SlideShare uma empresa Scribd logo
F u n ç õ e s
FUNÇÃO DO 1º GRAU
 Definição
Chama-se função polinomial do 1º grau, ou
função afim, a qualquer função f de IR em IR dada
por uma lei da forma f(x) = ax + b, onde a e b são
números reais dados e a ≠ 0.
Na função f(x) = ax + b, o número a é chamado de
coeficiente de x e o número b é chamado termo
constante.
Veja alguns exemplos de funções polinomiais do 1º
grau:
f(x) = 5x - 3, onde a = 5 e b = - 3
 f(x) = -2x - 7, onde a = -2 e b = - 7
 f(x) = 11x, onde a = 11 e b = 0
GRÁFICO
O gráfico de uma função polinomial do 1º grau,  y = ax + b,
com a ≠ 0, é uma reta oblíqua aos eixos Ox e Oy.
Exemplo: construir o gráfico da função y = 3x - 1
Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los
com o auxílio de uma régua:
a)Para   x = 0, temos   y = 3 · 0 - 1 = -1; portanto, um ponto é
(0, -1)
b) Para   y = 0, temos   0 = 3x - 1; portanto, e outro ponto é .
Marcamos os pontos (0, -1) e no plano cartesiano e ligamos
os dois com uma reta.
COEFICIENTE ANGULAR E LINEAR
 O coeficiente de x, a, é chamado coeficiente angular da
reta, a está ligado à inclinação da reta em relação ao eixo
Ox.
  O termo constante, b, é chamado coeficiente linear da
reta. Para x = 0, temos y = a · 0 + b = b. Assim, o
coeficiente linear é a ordenada do ponto em que a reta corta
o eixo Oy.
0,b
ZERO OU RAIZ DA FUNÇÃO
Chama-se zero ou raiz da função polinomial do 1º grau
f(x) = ax + b, a ≠ 0, o número real x tal que  f(x) = 0.
Temos:
f(x) = 0        ax + b = 0       
Vejamos alguns exemplos:
1- Obtenção do zero da função f(x) = 2x - 5:
f(x) = 0        2x - 5 = 0       
2- Cálculo da raiz da função g(x) = 3x + 6:
g(x) = 0  3x + 6 = 0  x = -2       
   
3- Cálculo da abscissa do ponto em que o gráfico de
h(x) = -2x +10 corta o eixo das abscissas:
O ponto em que o gráfico corta o eixo dos x é aquele
em que h(x) = 0; então:
   
h(x) = 0        -2x + 10 = 0        x = 5
CRESCIMENTO E DECRESCIMENTO
Função Crescente: A função do 1º grau f(x) = ax + b é crescente quando o coeficiente de
x é positivo (a > 0);
Justificativa: para a > 0: se x1 < x2, então ax1 < ax2. Daí, ax1 + b < ax2 + b, de onde vem
f(x1) < f(x2).
x -3 -2 -1 0 1 2 3
y -10 -7 -4 -1 2 5 8
Função Decrescente: A função do 1º grau f(x) = ax + b é decrescente quando o coeficiente
de x é negativo (a < 0);
Justificativa: para a < 0: se x1 < x2, então ax1 > ax2. Daí, ax1 + b > ax2 + b, de
onde vem f(x1) > f(x2).
x -3 -2 -1 0 1 2 3
y 8 5 2 -1 -4 -5 -10
y diminui
ESTUDO DO SINAL DA FUNÇÃO
Estudar o sinal de uma função qualquer, y = f(x)
é determinar os valores de x para os quais y é
positivo, os valores de x para os quais y é zero e
os valores de x para os quais y é negativo.
Consideremos  uma função afim y = f(x) = ax + b
vamos estudar seu sinal. Já vimos que essa
função se anula pra raiz .
Há dois casos possíveis:
1º) a > 0 (a função é crescente)
y > 0       ax + b > 0         x >
y < 0      ax + b < 0         x <
Conclusão: y é positivo para valores de x maiores que a raiz; y
é negativo para valores de menores que a raiz.
2º) a < 0 (a função é decrescente)
y > 0  ax + b > 0            x <
y < 0  ax + b < 0        x >
Conclusão: y é positivo para valores de x menores que a
raiz; y é  negativo para valores de x maiores que a raiz.
FUNÇÃO QUADRÁTICA
 Definição:
Chama-se função quadrática, ou função
polinomial do 2º grau, qualquer f de IR em IR
dada por uma lei da forma f(x) = ax2
+ bx + c,
onde a, b e c são números reais e a≠0.
Vejamos alguns exemplos de função quadráticas:
1) f(x) = 3x2
- 4x  + 1, onde a = 3, b = - 4 e c = 1
2) f(x) = x2
-1, onde a = 1, b = 0 e c = -1
3) f(x) = 2x2
+ 3x + 5, onde a = 2, b = 3 e c = 5
4) f(x) = - x2
+ 8x, onde a = 1, b = 8 e c = 0
5) f(x) = -4x2
, onde a = - 4, b = 0 e c = 0
GRÁFICO
O gráfico de uma função polinomial do 2º grau, y = ax2
+ bx + c, com a≠ 0,
é uma curva chamada parábola.
  Vamos construir o gráfico da função y = x2
+ x:
Primeiro atribuímos a x alguns valores, depois calculamos o valor
correspondente de y e, em seguida, ligamos os pontos assim obtidos.
X Y
-3 6
-2 2
-1 0
-1/2 -1/4
0 0
1 2
2 6
•se   a > 0, a parábola tem a concavidade voltada para
cima; 
•se a < 0, a parábola tem a concavidade voltada para
baixo;
ZERO OU RAIZ DA FUNÇÃO
QUADRÁTICA
Chama-se zeros ou raízes da função polinomial do 2º grau
f(x) = ax2
+ bx + c , a ≠ 0, os números reais x tais que f(x) = 0.
Então as raízes da função f(x) = ax2
+ bx + c são as soluções
da equação do 2º grau ax2
+ bx + c = 0, as quais são dadas
pela chamada fórmula de Bhaskara:
Temos:
ZERO OU RAIZ DA FUNÇÃO
QUADRÁTICA
Observação:
A quantidade de raízes reais de uma função
quadrática depende do valor obtido para o
radicando ,chamado discriminante, a
saber:
 Quando ∆ é positivo, há duas raízes reais e
distintas;
 Quando ∆ é zero, há só uma raiz real;
 quando ∆ é negativo, não há raiz real.
COORDENADAS DO VÉRTICE DA
PARÁBOLA
Quando a > 0, a parábola tem concavidade voltada para
cima e um ponto de mínimo V; quando a < 0, a parábola
tem concavidade voltada para baixo e um ponto de máximo
V. 
Em qualquer caso, as coordenadas de V são
Veja os gráficos:
IMAGEM DA FUNÇÃO
O conjunto-imagem Im da função y = ax2
+ bx + c,  a 0, é o
conjunto dos valores que y pode assumir. Há duas
possibilidades:
1ª) quando a > 0,
a > 0
IMAGEM DA FUNÇÃO
2ª) quando a < 0,
a < 0
CONSTRUÇÃO DA PARÁBOLA
É possível construir o gráfico de uma função do 2º grau sem
montar a tabela de pares (x, y), mas seguindo apenas o roteiro
de observação seguinte:
1) O valor do coeficiente a define a concavidade da parábola;
2) Os zeros definem os pontos em que a parábola intercepta o
eixo dos x;
3) O vértice V indica o ponto de mínimo (se a > 0), ou
máximo (se a< 0);
4) A reta que passa por V e é paralela ao eixo dos  y é o eixo de
simetria da parábola;
5) Para x = 0 , temos y = a · 02
+ b · 0 + c = c; então  (0, c) é o
ponto em que a parábola corta o eixo dos y.
SINAL DA FUNÇÃO
Consideramos uma função quadrática
y = f(x) = ax2
+ bx + c e determinemos
os valores de x para os quais y é
negativo e os valores de x para os
quais y é positivos.
Conforme o sinal do discriminante
∆ = b2
- 4ac, podem ocorrer os seguintes
casos:
y > 0 (x1 < x < x2)
y < 0 (x < x1 ou x > x2)
1º caso) ∆ > 0
Nesse caso a função quadrática admite dois zeros reais
distintos (x1 ≠ x2). A parábola intercepta o eixo Ox em dois
pontos e o sinal da função é o indicado nos gráficos abaixo:
y > 0 (x < x1 ou x > x2)
y < 0 x1 < x < x2
quando a > 0 quando a < 0
2º caso) ∆ = 0
 
