SlideShare uma empresa Scribd logo
1 de 29
CARACTERÍSTICAS
MAS NEM SEMPRE NOSSA EXPRESSÃO ALGÉBRICA
APARECERÁ ASSIM... VAMOS VERIFICAR EM OUTRAS
FORMAS SE VOCÊ CONSEGUE IDENTIFICAR OS VALORES
DOS COEFICIENTES a, b E c NAS FUNÇÕES
QUADRÁTICAS A SEGUIR.

f(x) = (x – 3)²
f(x) = ( x +2 )( x – 2 )

f(x) = 3x(x -1)
E AÍ CONSEGUIRAM? VAMOS VERIFICAR!


Com certeza quem se recordou de fatoração e produtos notáveis
conseguiu identificar os coeficientes. Vamos relembrar!

 f(x)

= (x + 3)² → é um quadrado da soma → (quadrado do 1º)+ (duas
vezes o 1º pelo 2º) + (quadrado do 2º), logo teremos:

f(x) = x² + 2. x. 3 + 3²

f(x) = x² + 6x + 9

onde

a = 1, b = 6 e c = 9

 f(x)

= (x +2)(x – 2) → é um produto da soma pela diferença → (quadrado
do 1º) – ( quadrado do 2º), logo teremos:

f(x) = x² + 2²

f(x) = x² + 4

onde a = 1 , b = 0 e c = 4

 f(x)

= 3x (x -1) → é uma multiplicação de monômio por polinômio →
multiplicamos o termo(monômio) de fora do parênteses pelas parcelas
de dentro(polinômio) e somamos os resultados, logo teremos:

f(x) = 3x. X + 3x .(-1)

f(x) = 3x² - 3x

onde a = 3, b = 3 e c = 0
REPRESENTAÇÃO ALGÉBRICA
f(x)

= ax² + bx + c
REPRESENTAÇÃO GRÁFICA
 é uma curva aberta
chamada parábola.
Uma Pará...o quê? Calma, para
entender melhor vamos assistir um
vídeo!
APRENDENDO MAIS SOBRE PARÁBOLAS!
ZEROS OU RAÍZES DE UMA
FUNÇÃO QUADRÁTICA
Os

zeros ou raízes da função
quadrática f(x) = ax² + bx =c são as
raízes da equação do 2º grau ax² +
bx + c = 0, ou seja, temos que
resolver a equação.
PODEMOS RESOLVER POR FATORAÇÃO
Exemplo:
f(x) = x² - 4, a equação correspondente é x² - 4 = 0, fatorando o
1º membro da equação temos:
x² - 4 = 0 → (x - 2)(x + 2) = 0 para que o produto seja zero, pelo
menos um dos fatores precisa ser zero. Logo, (x – 2) = 0 ou (x +
2) = 0
Se x – 2 = 0, então x = 2
Se x + 2 = 0, então x = - 2
Assim os zeros da função são – 2 e 2. verificando, teremos :

f(x) = x² - 4

→ (- 2)² - 4 = 4 – 4 = 0 e 2² - 4 = 4 – 4 = 0
OUTRO EXEMPLO:
f(x) = x² - 6x + 9, a equação correspondente é x² - 6x + 9 = 0,
fatorando o 1º membro da equação temos:
x² - 6x + 9 = 0 → (x - 3)² = 0 → (x - 3)(x – 3) = 0 para que o
produto seja zero, pelo menos um dos fatores precisa ser
zero. Logo, ( x – 3) = 0 ou (x - 3) = 0
Se x – 3 = 0, então x = 3

Se x - 3 = 0, então x = 3
Assim as raízes da função são iguais (dupla) = 3. verificando,
teremos :

f(x) = x² - 6x + 9 → 3² - 6.3 + 9 = 9 - 18 + 9 = - 9 + 9 = 0
CONCLUINDO:

AS RAÍZES OU ZEROS DA FUNÇÃO:
ALGEBRICAMENTE – são os valores de x
tais que f(x) ou y seja zero.
GEOMETRICAMENTE – são os pontos
(abscissas) em que a parábola intercepta
o eixo x.
VAMOS REFORÇAR O QUE APRENDEMOS COM O VÍDEO
ANALISANDO OS ZEROS OU RAÍZES DA FUNÇÃO
QUADRÁTICA ATRAVÉS DO SEU GRÁFICO
IMPORTANTE !!!
A PARÁBOLA PODE INTERSECTAR O EIXO x EM UM, DOIS OU
NENHUM PONTO, DEPENDE DO VALOR DE ∆ = b² - 4ac DA
EQUAÇÃO CORRESPONDENTE. CONCLUÍMOS QUE:
∆ = 0 ,uma raiz real ∆ > 0, duas raízes reais ∆ < 0, nenhuma raiz
dupla (a parábola
diferentes (a parábola real (a parábola não
intersecta o eixo x
intersecta o eixo x em intersecta o eixo).
em um só ponto).
dois pontos).
AGORA VAMOS PRATICAR UM POUCO!
Determine, se existirem, os zeros das funções quadráticas
usando a fórmula:
a) F(x)=

x² - 3x

b) F(x)

