Operações com Números Naturais

19.981 visualizações

Publicada em

Publicada em: Educação
0 comentários
5 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
19.981
No SlideShare
0
A partir de incorporações
0
Número de incorporações
73
Ações
Compartilhamentos
0
Downloads
728
Comentários
0
Gostaram
5
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Operações com Números Naturais

  1. 1. Algoritmos da adição parcela parcela soma ou total Termos da adição 3 3 0 + 4 8 3 C D U 8 1 3 1
  2. 2. Ideias associadas à adição Juntar quantidades: Joana estuda no 6o ano B. Em sua escola há 358 meninos e 536 meninas. Qual é o total de alunos dessa escola? Acrescentar uma quantidade a outra já existente: Vimos que na escola de Joana há 894 alunos. Se 87 novos alunos forem matriculados, quantos alunos a escola passará a ter? 3 5 8 + 5 3 6 C D U 8 9 4 1 8 9 4 + 8 7 C D U 9 8 1 11
  3. 3. Propriedades da adição Propriedade comutativa 10 + 20 = 20 + 10 5 328 + 7 476 = 7 476 + 5 328 = 12 804 5 3 2 8 + 7 4 7 6 C D U 8 0 4 11 21 7 4 7 6 + 5 3 2 8 C D U 8 0 4 11 21
  4. 4. Propriedade do elemento neutro 10 + 0 = 0 + 10 = 10 Propriedade associativa Portanto: (10 + 5) + 2 = 10 + (5 + 2) (10 + 5) + 2 15 + 2 = 17 10 (5 + 2) 10 + 7 = 17 + CASADAMOEDADOBRASIL/MINISTÉRIODAFAZENDA
  5. 5. Algoritmo de subtração Minuendo Subtraendo Diferença ou resto Termos da subtração 5 7 2 ‒ 4 4 5 C D U 1 2 7 1 6 Obs.: Em , a subtração só poderá ser efetuada quando o minuendo for maior ou igual ao subtraendo.
  6. 6. Relação fundamental da subtração: minuendo – subtraendo = diferença Exemplos de aplicações: • Se o subtraendo é 95 e a diferença é 37, vamos determinar o minuendo. minuendo – 95 = 37 equivalente a 37 + 95 = minuendo 132 • Se uma das parcelas de uma adição é 89 e a soma é 121, vamos determinar a outra parcela. “? + 89 = 121” equivale a “? = 121 – 89”. Logo, a outra parcela é 32. • Considerando que n representa um número natural, vamos determinar o seu valor. n – 8 = 15 “n – 8 = 15” equivale a “15 + 8 = n”. 23 diferença + subtraendo = minuendo é equivalente a Portanto, n = 23.
  7. 7. Ideias associadas à subtração Tirar uma quantidade de outra: Norberto tem 227 reais e vai comprar uma calça de R$ 55,00. Com quanto ele ainda vai ficar? Completar quantidades: Juvenal tem 359 reais na poupança e quer comprar uma televisão de R$ 600,00. Quanto falta para ele pode comprar o televisor? Comparar quantidades: Compare os pontos de Angélica com os pontos dos demais. Felipe: 1 278 pontos Jorge: 2 188 pontos Angélica: 1 895 pontos 2 2 7 ‒ 5 5 C D U 1 7 2 11 6 0 0 ‒ 3 5 9 C D U 2 4 1 15 9 1 1 8 9 5 ‒ 1 2 7 8 C D U 6 1 7 18 2 1 8 8 ‒ 1 8 9 5 C D U 2 9 3 1 1 10 1 00
  8. 8. Expressões numéricas envolvendo adição e subtração 8 – {4 + [9 – (12 – 5)] – 1} = = 8 – {4 + [9 – 7] – 1} = = 8 – {4 + 2 – 1} = = 8 – {6 – 1} = = 8 – 5 = 3 10 + 20 – 5 + 3 = = 30 – 5 + 3 = = 25 + 3 = 28
  9. 9. Algoritmo da multiplicação fator fator produto Algoritmo usual: Algoritmo por decomposição: 3 4 × 3 C D U 1 0 2 1 10 + 4 × 10 + 2 20 + 8 100 + 40 120 + 48 168 12 × 14 48 + 12 168 0
  10. 10. Ideias associadas à multiplicação Adicionar parcelas iguais Qual é o valor do telefone ao lado, que está sendo vendido na loja “Barateria”? Disposição retangular Quantas carteiras há nesta sala de aula? 8 × 5 = 40 2 6 × 3 7 8 8 5 1 SÉRGIODOTTARJR./ARQUIVODAEDITORA MAUROSOUZA/ARQUIVODAEDITORA
  11. 11. Número de possibilidades ou combinações: Numa lanchonete há 4 tipos de suco: laranja, abacaxi, melancia e uva. Eles são servidos em copos de 3 tamanhos: pequeno, médio e grande. Quantas são as possibilidades de escolha ao pedir um suco? 4 × 3 = 12 Número de frutas Copos
  12. 12. Proporcionalidade: 1 rolo 50 m 3 rolos 150 m 3 × 3 × 5 × 5 × 15 rolos 750 m SÉRGIODOTTARJR./ARQUIVODAEDITORA
  13. 13. Propriedades da multiplicação Propriedade comutativa: 5 × 3 = 15 ou 3 × 5 = 15 10 × 3 = 3 × 10 30 30 Propriedade do elemento neutro: O número 1 é o elemento neutro da multiplicação. Exemplos: • 1 × 5 = 5 • 7 × 1 = 7 • 12 × 1 = 12 Propriedade do elemento nulo: Em toda multiplicação que tem o zero como um dos fatores, o produto é zero. Propriedade associativa: (6 × 15) × 20 = 6 × (15 × 20) 90 × 20 = 6 × 300 1 800 = 1 800 Propriedade distributiva: 5 × (12 + 25) =5 × 12 + 5 × 25 6 × (18 – 13) =6 × 18 – 6 × 13 Por exemplo: 6 × 0 = 0 e 0 × 4 = 0.
  14. 14. Algoritmo da divisão DivisorDividendo Quociente Resto D U 7 8 3 1 8 2 6 D U0
  15. 15. Ideias associadas à divisão Repartir igualmente: Um pai de família quer repartir igualmente 84 balas entre as 6 crianças que frequentam sua casa. Com quantas balas cada criança ficará? “Medida” ou quantas vezes uma quantidade cabe em outra: Em uma fábrica de refrigerante, embalam-se 6 garrafas em uma caixa. Quantas caixas são necessárias para embalar 195 refrigerantes? Resto 0 (divisão igual) D U 8 4 6 2 4 1 4 D U0 3 garrafas não serão embaladas. C D U 1 9 5 6 1 5 3 2 D U3
  16. 16. Relação fundamental da divisão quociente × divisor + resto = dividendo 27 × 7 + 1 = 190 D d r q 190 7 50 27 1
  17. 17. Expressões numéricas envolvendo as quatro operações 20 – (18 – 2 × 24 : 3) = = 20 – (18 – 48 : 3) = = 20 – (18 – 16) = = 20 – 2 = 18 (6 × 5 – 2) : (15 – 16 : 4 + 3) × 2 = = (30 – 2) : (15 – 4 + 3) × 2 = = 28 : (11 + 3) × 2 = = 28 : 14 × 2 = = 2 × 2 = 4
  18. 18. Professor Rubens www.rubensdiasjr.blogspot.com.br

×