quando a > 0 quando a < 0
3º caso) ∆ < 0
quando a > 0 quando a < 0
FUNÇÃO MODULAR
 Módulo (ou valor absoluto) de um número
O módulo (ou valor absoluto) de um número real x,
que se indica por | x | é definido da seguinte
maneira:
Então:
 se x é positivo ou zero, | x | é igual ao próprio x.
Exemplos: | 2 | = 2 ; | 1/2 | = | 1/2 | ; | 15 | = 15
 se x é negativo, | x | é igual a -x.
Exemplos: | -2 | = -(-2) = 2 ; | -20 | = -(-20) = 20



<−
≥
=
0se,
0se,
xx
xx
x
O módulo de um número real é sempre positivo ou nulo. O
módulo de um número real nunca é negativo.
Representando geometricamente, o módulo de um número real x
é igual a distância do ponto que representa, na reta real, o
número x ao ponto 0 de origem.
Assim:
Se | x | < a (com a>0) significa que a distância entre x e a origem é menor
que a, isto é, x deve estar entre –a e a, ou seja, | x | < a ⇔ -a < x < a.
Se | x | > a (com a>0) significa que a distância entre x e a origem é
maior que a, isto é, deve estar à direita de a ou à esquerda de –a na
reta real, ou seja: | x | > a ⇔ x > a ou x < -a.
-a a
-a a
EQUAÇÕES MODULARES
Toda a equação que contiver a incógnita em um módulo num dos membros será
chamada equação modular.
Exemplos:
| x2
-5x | = 1
| x+8 | = | x2
-3 |
Algumas equações modulares resolvidas:
 1- Resolver a equação | x2
-5x | = 6.
Resolução: Temos que analisar dois casos:
caso 1: x2
-5x = 6
caso 2: x2
-5x = -6
 Resolvendo o caso 1:
x2
-5x-6 = 0 => x’=6 e x’’=-1.
Resolvendo o caso 2:
x2
-5x+6 = 0 => x’=3 e x’’=2.
Resposta: S={-1,2,3,6}
 
2- Resolver a equação | x-6 | = | 3-2x |.
Resolução: Temos que analisar dois casos:
caso 1: x-6 = 3-2x
caso 2: x-6 = -(3-2x)
Resolvendo o caso 1:
x-6 = 3-2x => x+2x = 3+6 => 3x=9 => x=3
Resolvendo o caso 2:
x-6 = -(3-2x) => x-2x = -3+6 => -x=3 => x=-3
Resposta: S={-3,3}
INEQUAÇÕES MODULARES
Chamamos de inequações modulares as inequações nos quais aparecem
módulos de expressões que contém a incógnita.
 
Algumas inequações modulares resolvidas:
Resolver a inequação | -2x+6 | < 2.
Resolução:
S = {x ∈ IR | 2<x<4}



>
<
⇒



>
<
⇒
⇒



<−
+<
⇒



<+−
+−<−
⇒<+−<−⇒<+
2
4
42
82
42
262
262
622
26222|62x-|
x
x
x
x
x
x
x
x
x
2) Dê o conjunto solução da inequação |x2
-2x+3| ≤ 4.
Resolução:
|x2
-2x+3| ≤ 4 => -4 ≤ x2
-2x+3 ≤ 4.
Então temos duas inequações (que devem ser satisfeitas ao mesmo tempo):
Eq.1: -4 ≤ x2
-2x+3
Eq.2: x2
-2x+3 ≤ 4
Resolvendo a Eq.1:
-4 ≤ x2
-2x+3 => -4-3 ≤ x2
-2x => -7 ≤ x2
-2x => x2
-2x+7 ≥ 0 => sem raízes
reais
Resolvendo a Eq.2:
x2
-2x+3 ≤ 4 => x2
-2x-1 ≤ 0
}2121|{
21''
21'
raízesassencontramoBhaskaraAplicando
+≤≤−∈=




+=
−=
xIRxS
x
x
MÓDULO E RAIZ QUADRADA
Consideremos os números reais x e y.
Temos por definição, que se e somente se, y2
= x e y≥0. Daí podemos
concluir que só é verdadeiro se x≥0.
Se tivermos x<0, não podemos afirmar que , pois isso contradiz a
definição.
 
Por exemplo, se x= -3, teríamos: o que é um absurdo, pois o
primeiro membro é positivo e o segundo negativo. Usando a definição
de
módulo, podemos escrever: o que é verdadeiro para todo x real.
Devemos proceder da mesma forma em relação a todas raízes de índice
par:
Com relação às raízes de índice ímpar, podemos escrever:
yx =
xx =2
xx =2
3)3( 2
−=−
||2
xx =
*INneIRxcom|,||,||,| 2 26 64 4
∈∈=== xxxxxx n n
INneIRxcom,,, 12 125 53 3
∈∈=== + +
xxxxxx n n
FUNÇÃO MODULAR
Chamamos de função modular f(x) = │x│ definida por:
Observe , então, que a função modular é uma função
definida por duas sentenças.