= x² + 4x + 5

c) F(x)

= - x² + 2x + 8

d) F(x)

= x² + 10x + 25

(Extraídos do Livro Matemática Contextos e Aplicações, do autor Dante, Volume 1 Ensino
Médio, pág.162)
Estudando o efeito dos coeficientes a, b e c na
parábola que representa a função
f(x) = ax² + bx + c.
Para isso vamos utilizar a ajuda de um software
chamado VARIAÇÃO DA FUNÇÃO QUADRÁTICA,
acessando o endereço:
http://www.cdme.im.-uff.mat.br/quadratica/quadratica/-html/QP1.html
REFORÇANDO O QUE OBSERVAMOS NO SIMULADOR
“VARIAÇÃO DE UMA FUNÇÃO QUADRÁTICA”
O

coeficiente a é responsável pela concavidade e
abertura da parábola. Concluímos que:
Se a > 0, a concavidade é para
cima e a função é chamada de
crescente.

Se a < 0, a concavidade é para
baixo e a função é chamada de
decrescente.
O coeficiente b indica se a parábola intersecta o eixo y no
ramo crescente ou decrescente da função. Concluímos que:
Se b > 0, a parábola
intersecta o eixo y no ramo
crescente.

Se b < 0, a parábola
intersecta o eixo y no ramo
decrescente.
O coeficiente c indica o ponto onde a parábola
intersecta o eixo y. Concluímos que:
A

parábola cruza o eixo y no ponto (0,c).
C=3

C=3

C=0

C=-2
AGORA VAMOS ESTUDAR MAIS UM PONTO
MUITO IMPORTANTE NO GRÁFICO DE UMA
FUNÇÃO QUADRÁTICA
Sabe que ponto é este? É o vértice da
parábola...isso mesmo o vértice é o ponto em
que a parábola faz a curva, ou seja, o ponto em
que a curva muda de direção.
O vértice permite determinar a Imagem da
função e também seu valor máximo ou mínimo.
DETERMINANDO O VÉRTICE DA PARÁBOLA
A

parábola é simétrica em relação ao eixo vertical, logo o valor do x do
vértice será a média aritmética entre os valores das raízes da função.
Exemplo:
Dada a função f(x) = x² - 7x + 6 , temos como raízes x’ = 1 e x” = 6
Xv = x’ + x” = 1 + 6 = 7 = 3,5 logo substituindo x = 3,5 na função teremos,
2
2
2
f(3,5) = 3,5² - 7 . 3,5 + 6 = 12,25 – 24,5 + 6 = - 6,25, esse é o valor do yv .

Conclusões: o vértice desta parábola é o ponto (3,5; -6,25);
O valor mínimo desta função é : - 6,25;
A imagem é definida por : Im = { y є IR/y > - 6,25 }
A

outra forma de determinar as coordenadas do
vértice da parábola é aplicando as fórmulas:
Xv = - b
e
yv = - ∆
2a
4a
Dada a mesma função anterior f(x) = x² - 7x + 6, teremos
utilizando as fórmulas:
Xv = - b = - ( - 7) = 3,5
2a
2.1

e

yv = - ∆ = - 25 = - 6,25
4a
4.1

VIRAM COMO ENCONTRAMOS OS MESMOS VALORES!
REFORÇAMOS QUE:

SE A CONCAVIDADE DA PARÁBOLA É PARA
CIMA ( a > 0), O yv SERÁ VALOR MÍNIMO DA
FUNÇÃO E Im = { y є IR/ y > yv}
SE A CONCAVIDADE DA PARÁBOLA É PARA
BAIXO (a < 0), O yv SERÁ O VALOR MÁXIMO
DA FUNÇÃO E Im = { y є IR/ y < yv}
EXERCITANDO UM POUCO:
1. Determine o ponto V(xv, yv), vértice da parábola que
representa o gráfico das seguintes funções:
a)

y = x² - 6x + 5

b)

y = 3x² - 4x

c)

y = x² - 4

d)

y = - 6x²

e)

y = - x² + x – 3

Exercícios extraídos do Livro: Matemática Fundamental – Uma Nova Abordagem, de
Giovanni, Bonjorno e Giovanni Jr.
Pág. 133
AGORA CHEGAMOS NA MELHOR HORA...
PARA CONHECER ALGUMAS APLICAÇÕES VAMOS ASSISTIR AO
VÍDEO
VAMOS VER ALGUMAS APLICAÇÕES EM FÍSICA

Voltando e acessando o endereço abaixo que
é do Software de “Variação de uma Função
Quadrática”, teremos algumas atividades com
velocidade...
http://www.cdme.im.-uff.mat.br/quadratica/quadratica/-html/QP1.html
OUTRAS APLICAÇÕES:
1.

