • 44. EXEMPLO DE APLICAÇÃO... 3. Considere agora o primeiro quadrante (ângulos entre 0 e 90º) do círculo. Os valores para o seno de um arco (arco é o "pedacinho" da circunferência de extremos (1,0) e P, como se fosse a borda de uma fatia de pizza) nesse quadrante são positivos ou negativos? Quanto aos valores do cosseno, são positivos ou negativos? 4. Considere agora o segundo quadrante (ângulos entre 90º e 180º). Observe que os quadrantes do círculo trigonométrico são deteminados no sentido anti-horário. Os valores para o seno de um arco nesse quadrante são positivos ou negativos? Quanto aos valores do cosseno, são positivos ou negativos? 5. Considere agora o terceiro quadrante (ângulos entre 180º e 270º). Os valores para o seno de um arco nesse quadrante são positivos ou negativos? Quanto aos valores do cosseno, são positivos ou negativos?
  • 45. EXEMPLO DE APLICAÇÃO... 6. Considere agora o quarto quadrante (ângulos entre 270º e 360º). Os valores para o seno de um arco nesse quadrante são positivos ou negativos? Quanto aos valores do cosseno, são positivos ou negativos? 7. Para determinar o sinal do seno de um arco, basta olharmos até que quadrante um arco está desenhado. O valor do seno de um arco é medido através de qual eixo coordenado? Em quais quadrantes o valor do seno será positivo? Onde ele será negativo? Por quê? 8. Para determinar o sinal do cosseno de um arco, basta olharmos até que quadrante um arco está desenhado. O valor do cosseno de um arco é medido através de qual eixo coordenado? Em quais quadrantes o valor do cosseno será positivo? Onde ele será negativo? Por quê?
  • 46. EXEMPLO DE APLICAÇÃO... 9. Utilizando a construção feita no Régua e Compasso, determine o valor máximo do seno de um arco. Detemine também o valor mínimo. Com relação ao cosseno, qual seu valor máximo e mínimo? 10. Determine o seno e o cosseno dos seguintes ângulos: a) 0º b) 90º c) 180º d) 270º e) 360º 11. Disponha em ordem crescente o seno e o cosseno dos seguintes ângulos: 20º, 170º, 260º, 300º. 12. Disponha em ordem crescente os seguintes números reais: a) sen 50º, sen 100º, sen 200º, sen 300º b) cos 50º, cos 100º, cos 200º, cos 300º
  • 47. REDUÇÃO AO PRIMEIRO QUADRANTE Podemos obter valores de senos e cossenos de arcos dos 2º, 3º e 4º quadrantes, usando os valores do 1º quadrante. Assim, observe as figuras abaixo e determine: a) os ângulos que estão faltando (aqueles que possuem um ponto de interrogação) b) o valor do seno e do cosseno dos quatro ângulos de cada figura
  • 48. Considerações Finais Este trabalho não foi montado com ideias exclusivamente minhas. Fiz diversas pesquisas na INTERNET buscando situações semelhantes àquelas que tinham relação com o meu planejamento original. Este trabalho não é uma cópia, mas estão aqui presentes diversos elementos idênticos aos utilizados pelos seus criadores. Uma vez disponível na REDE, o material encontrado está destinado ao aprendizado do conteúdo. Numa eventual aula, com recursos digitais, não está descartada a hipótese de substituir este trabalho pelo acesso direto a alguns links citados nas referências. JULIO CESAR FACINA NETTO