<−
≥
=
0se,
0se,
)(
xx
xx
xf
Exemplo 2 – Determinar o domínio da função
Resolução: |1|2)( −−= xxf
3}x1|IR{xD:Resposta
3x112x1221x2
21x22|1x|2|1x|0|1x|2:Então
0.|1x|2seIRempossívelésó|1x|2queSabemos
≤≤−∈=
≤≤−⇒+≤≤+−⇒≤−≤−
≤−≤−⇒≤−⇒−≥−−⇒≥−−
≥−−−−
Determinação do domínio
Exemplo 1 – Determinar o domínio da função
Resolução: 3||
1
)(
−
=
x
xf
}3ou3|{:Resposta
3ou33||03||:Então
.03||seIRempossívelésó
3||
1
queSabemos
−≠≠∈=
−≠≠⇒≠⇒≠−
≠−
−
xxIRxD
xxxx
x
x
GRÁFICO
Vamos construir o gráfico da função f(x) = │x│:
X y=f(x)
-1 1
-2 2
0 0
1 1
2 2
EQUAÇÃO EXPONENCIAL
Chamamos de equações exponenciais toda equação na qual
a incógnita aparece em expoente.
Exemplos de equações exponenciais:
a) 3x
=81 (a solução é x=4)
b) 2x-5
=16 (a solução é x=9)
c) 16x
-42x-1
-10=22x-1
(a solução é x=1)
d) 32x-1
-3x
-3x-1
+1=0 (as soluções são x’=0 e x’’=1)
Para resolver equações exponenciais, devemos realizar dois
passos importantes:
1º) redução dos dois membros da equação a potências de
mesma base;
2º) aplicação da propriedade:
 
)0e1( >≠=⇒= aanmaa nm
FUNÇÃO EXPONENCIAL
Chamamos de funções exponenciais aquelas nas
quais temos a variável aparecendo em expoente.
A função f:IRIR+
definida por f(x)=ax
, com a ∈ IR+
e
a≠1, é chamada função exponencial de base a. O
domínio dessa função é o conjunto IR (reais) e o
contradomínio é IR+
(reais positivos, maiores que
zero).
GRÁFICO CARTESIANO DA FUNÇÃO
EXPONENCIAL
Temos 2 casos a considerar:
 quando a>1;
 quando 0<a<1.
Acompanhe os exemplos seguintes:
X Y
-2 ¼
-1 ½
0 1
1 2
2 4
1) y=2x
(nesse caso, a=2, logo a>1)
Atribuindo alguns valores a x e calculando os
correspondentes valores de y, obtemos a tabela e o
gráfico abaixo:
2) y=(1/2)x
(nesse caso, a=1/2, logo 0<a<1)
Atribuindo alguns valores a x e calculando os
correspondentes valores de y, obtemos a tabela e o
gráfico abaixo:
X Y
-2 4
-1 2
0 1
1 ½
2 ¼
Nos dois exemplos, podemos observar que:
 o gráfico nunca intercepta o eixo horizontal; a função não tem
raízes;
 o gráfico corta o eixo vertical no ponto (0,1);
 os valores de y são sempre positivos (potência de base
positiva é positiva), portanto o conjunto imagem é Im=IR+
.
Além disso, podemos estabelecer o seguinte:
a>1 0<a<1
f(x) é crescente e Im=IR+
Para quaisquer x1 e x2 do domínio:
x2>x1 ⇒ y2>y1 (as desigualdades têm mesmo sentido)
f(x) é decrescente e Im=IR+
Para quaisquer x1 e x2 do domínio:
x2>x1 ⇒ y2<y1 (as desigualdades sentidos
diferentes)
INEQUAÇÕES EXPONENCIAIS
Chamamos de inequações exponenciais toda inequação na
qual a incógnita aparece em expoente.
Exemplos de inequações exponenciais:
Para resolver inequações exponenciais, devemos realizar dois passos
importantes:
1º) redução dos dois membros da inequação a potências de mesma base;
2º) aplicação da propriedade:
)32parasatisfeitaé(que03125150.5-254)
-3)xparasatisfeitaé(que
5
4
5
4
3)
real)xtodoparasatisfeitaé(que222)
)4ésolução(a8131)
x
3
12-2x 2
<<<+
≤





≥





≤
>>
−
−
x
x
x
x
x
x
a>1 0<a<1
am
> an
⇒ m>n
(as desigualdades têm mesmo sentido)
am
> an
⇒ m<n
(as desigualdades têm sentidos
diferentes)
FUNÇÃO LOGARÍTMICA
A função f:IR+
IR definida por f(x)=logax, com a≠1 e a>0, é chamada
função logarítmica de base a. O domínio dessa função é o conjunto IR+
(reais positivos, maiores que zero) e o contradomínio é IR (reais).
GRÁFICO CARTESIANO DA FUNÇÃO LOGARÍTMICA
Temos 2 casos a considerar:
 quando a>1;
 quando 0<a<1.
Acompanhe nos exemplos seguintes, a construção do gráfico em cada caso:
 
x 1/4 1/2 1 2 4
y -2 -1 0 1 2
1º Caso) a>1
y=log2x (nesse caso, a=2, logo a>1)
Atribuindo alguns valores a x e calculando os correspondentes valores
de y, obtemos a tabela e o gráfico abaixo:
2º Caso) quando 0<a<1
y= log(1/2)x (nesse caso, a=1/2, logo 0<a<1)
Atribuindo alguns valores a x e calculando os correspondentes valores
de y, obtemos a tabela e o gráfico abaixo:
x 1/4 1/2 1 2 4
y 2 1 0 -1 -2
Nos dois exemplos, podemos observar que
 o gráfico nunca intercepta o eixo vertical;
 o gráfico corta o eixo horizontal no ponto (1,0). A raiz da função é x=1;
 y assume todos os valores reais, portanto o conjunto imagem é Im=IR.
Além disso, podemos estabelecer o seguinte:
a>1 0<a<1
f(x) é crescente e Im=IR
Para quaisquer x1 e x2 do domínio:
x2>x1 ⇒ y2>y1 (as desigualdades têm
mesmo sentido)
f(x) é decrescente e Im=IR
Para quaisquer x1 e x2 do domínio:
x2>x1 ⇒ y2<y1 (as desigualdades têm
sentidos diferentes)
EQUAÇÕES LOGARÍTMICAS
Chamamos de equações logarítmicas toda
equação que envolve logaritmos com a incógnita
aparecendo no logaritmando, na base ou em ambos.
Exemplos de equações logarítmicas:
 log3x=5 (a solução é x=243)
 log(x2
-1) = log 3 (as soluções são x’=-2 e x’’=2)
 log2(x+3) + log2(x-3) = log27 (a solução é x=4)
 logx+1(x2
-x)=2 (a solução é x=-1/3)
Alguns exemplos resolvidos:
 log3(x+5) = 2
Resolução: condição de existência: x+5>0 => x>-5
log3(x+5) = 2 => x+5 = 32
=> x=9-5 => x=4
Como x=4 satisfaz a condição de existência, então o
conjunto solução é S={4}.
 
 log2(log4 x) = 1
Resolução: condição de existência: x>0 e log4x>0
log2(log4 x) = 1 ; sabemos que 1 = log2(2), então
log2(log4x) = log2(2) => log4x = 2 => 42
= x => x=16
Como x=16 satisfaz as condições de existência, então o
conjunto
 Resolva o sistema:
 