Em nossa Escola será construída uma quadra poliesportiva, a área
disponível para esta construção é de 375m². Sabe-se que o
comprimento da quadra excede a largura em 10 unidades.Qual
será as dimensões desta quadra?

Plano de solução – vamos desenhar para entendermos melhor , vejamos:
largura = x
comprimento = x + 10

Essa medida que não conhecemos o valor será a nossa incógnita que chamaremos
de x. Devemos encontrar o valor de x. Sabemos que trata-se de uma quadra
retangular, pois os lados são diferentes, sabemos também que a área do retângulo
é dado por base x altura, ou comprimento x largura, logo teremos:
A = x (x + 10)

A = x. x + x .10

A = X² + 10 X

agora é só resolver a equação!
2. Um diagramador está definindo as dimensões que terá uma revista. Necessita
que o comprimento de cada página seja igual à largura e que a superfície da
cada página seja de 324cm². Quais as medidas que cumprem as duas
condições?
3. O lucro, em reais, de uma empresa na venda de determinado produto é dado
pela função l(x) = – 2x2 + 300x – 16, onde l(x) é o lucro e x representa a quantidade
de produtos vendidos.Determine o lucro máximo obtido pela empresa na venda
desse produto.
4. Uma bola, ao ser chutada num tiro de meta por um goleiro, numa partida de
futebol, teve sua trajetória descrita pela equação h(t) = -2t² + 8t, onde t é o tempo
medido em segundos e h(t) é a altura em metros da bola no instante t. Determine:
a. O instante em que a bola retornará ao solo.
b. A altura máxima atingida pela bola.

Mais conteúdo relacionado

Mais procurados

Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
Adriano Souza
 
Exercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grauExercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grau
André Luís Nogueira
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
Kamilla Oliveira
 
04 eac proj vest mat módulo 1 função logarítmica
04 eac proj vest mat módulo 1 função logarítmica04 eac proj vest mat módulo 1 função logarítmica
04 eac proj vest mat módulo 1 função logarítmica
con_seguir
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
demervalm
 

Mais procurados (20)

Grupo de Estudos - Aula 1 - Porcentagem
Grupo de Estudos - Aula 1 - PorcentagemGrupo de Estudos - Aula 1 - Porcentagem
Grupo de Estudos - Aula 1 - Porcentagem
 
Cone questões resolvidas - fundamentos de matemática elementar
Cone   questões resolvidas - fundamentos de matemática elementarCone   questões resolvidas - fundamentos de matemática elementar
Cone questões resolvidas - fundamentos de matemática elementar
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
 
Mat produtos notaveis
Mat produtos notaveisMat produtos notaveis
Mat produtos notaveis
 
Exercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grauExercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grau
 
Exercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grauExercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grau
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
 
função quadrática
função quadráticafunção quadrática
função quadrática
 
7º ano ângulos
7º ano    ângulos7º ano    ângulos
7º ano ângulos
 
Grandezas diretamente e inversamente proporcionais
Grandezas diretamente e inversamente proporcionaisGrandezas diretamente e inversamente proporcionais
Grandezas diretamente e inversamente proporcionais
 
04 eac proj vest mat módulo 1 função logarítmica
04 eac proj vest mat módulo 1 função logarítmica04 eac proj vest mat módulo 1 função logarítmica
04 eac proj vest mat módulo 1 função logarítmica
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
 
Radianos
RadianosRadianos
Radianos
 
Função quadrática resumo teórico e exercícios - celso brasil
Função quadrática   resumo teórico e exercícios - celso brasilFunção quadrática   resumo teórico e exercícios - celso brasil
Função quadrática resumo teórico e exercícios - celso brasil
 
Logaritmo e função logaritmica (exercícios resolvidos sobre logaritmos, logar...
Logaritmo e função logaritmica (exercícios resolvidos sobre logaritmos, logar...Logaritmo e função logaritmica (exercícios resolvidos sobre logaritmos, logar...
Logaritmo e função logaritmica (exercícios resolvidos sobre logaritmos, logar...
 