Resolução: condições de existência: x>0 e y>0
Da primeira equação temos:
log x+log y=7 => log y = 7-log x
Substituindo log y na segunda equação temos:
3.log x – 2.(7-log x)=1 => 3.log x-14+2.log x = 1 => 5.log x = 15
=>log x =3 => x=103
Substituindo x= 103
em log y = 7-log x temos:
log y = 7- log 103
=> log y = 7-3 => log y =4 => y=104
.
Como essas raízes satisfazem as condições de existência, então o
conjunto solução é S={(103
;104
)}.
INEQUAÇÕES LOGARITMÍCAS
Chamamos de inequações logarítmicas toda inequação que envolve
logaritmos com a incógnita aparecendo no logaritmando, na base ou em
ambos.
Exemplos de inequações logarítmicas:
1) log2x > 0 (a solução é x>1)
2) log4(x+3) ≤ 1 (a solução é –3<x≤1)
Para resolver inequações logarítmicas, devemos realizar dois passos
importantes:
1º) redução dos dois membros da inequação a logaritmos de mesma
base;
2º) aplicação da propriedade:
a>1 0<a<1
logam > logan ⇒ m>n>0
(as desigualdades têm mesmo
sentido)
logam > logan ⇒ 0<m<n
(as desigualdades têm sentidos
diferentes)
BIBLIOGRAFIA
 Matemática Fundamental – 2º grau – Volume
único (Giovanni, Bonjorno, Giovanni Jr.)
 Matemática – Volume único – Facchini
 Cadernos do professor SEESP

Mais conteúdo relacionado

Mais procurados

Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grau
leilamaluf
 
Plano de Aula Progressão Geométrica - 1a. Parte.
Plano de Aula Progressão Geométrica - 1a. Parte.Plano de Aula Progressão Geométrica - 1a. Parte.
Plano de Aula Progressão Geométrica - 1a. Parte.
Luiz Antonio Claro NT
 
Geometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontosGeometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontos
Camila Oliveira
 
Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afim
ProfessoraIve
 
Equação exponencial
Equação exponencialEquação exponencial
Equação exponencial
Péricles Penuel
 
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Celso do Rozário Brasil Gonçalves
 
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOSAVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
Vyeyra Santos
 
17 aula intervalos reais
17 aula   intervalos reais17 aula   intervalos reais
17 aula intervalos reais
jatobaesem
 
Domínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma funçãoDomínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma função
Dosvaldo Alves
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
LSKY
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
André Marchesini
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
profluizgustavo
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
vaniaphcristina
 
Zero da função do 1º grau
Zero da função do 1º grauZero da função do 1º grau
Zero da função do 1º grau
Newton Sérgio Lima
 
Sistema de equações
Sistema de equaçõesSistema de equações
Sistema de equações
jtturmina
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
João Paulo Luna
 
Resumo função afim pdf
Resumo função afim pdfResumo função afim pdf
Resumo função afim pdf
cristianomatematico
 
Introdução a função.ppt
Introdução a função.pptIntrodução a função.ppt
Introdução a função.ppt
ERANDIDELIMACRUZ
 
15 aula operacoes com conjuntos
15 aula   operacoes com conjuntos15 aula   operacoes com conjuntos
15 aula operacoes com conjuntos
jatobaesem
 
Funcao modular
Funcao modularFuncao modular
Funcao modular
con_seguir
 

Mais procurados (20)

Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grau
 
Plano de Aula Progressão Geométrica - 1a. Parte.
Plano de Aula Progressão Geométrica - 1a. Parte.Plano de Aula Progressão Geométrica - 1a. Parte.
Plano de Aula Progressão Geométrica - 1a. Parte.
 
Geometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontosGeometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontos
 
Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afim
 
Equação exponencial
Equação exponencialEquação exponencial
Equação exponencial
 
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
 
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOSAVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
 
17 aula intervalos reais
17 aula   intervalos reais17 aula   intervalos reais
17 aula intervalos reais
 
Domínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma funçãoDomínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma função
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
 
Zero da função do 1º grau
Zero da função do 1º grauZero da função do 1º grau
Zero da função do 1º grau
 
Sistema de equações
Sistema de equaçõesSistema de equações
Sistema de equações
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Resumo função afim pdf
Resumo função afim pdfResumo função afim pdf
Resumo função afim pdf
 
Introdução a função.ppt
Introdução a função.pptIntrodução a função.ppt
Introdução a função.ppt
 
15 aula operacoes com conjuntos
15 aula   operacoes com conjuntos15 aula   operacoes com conjuntos
15 aula operacoes com conjuntos
 
Funcao modular
Funcao modularFuncao modular
Funcao modular
 

Destaque

Funções
Funções Funções
Funções
Ray Sousa
 
Matematica grafico da funcao quadratica
Matematica grafico da funcao quadraticaMatematica grafico da funcao quadratica
Matematica grafico da funcao quadratica
con_seguir
 
Equações do 2º grau graficos
Equações do 2º grau  graficosEquações do 2º grau  graficos
Equações do 2º grau graficos
RenataMaira
 
Modular
ModularModular
Modular
gdw147
 
Funções
FunçõesFunções
Funções
Péricles Penuel
 
Funciones
FuncionesFunciones
Funciones
Erika Albarran
 
Exercícios de progressões: Aritmética e Geométrica
Exercícios de progressões: Aritmética e GeométricaExercícios de progressões: Aritmética e Geométrica
Exercícios de progressões: Aritmética e Geométrica
thieresaulas
 
DADOS INICIAIS PARA O PLANEJAMENTO DE OBRAS
DADOS INICIAIS PARA O PLANEJAMENTO DE OBRASDADOS INICIAIS PARA O PLANEJAMENTO DE OBRAS
DADOS INICIAIS PARA O PLANEJAMENTO DE OBRAS
Aurora Martins
 
Luanda hoje
Luanda hojeLuanda hoje
Luanda hoje
bart3881
 
625639 a-teoria-dos-limites-calculo
625639 a-teoria-dos-limites-calculo625639 a-teoria-dos-limites-calculo
625639 a-teoria-dos-limites-calculo
Marcos Lira
 
Matemática I - Tópico 02 e 03
Matemática I - Tópico 02 e 03Matemática I - Tópico 02 e 03
Matemática I - Tópico 02 e 03
Ricardo Bruno - Universidade Federal do Pará
 
Palestra - Pós-Graduação no Brasil
Palestra - Pós-Graduação no BrasilPalestra - Pós-Graduação no Brasil
Palestra - Pós-Graduação no Brasil
Ricardo Stefani
 
Matemática I - Tópico 01
Matemática I - Tópico 01 Matemática I - Tópico 01
Integral de potencias trigonometricas
Integral de potencias trigonometricasIntegral de potencias trigonometricas
Integral de potencias trigonometricas
Rouxy Souzha
 
Limites trigonométricos
Limites trigonométricosLimites trigonométricos
Limites trigonométricos
Anderson Queiroz
 
Equações e inequações fracionárias
Equações e inequações fracionáriasEquações e inequações fracionárias
Equações e inequações fracionárias
silvia_lfr
 
Tópico 4 regressão linear simples 02
Tópico 4   regressão linear simples 02Tópico 4   regressão linear simples 02
Tópico 4 regressão linear simples 02
Ricardo Bruno - Universidade Federal do Pará
 
1ª lista de exercicios de cálculo I limites
1ª lista de exercicios de cálculo I   limites1ª lista de exercicios de cálculo I   limites
1ª lista de exercicios de cálculo I limites
marcelotorraca
 
Geometria analitica equacao da reta
Geometria analitica equacao da retaGeometria analitica equacao da reta
Geometria analitica equacao da reta
con_seguir
 
Equação da reta
Equação da retaEquação da reta
Equação da reta
Goretti Silva
 

Destaque (20)

Funções
Funções Funções
Funções
 
Matematica grafico da funcao quadratica
Matematica grafico da funcao quadraticaMatematica grafico da funcao quadratica
Matematica grafico da funcao quadratica
 
Equações do 2º grau graficos
Equações do 2º grau  graficosEquações do 2º grau  graficos
Equações do 2º grau graficos
 
Modular
ModularModular
Modular
 
Funções
FunçõesFunções
Funções
 
Funciones
FuncionesFunciones
Funciones
 
Exercícios de progressões: Aritmética e Geométrica
Exercícios de progressões: Aritmética e GeométricaExercícios de progressões: Aritmética e Geométrica
Exercícios de progressões: Aritmética e Geométrica
 
DADOS INICIAIS PARA O PLANEJAMENTO DE OBRAS
DADOS INICIAIS PARA O PLANEJAMENTO DE OBRASDADOS INICIAIS PARA O PLANEJAMENTO DE OBRAS
DADOS INICIAIS PARA O PLANEJAMENTO DE OBRAS
 
Luanda hoje
Luanda hojeLuanda hoje
Luanda hoje
 
625639 a-teoria-dos-limites-calculo
625639 a-teoria-dos-limites-calculo625639 a-teoria-dos-limites-calculo
625639 a-teoria-dos-limites-calculo
 
Matemática I - Tópico 02 e 03
Matemática I - Tópico 02 e 03Matemática I - Tópico 02 e 03
Matemática I - Tópico 02 e 03
 
Palestra - Pós-Graduação no Brasil
Palestra - Pós-Graduação no BrasilPalestra - Pós-Graduação no Brasil
Palestra - Pós-Graduação no Brasil
 
Matemática I - Tópico 01
Matemática I - Tópico 01 Matemática I - Tópico 01
Matemática I - Tópico 01
 
Integral de potencias trigonometricas
Integral de potencias trigonometricasIntegral de potencias trigonometricas
Integral de potencias trigonometricas
 
Limites trigonométricos
Limites trigonométricosLimites trigonométricos
Limites trigonométricos
 
Equações e inequações fracionárias
Equações e inequações fracionáriasEquações e inequações fracionárias
Equações e inequações fracionárias
 
Tópico 4 regressão linear simples 02
Tópico 4   regressão linear simples 02Tópico 4   regressão linear simples 02
Tópico 4 regressão linear simples 02
 
1ª lista de exercicios de cálculo I limites
1ª lista de exercicios de cálculo I   limites1ª lista de exercicios de cálculo I   limites
1ª lista de exercicios de cálculo I limites
 
Geometria analitica equacao da reta
Geometria analitica equacao da retaGeometria analitica equacao da reta
Geometria analitica equacao da reta
 
Equação da reta
Equação da retaEquação da reta
Equação da reta
 

Semelhante a Funções.saa

Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
Gabriela Ferreira
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
profmribeiro
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FabiolaSouza36
 
Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
ZejucanaMatematica
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Zaqueu Oliveira
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
Magda Damião
 
Função de 1º grau
Função de 1º grauFunção de 1º grau
Função de 1º grau
Dinho Paulo Clakly
 
Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
Magda Damião
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
iraciva
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
Antonio Carneiro
 
Funca Afim
Funca AfimFunca Afim
Funca Afim
Emilene Loureiro
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
jwfb
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
Nome Sobrenome
 
Funções do 1º e 2º grau
Funções do 1º e 2º grauFunções do 1º e 2º grau
Funções do 1º e 2º grau
Zaqueu Oliveira
 
Funções
FunçõesFunções
Funções
quimicabare
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
Aab2507
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
Adelson Diogo de Carvalho
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
Antonio Carneiro
 
Funçao quadratica-revisao 10º Ano
Funçao quadratica-revisao 10º AnoFunçao quadratica-revisao 10º Ano
Funçao quadratica-revisao 10º Ano
Ana Tapadinhas
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
Aab2507
 

Semelhante a Funções.saa (20)

Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
 
Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
 
Função de 1º grau
Função de 1º grauFunção de 1º grau
Função de 1º grau
 
Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 
Funca Afim
Funca AfimFunca Afim
Funca Afim
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
Funções do 1º e 2º grau
Funções do 1º e 2º grauFunções do 1º e 2º grau
Funções do 1º e 2º grau
 
Funções
FunçõesFunções
Funções
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
Funçao quadratica-revisao 10º Ano
Funçao quadratica-revisao 10º AnoFunçao quadratica-revisao 10º Ano
Funçao quadratica-revisao 10º Ano
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 

Último

Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
Luiz C. da Silva
 
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIALA GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
ArapiracaNoticiasFat
 
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
SheylaAlves6
 
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Falcão Brasil
 
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Falcão Brasil
 
P0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdfP0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdf
Ceiça Martins Vital
 
Ensinar Programação 📚 Python 🐍 Método Inovador e Prático 🚀
Ensinar Programação 📚 Python 🐍 Método Inovador e Prático 🚀Ensinar Programação 📚 Python 🐍 Método Inovador e Prático 🚀
Ensinar Programação 📚 Python 🐍 Método Inovador e Prático 🚀
Miguel Delamontagne
 
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
Manuais Formação
 
Organograma do Ministério da Defesa (MD).pdf
Organograma do Ministério da Defesa (MD).pdfOrganograma do Ministério da Defesa (MD).pdf
Organograma do Ministério da Defesa (MD).pdf
Falcão Brasil
 
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
principeandregalli
 
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Falcão Brasil
 
Manual de Identidade Visual do Centro Gestor e Operacional do Sistema de Prot...
Manual de Identidade Visual do Centro Gestor e Operacional do Sistema de Prot...Manual de Identidade Visual do Centro Gestor e Operacional do Sistema de Prot...
Manual de Identidade Visual do Centro Gestor e Operacional do Sistema de Prot...
Falcão Brasil
 
Introdução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdfIntrodução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdf
valdeci17
 
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsxOceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Luzia Gabriele
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
Mary Alvarenga
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
Marcelo Botura
 
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdfPortfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Falcão Brasil
 
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptxSlides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
LuizHenriquedeAlmeid6
 
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdfHistória das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
LeideLauraCenturionL
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
portaladministradores
 

Último (20)

Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
 
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIALA GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
 
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
 
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
 
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
 
P0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdfP0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdf
 
Ensinar Programação 📚 Python 🐍 Método Inovador e Prático 🚀
Ensinar Programação 📚 Python 🐍 Método Inovador e Prático 🚀Ensinar Programação 📚 Python 🐍 Método Inovador e Prático 🚀
Ensinar Programação 📚 Python 🐍 Método Inovador e Prático 🚀
 
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
 
Organograma do Ministério da Defesa (MD).pdf
Organograma do Ministério da Defesa (MD).pdfOrganograma do Ministério da Defesa (MD).pdf
Organograma do Ministério da Defesa (MD).pdf
 
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
 
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
 
Manual de Identidade Visual do Centro Gestor e Operacional do Sistema de Prot...
Manual de Identidade Visual do Centro Gestor e Operacional do Sistema de Prot...Manual de Identidade Visual do Centro Gestor e Operacional do Sistema de Prot...
Manual de Identidade Visual do Centro Gestor e Operacional do Sistema de Prot...
 