Slide de matemática Geometria analítica
Slide de matemática Geometria analítica Slide de matemática Geometria analítica
Slide de matemática Geometria analítica
 

Semelhante a Função Quadrática

matematica e midias
matematica e midiasmatematica e midias
matematica e midias
iraciva
 
Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
ZejucanaMatematica
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
Antonio Carneiro
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
Magda Damião
 
Trabalho Objeto Aprendizagem
Trabalho Objeto AprendizagemTrabalho Objeto Aprendizagem
Trabalho Objeto Aprendizagem
03689355826
 
Função do 2 grau
Função do 2 grauFunção do 2 grau
Função do 2 grau
Fabio Diaz
 

Semelhante a Função Quadrática (20)

Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
 
Funções
Funções Funções
Funções
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Trabalho individual objetos de aprendizagem
Trabalho individual objetos de aprendizagemTrabalho individual objetos de aprendizagem
Trabalho individual objetos de aprendizagem
 
Matemática e Mídias
Matemática e MídiasMatemática e Mídias
Matemática e Mídias
 
Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 
SLIDEScal2 (3).pdf
SLIDEScal2 (3).pdfSLIDEScal2 (3).pdf
SLIDEScal2 (3).pdf
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
 
Trabalho Objeto Aprendizagem
Trabalho Objeto AprendizagemTrabalho Objeto Aprendizagem
Trabalho Objeto Aprendizagem
 
Lista de exercícios 8
Lista de exercícios 8Lista de exercícios 8
Lista de exercícios 8
 
Função do 2 grau
Função do 2 grauFunção do 2 grau
Função do 2 grau
 
Funções parte i
Funções parte iFunções parte i
Funções parte i
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
 
625639 a-teoria-dos-limites-calculo
625639 a-teoria-dos-limites-calculo625639 a-teoria-dos-limites-calculo
625639 a-teoria-dos-limites-calculo
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
 

Último

Aspectos históricos da educação dos surdos.pptx
Aspectos históricos da educação dos surdos.pptxAspectos históricos da educação dos surdos.pptx
Aspectos históricos da educação dos surdos.pptx
profbrunogeo95
 
O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhoso
VALMIRARIBEIRO1
 

Último (20)

"Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande""Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande"
 
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
 
Modelos de Inteligencia Emocional segundo diversos autores
Modelos de Inteligencia Emocional segundo diversos autoresModelos de Inteligencia Emocional segundo diversos autores
Modelos de Inteligencia Emocional segundo diversos autores
 
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
 
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptxSlides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
 
Poema - Aedes Aegypt.
Poema - Aedes Aegypt.Poema - Aedes Aegypt.
Poema - Aedes Aegypt.
 
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
 
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
 
Descrever e planear atividades imersivas estruturadamente
Descrever e planear atividades imersivas estruturadamenteDescrever e planear atividades imersivas estruturadamente
Descrever e planear atividades imersivas estruturadamente
 
APRENDA COMO USAR CONJUNÇÕES COORDENATIVAS
APRENDA COMO USAR CONJUNÇÕES COORDENATIVASAPRENDA COMO USAR CONJUNÇÕES COORDENATIVAS
APRENDA COMO USAR CONJUNÇÕES COORDENATIVAS
 
Aspectos históricos da educação dos surdos.pptx
Aspectos históricos da educação dos surdos.pptxAspectos históricos da educação dos surdos.pptx
Aspectos históricos da educação dos surdos.pptx
 
UFCD_10659_Ficheiros de recursos educativos_índice .pdf
UFCD_10659_Ficheiros de recursos educativos_índice .pdfUFCD_10659_Ficheiros de recursos educativos_índice .pdf
UFCD_10659_Ficheiros de recursos educativos_índice .pdf
 
O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhoso
 
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisNós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
 
Tema de redação - A prática do catfish e seus perigos.pdf
Tema de redação - A prática do catfish e seus perigos.pdfTema de redação - A prática do catfish e seus perigos.pdf
Tema de redação - A prática do catfish e seus perigos.pdf
 
transcrição fonética para aulas de língua
transcrição fonética para aulas de línguatranscrição fonética para aulas de língua
transcrição fonética para aulas de língua
 
Apresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativosApresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativos
 
Peça de teatro infantil: A cigarra e as formigas
Peça de teatro infantil: A cigarra e as formigasPeça de teatro infantil: A cigarra e as formigas
Peça de teatro infantil: A cigarra e as formigas
 
Power Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantilPower Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantil
 