Introdução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdfIntrodução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdf
 
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsxOceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
 
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdfPortfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
 
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptxSlides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
 
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdfHistória das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
 

Funções.saa

  • 1. F u n ç õ e s
  • 2. FUNÇÃO DO 1º GRAU  Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a ≠ 0. Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante. Veja alguns exemplos de funções polinomiais do 1º grau: f(x) = 5x - 3, onde a = 5 e b = - 3  f(x) = -2x - 7, onde a = -2 e b = - 7  f(x) = 11x, onde a = 11 e b = 0
  • 3. GRÁFICO O gráfico de uma função polinomial do 1º grau,  y = ax + b, com a ≠ 0, é uma reta oblíqua aos eixos Ox e Oy. Exemplo: construir o gráfico da função y = 3x - 1 Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua: a)Para   x = 0, temos   y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1) b) Para   y = 0, temos   0 = 3x - 1; portanto, e outro ponto é . Marcamos os pontos (0, -1) e no plano cartesiano e ligamos os dois com uma reta.
  • 4. COEFICIENTE ANGULAR E LINEAR  O coeficiente de x, a, é chamado coeficiente angular da reta, a está ligado à inclinação da reta em relação ao eixo Ox.   O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy. 0,b
  • 5. ZERO OU RAIZ DA FUNÇÃO Chama-se zero ou raiz da função polinomial do 1º grau f(x) = ax + b, a ≠ 0, o número real x tal que  f(x) = 0. Temos: f(x) = 0        ax + b = 0        Vejamos alguns exemplos: 1- Obtenção do zero da função f(x) = 2x - 5: f(x) = 0        2x - 5 = 0        2- Cálculo da raiz da função g(x) = 3x + 6: g(x) = 0  3x + 6 = 0  x = -2           
  • 6. 3- Cálculo da abscissa do ponto em que o gráfico de h(x) = -2x +10 corta o eixo das abscissas: O ponto em que o gráfico corta o eixo dos x é aquele em que h(x) = 0; então:     h(x) = 0        -2x + 10 = 0        x = 5
  • 7. CRESCIMENTO E DECRESCIMENTO Função Crescente: A função do 1º grau f(x) = ax + b é crescente quando o coeficiente de x é positivo (a > 0); Justificativa: para a > 0: se x1 < x2, então ax1 < ax2. Daí, ax1 + b < ax2 + b, de onde vem f(x1) < f(x2). x -3 -2 -1 0 1 2 3 y -10 -7 -4 -1 2 5 8 Função Decrescente: A função do 1º grau f(x) = ax + b é decrescente quando o coeficiente de x é negativo (a < 0); Justificativa: para a < 0: se x1 < x2, então ax1 > ax2. Daí, ax1 + b > ax2 + b, de onde vem f(x1) > f(x2). x -3 -2 -1 0 1 2 3 y 8 5 2 -1 -4 -5 -10 y diminui
  • 8. ESTUDO DO SINAL DA FUNÇÃO Estudar o sinal de uma função qualquer, y = f(x) é determinar os valores de x para os quais y é positivo, os valores de x para os quais y é zero e os valores de x para os quais y é negativo. Consideremos  uma função afim y = f(x) = ax + b vamos estudar seu sinal. Já vimos que essa função se anula pra raiz . Há dois casos possíveis:
  • 9. 1º) a > 0 (a função é crescente) y > 0       ax + b > 0         x > y < 0      ax + b < 0         x < Conclusão: y é positivo para valores de x maiores que a raiz; y é negativo para valores de menores que a raiz.
  • 10. 2º) a < 0 (a função é decrescente) y > 0  ax + b > 0            x < y < 0  ax + b < 0        x > Conclusão: y é positivo para valores de x menores que a raiz; y é  negativo para valores de x maiores que a raiz.
  • 11. FUNÇÃO QUADRÁTICA  Definição: Chama-se função quadrática, ou função polinomial do 2º grau, qualquer f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c são números reais e a≠0. Vejamos alguns exemplos de função quadráticas: 1) f(x) = 3x2 - 4x  + 1, onde a = 3, b = - 4 e c = 1 2) f(x) = x2 -1, onde a = 1, b = 0 e c = -1 3) f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5 4) f(x) = - x2 + 8x, onde a = 1, b = 8 e c = 0 5) f(x) = -4x2 , onde a = - 4, b = 0 e c = 0
  • 12. GRÁFICO O gráfico de uma função polinomial do 2º grau, y = ax2 + bx + c, com a≠ 0, é uma curva chamada parábola.   Vamos construir o gráfico da função y = x2 + x: Primeiro atribuímos a x alguns valores, depois calculamos o valor correspondente de y e, em seguida, ligamos os pontos assim obtidos. X Y -3 6 -2 2 -1 0 -1/2 -1/4 0 0 1 2 2 6 •se   a > 0, a parábola tem a concavidade voltada para cima;  •se a < 0, a parábola tem a concavidade voltada para baixo;
  • 13. ZERO OU RAIZ DA FUNÇÃO QUADRÁTICA Chama-se zeros ou raízes da função polinomial do 2º grau f(x) = ax2 + bx + c , a ≠ 0, os números reais x tais que f(x) = 0. Então as raízes da função f(x) = ax2 + bx + c são as soluções da equação do 2º grau ax2 + bx + c = 0, as quais são dadas pela chamada fórmula de Bhaskara: Temos:
  • 14. ZERO OU RAIZ DA FUNÇÃO QUADRÁTICA Observação: A quantidade de raízes reais de uma função quadrática depende do valor obtido para o radicando ,chamado discriminante, a saber:  Quando ∆ é positivo, há duas raízes reais e distintas;  Quando ∆ é zero, há só uma raiz real;  quando ∆ é negativo, não há raiz real.
  • 15. COORDENADAS DO VÉRTICE DA PARÁBOLA Quando a > 0, a parábola tem concavidade voltada para cima e um ponto de mínimo V; quando a < 0, a parábola tem concavidade voltada para baixo e um ponto de máximo V.  Em qualquer caso, as coordenadas de V são Veja os gráficos:
  • 16. IMAGEM DA FUNÇÃO O conjunto-imagem Im da função y = ax2 + bx + c,  a 0, é o conjunto dos valores que y pode assumir. Há duas possibilidades: 1ª) quando a > 0, a > 0
  • 17. IMAGEM DA FUNÇÃO 2ª) quando a < 0, a < 0
  • 18. CONSTRUÇÃO DA PARÁBOLA É possível construir o gráfico de uma função do 2º grau sem montar a tabela de pares (x, y), mas seguindo apenas o roteiro de observação seguinte: 1) O valor do coeficiente a define a concavidade da parábola; 2) Os zeros definem os pontos em que a parábola intercepta o eixo dos x; 3) O vértice V indica o ponto de mínimo (se a > 0), ou máximo (se a< 0); 4) A reta que passa por V e é paralela ao eixo dos  y é o eixo de simetria da parábola; 5) Para x = 0 , temos y = a · 02 + b · 0 + c = c; então  (0, c) é o ponto em que a parábola corta o eixo dos y.
  • 19. SINAL DA FUNÇÃO Consideramos uma função quadrática y = f(x) = ax2 + bx + c e determinemos os valores de x para os quais y é negativo e os valores de x para os quais y é positivos. Conforme o sinal do discriminante ∆ = b2 - 4ac, podem ocorrer os seguintes casos:
  • 20. y > 0 (x1 < x < x2) y < 0 (x < x1 ou x > x2) 1º caso) ∆ > 0 Nesse caso a função quadrática admite dois zeros reais distintos (x1 ≠ x2). A parábola intercepta o eixo Ox em dois pontos e o sinal da função é o indicado nos gráficos abaixo: y > 0 (x < x1 ou x > x2) y < 0 x1 < x < x2 quando a > 0 quando a < 0
  • 21. 2º caso) ∆ = 0   quando a > 0 quando a < 0
  • 22. 3º caso) ∆ < 0 quando a > 0 quando a < 0
  • 23. FUNÇÃO MODULAR  Módulo (ou valor absoluto) de um número O módulo (ou valor absoluto) de um número real x, que se indica por | x | é definido da seguinte maneira: Então:  se x é positivo ou zero, | x | é igual ao próprio x. Exemplos: | 2 | = 2 ; | 1/2 | = | 1/2 | ; | 15 | = 15  se x é negativo, | x | é igual a -x. Exemplos: | -2 | = -(-2) = 2 ; | -20 | = -(-20) = 20    <− ≥ = 0se, 0se, xx xx x
  • 24. O módulo de um número real é sempre positivo ou nulo. O módulo de um número real nunca é negativo. Representando geometricamente, o módulo de um número real x é igual a distância do ponto que representa, na reta real, o número x ao ponto 0 de origem. Assim: Se | x | < a (com a>0) significa que a distância entre x e a origem é menor que a, isto é, x deve estar entre –a e a, ou seja, | x | < a ⇔ -a < x < a. Se | x | > a (com a>0) significa que a distância entre x e a origem é maior que a, isto é, deve estar à direita de a ou à esquerda de –a na reta real, ou seja: | x | > a ⇔ x > a ou x < -a. -a a -a a
  • 25. EQUAÇÕES MODULARES Toda a equação que contiver a incógnita em um módulo num dos membros será chamada equação modular. Exemplos: | x2 -5x | = 1 | x+8 | = | x2 -3 | Algumas equações modulares resolvidas:  1- Resolver a equação | x2 -5x | = 6. Resolução: Temos que analisar dois casos: caso 1: x2 -5x = 6 caso 2: x2 -5x = -6  Resolvendo o caso 1: x2 -5x-6 = 0 => x’=6 e x’’=-1. Resolvendo o caso 2: x2 -5x+6 = 0 => x’=3 e x’’=2. Resposta: S={-1,2,3,6}  
  • 26. 2- Resolver a equação | x-6 | = | 3-2x |. Resolução: Temos que analisar dois casos: caso 1: x-6 = 3-2x caso 2: x-6 = -(3-2x) Resolvendo o caso 1: x-6 = 3-2x => x+2x = 3+6 => 3x=9 => x=3 Resolvendo o caso 2: x-6 = -(3-2x) => x-2x = -3+6 => -x=3 => x=-3 Resposta: S={-3,3}
  • 27. INEQUAÇÕES MODULARES Chamamos de inequações modulares as inequações nos quais aparecem módulos de expressões que contém a incógnita.   Algumas inequações modulares resolvidas: Resolver a inequação | -2x+6 | < 2. Resolução: S = {x ∈ IR | 2<x<4}    > < ⇒    > < ⇒ ⇒    <− +< ⇒    <+− +−<− ⇒<+−<−⇒<+ 2 4 42 82 42 262 262 622 26222|62x-| x x x x x x x x x
  • 28. 2) Dê o conjunto solução da inequação |x2 -2x+3| ≤ 4. Resolução: |x2 -2x+3| ≤ 4 => -4 ≤ x2 -2x+3 ≤ 4. Então temos duas inequações (que devem ser satisfeitas ao mesmo tempo): Eq.1: -4 ≤ x2 -2x+3 Eq.2: x2 -2x+3 ≤ 4 Resolvendo a Eq.1: -4 ≤ x2 -2x+3 => -4-3 ≤ x2 -2x => -7 ≤ x2 -2x => x2 -2x+7 ≥ 0 => sem raízes reais Resolvendo a Eq.2: x2 -2x+3 ≤ 4 => x2 -2x-1 ≤ 0 }2121|{ 21'' 21' raízesassencontramoBhaskaraAplicando +≤≤−∈=     += −= xIRxS x x
  • 29. MÓDULO E RAIZ QUADRADA Consideremos os números reais x e y. Temos por definição, que se e somente se, y2 = x e y≥0. Daí podemos concluir que só é verdadeiro se x≥0. Se tivermos x<0, não podemos afirmar que , pois isso contradiz a definição.   Por exemplo, se x= -3, teríamos: o que é um absurdo, pois o primeiro membro é positivo e o segundo negativo. Usando a definição de módulo, podemos escrever: o que é verdadeiro para todo x real. Devemos proceder da mesma forma em relação a todas raízes de índice par: Com relação às raízes de índice ímpar, podemos escrever: yx = xx =2 xx =2 3)3( 2 −=− ||2 xx = *INneIRxcom|,||,||,| 2 26 64 4 ∈∈=== xxxxxx n n INneIRxcom,,, 12 125 53 3 ∈∈=== + + xxxxxx n n
  • 30. FUNÇÃO MODULAR Chamamos de função modular f(x) = │x│ definida por: Observe , então, que a função modular é uma função definida por duas sentenças.    <− ≥ = 0se, 0se, )( xx xx xf
  • 31. Exemplo 2 – Determinar o domínio da função Resolução: |1|2)( −−= xxf 3}x1|IR{xD:Resposta 3x112x1221x2 21x22|1x|2|1x|0|1x|2:Então 0.|1x|2seIRempossívelésó|1x|2queSabemos ≤≤−∈= ≤≤−⇒+≤≤+−⇒≤−≤− ≤−≤−⇒≤−⇒−≥−−⇒≥−− ≥−−−− Determinação do domínio Exemplo 1 – Determinar o domínio da função Resolução: 3|| 1 )( − = x xf }3ou3|{:Resposta 3ou33||03||:Então .03||seIRempossívelésó 3|| 1 queSabemos −≠≠∈= −≠≠⇒≠⇒≠− ≠− − xxIRxD xxxx x x
  • 32. GRÁFICO Vamos construir o gráfico da função f(x) = │x│: X y=f(x) -1 1 -2 2 0 0 1 1 2 2
  • 33. EQUAÇÃO EXPONENCIAL Chamamos de equações exponenciais toda equação na qual a incógnita aparece em expoente. Exemplos de equações exponenciais: a) 3x =81 (a solução é x=4) b) 2x-5 =16 (a solução é x=9) c) 16x -42x-1 -10=22x-1 (a solução é x=1) d) 32x-1 -3x -3x-1 +1=0 (as soluções são x’=0 e x’’=1) Para resolver equações exponenciais, devemos realizar dois passos importantes: 1º) redução dos dois membros da equação a potências de mesma base; 2º) aplicação da propriedade:   )0e1( >≠=⇒= aanmaa nm
  • 34. FUNÇÃO EXPONENCIAL Chamamos de funções exponenciais aquelas nas quais temos a variável aparecendo em expoente. A função f:IRIR+ definida por f(x)=ax , com a ∈ IR+ e a≠1, é chamada função exponencial de base a. O domínio dessa função é o conjunto IR (reais) e o contradomínio é IR+ (reais positivos, maiores que zero).
  • 35. GRÁFICO CARTESIANO DA FUNÇÃO EXPONENCIAL Temos 2 casos a considerar:  quando a>1;  quando 0<a<1. Acompanhe os exemplos seguintes:
  • 36. X Y -2 ¼ -1 ½ 0 1 1 2 2 4 1) y=2x (nesse caso, a=2, logo a>1) Atribuindo alguns valores a x e calculando os correspondentes valores de y, obtemos a tabela e o gráfico abaixo:
  • 37. 2) y=(1/2)x (nesse caso, a=1/2, logo 0<a<1) Atribuindo alguns valores a x e calculando os correspondentes valores de y, obtemos a tabela e o gráfico abaixo: X Y -2 4 -1 2 0 1 1 ½ 2 ¼
  • 38. Nos dois exemplos, podemos observar que:  o gráfico nunca intercepta o eixo horizontal; a função não tem raízes;  o gráfico corta o eixo vertical no ponto (0,1);  os valores de y são sempre positivos (potência de base positiva é positiva), portanto o conjunto imagem é Im=IR+ . Além disso, podemos estabelecer o seguinte: a>1 0<a<1 f(x) é crescente e Im=IR+ Para quaisquer x1 e x2 do domínio: x2>x1 ⇒ y2>y1 (as desigualdades têm mesmo sentido) f(x) é decrescente e Im=IR+ Para quaisquer x1 e x2 do domínio: x2>x1 ⇒ y2<y1 (as desigualdades sentidos diferentes)
  • 39. INEQUAÇÕES EXPONENCIAIS Chamamos de inequações exponenciais toda inequação na qual a incógnita aparece em expoente. Exemplos de inequações exponenciais: Para resolver inequações exponenciais, devemos realizar dois passos importantes: 1º) redução dos dois membros da inequação a potências de mesma base; 2º) aplicação da propriedade: )32parasatisfeitaé(que03125150.5-254) -3)xparasatisfeitaé(que 5 4 5 4 3) real)xtodoparasatisfeitaé(que222) )4ésolução(a8131) x 3 12-2x 2 <<<+ ≤      ≥      ≤ >> − − x x x x x x a>1 0<a<1 am > an ⇒ m>n (as desigualdades têm mesmo sentido) am > an ⇒ m<n (as desigualdades têm sentidos diferentes)
  • 40. FUNÇÃO LOGARÍTMICA A função f:IR+ IR definida por f(x)=logax, com a≠1 e a>0, é chamada função logarítmica de base a. O domínio dessa função é o conjunto IR+ (reais positivos, maiores que zero) e o contradomínio é IR (reais). GRÁFICO CARTESIANO DA FUNÇÃO LOGARÍTMICA Temos 2 casos a considerar:  quando a>1;  quando 0<a<1. Acompanhe nos exemplos seguintes, a construção do gráfico em cada caso:  
  • 41. x 1/4 1/2 1 2 4 y -2 -1 0 1 2 1º Caso) a>1 y=log2x (nesse caso, a=2, logo a>1) Atribuindo alguns valores a x e calculando os correspondentes valores de y, obtemos a tabela e o gráfico abaixo:
  • 42. 2º Caso) quando 0<a<1 y= log(1/2)x (nesse caso, a=1/2, logo 0<a<1) Atribuindo alguns valores a x e calculando os correspondentes valores de y, obtemos a tabela e o gráfico abaixo: x 1/4 1/2 1 2 4 y 2 1 0 -1 -2
  • 43. Nos dois exemplos, podemos observar que  o gráfico nunca intercepta o eixo vertical;  o gráfico corta o eixo horizontal no ponto (1,0). A raiz da função é x=1;  y assume todos os valores reais, portanto o conjunto imagem é Im=IR. Além disso, podemos estabelecer o seguinte: a>1 0<a<1 f(x) é crescente e Im=IR Para quaisquer x1 e x2 do domínio: x2>x1 ⇒ y2>y1 (as desigualdades têm mesmo sentido) f(x) é decrescente e Im=IR Para quaisquer x1 e x2 do domínio: x2>x1 ⇒ y2<y1 (as desigualdades têm sentidos diferentes)
  • 44. EQUAÇÕES LOGARÍTMICAS Chamamos de equações logarítmicas toda equação que envolve logaritmos com a incógnita aparecendo no logaritmando, na base ou em ambos. Exemplos de equações logarítmicas:  log3x=5 (a solução é x=243)  log(x2 -1) = log 3 (as soluções são x’=-2 e x’’=2)  log2(x+3) + log2(x-3) = log27 (a solução é x=4)  logx+1(x2 -x)=2 (a solução é x=-1/3)
  • 45. Alguns exemplos resolvidos:  log3(x+5) = 2 Resolução: condição de existência: x+5>0 => x>-5 log3(x+5) = 2 => x+5 = 32 => x=9-5 => x=4 Como x=4 satisfaz a condição de existência, então o conjunto solução é S={4}.    log2(log4 x) = 1 Resolução: condição de existência: x>0 e log4x>0 log2(log4 x) = 1 ; sabemos que 1 = log2(2), então log2(log4x) = log2(2) => log4x = 2 => 42 = x => x=16 Como x=16 satisfaz as condições de existência, então o conjunto
  • 46.  Resolva o sistema:   Resolução: condições de existência: x>0 e y>0 Da primeira equação temos: log x+log y=7 => log y = 7-log x Substituindo log y na segunda equação temos: 3.log x – 2.(7-log x)=1 => 3.log x-14+2.log x = 1 => 5.log x = 15 =>log x =3 => x=103 Substituindo x= 103 em log y = 7-log x temos: log y = 7- log 103 => log y = 7-3 => log y =4 => y=104 . Como essas raízes satisfazem as condições de existência, então o conjunto solução é S={(103 ;104 )}.
  • 47. INEQUAÇÕES LOGARITMÍCAS Chamamos de inequações logarítmicas toda inequação que envolve logaritmos com a incógnita aparecendo no logaritmando, na base ou em ambos. Exemplos de inequações logarítmicas: 1) log2x > 0 (a solução é x>1) 2) log4(x+3) ≤ 1 (a solução é –3<x≤1) Para resolver inequações logarítmicas, devemos realizar dois passos importantes: 1º) redução dos dois membros da inequação a logaritmos de mesma base; 2º) aplicação da propriedade: a>1 0<a<1 logam > logan ⇒ m>n>0 (as desigualdades têm mesmo sentido) logam > logan ⇒ 0<m<n (as desigualdades têm sentidos diferentes)
  • 48. BIBLIOGRAFIA  Matemática Fundamental – 2º grau – Volume único (Giovanni, Bonjorno, Giovanni Jr.)  Matemática – Volume único – Facchini  Cadernos do professor SEESP