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxSlides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
 

Função Quadrática

  • 1.
  • 3. MAS NEM SEMPRE NOSSA EXPRESSÃO ALGÉBRICA APARECERÁ ASSIM... VAMOS VERIFICAR EM OUTRAS FORMAS SE VOCÊ CONSEGUE IDENTIFICAR OS VALORES DOS COEFICIENTES a, b E c NAS FUNÇÕES QUADRÁTICAS A SEGUIR. f(x) = (x – 3)² f(x) = ( x +2 )( x – 2 ) f(x) = 3x(x -1)
  • 4. E AÍ CONSEGUIRAM? VAMOS VERIFICAR!  Com certeza quem se recordou de fatoração e produtos notáveis conseguiu identificar os coeficientes. Vamos relembrar!  f(x) = (x + 3)² → é um quadrado da soma → (quadrado do 1º)+ (duas vezes o 1º pelo 2º) + (quadrado do 2º), logo teremos: f(x) = x² + 2. x. 3 + 3² f(x) = x² + 6x + 9 onde a = 1, b = 6 e c = 9  f(x) = (x +2)(x – 2) → é um produto da soma pela diferença → (quadrado do 1º) – ( quadrado do 2º), logo teremos: f(x) = x² + 2² f(x) = x² + 4 onde a = 1 , b = 0 e c = 4  f(x) = 3x (x -1) → é uma multiplicação de monômio por polinômio → multiplicamos o termo(monômio) de fora do parênteses pelas parcelas de dentro(polinômio) e somamos os resultados, logo teremos: f(x) = 3x. X + 3x .(-1) f(x) = 3x² - 3x onde a = 3, b = 3 e c = 0
  • 5. REPRESENTAÇÃO ALGÉBRICA f(x) = ax² + bx + c REPRESENTAÇÃO GRÁFICA  é uma curva aberta chamada parábola. Uma Pará...o quê? Calma, para entender melhor vamos assistir um vídeo!
  • 6. APRENDENDO MAIS SOBRE PARÁBOLAS!
  • 7. ZEROS OU RAÍZES DE UMA FUNÇÃO QUADRÁTICA Os zeros ou raízes da função quadrática f(x) = ax² + bx =c são as raízes da equação do 2º grau ax² + bx + c = 0, ou seja, temos que resolver a equação.
  • 8. PODEMOS RESOLVER POR FATORAÇÃO Exemplo: f(x) = x² - 4, a equação correspondente é x² - 4 = 0, fatorando o 1º membro da equação temos: x² - 4 = 0 → (x - 2)(x + 2) = 0 para que o produto seja zero, pelo menos um dos fatores precisa ser zero. Logo, (x – 2) = 0 ou (x + 2) = 0 Se x – 2 = 0, então x = 2 Se x + 2 = 0, então x = - 2 Assim os zeros da função são – 2 e 2. verificando, teremos : f(x) = x² - 4 → (- 2)² - 4 = 4 – 4 = 0 e 2² - 4 = 4 – 4 = 0
  • 9. OUTRO EXEMPLO: f(x) = x² - 6x + 9, a equação correspondente é x² - 6x + 9 = 0, fatorando o 1º membro da equação temos: x² - 6x + 9 = 0 → (x - 3)² = 0 → (x - 3)(x – 3) = 0 para que o produto seja zero, pelo menos um dos fatores precisa ser zero. Logo, ( x – 3) = 0 ou (x - 3) = 0 Se x – 3 = 0, então x = 3 Se x - 3 = 0, então x = 3 Assim as raízes da função são iguais (dupla) = 3. verificando, teremos : f(x) = x² - 6x + 9 → 3² - 6.3 + 9 = 9 - 18 + 9 = - 9 + 9 = 0
  • 10.
  • 11. CONCLUINDO: AS RAÍZES OU ZEROS DA FUNÇÃO: ALGEBRICAMENTE – são os valores de x tais que f(x) ou y seja zero. GEOMETRICAMENTE – são os pontos (abscissas) em que a parábola intercepta o eixo x.
  • 12. VAMOS REFORÇAR O QUE APRENDEMOS COM O VÍDEO
  • 13. ANALISANDO OS ZEROS OU RAÍZES DA FUNÇÃO QUADRÁTICA ATRAVÉS DO SEU GRÁFICO
  • 14. IMPORTANTE !!! A PARÁBOLA PODE INTERSECTAR O EIXO x EM UM, DOIS OU NENHUM PONTO, DEPENDE DO VALOR DE ∆ = b² - 4ac DA EQUAÇÃO CORRESPONDENTE. CONCLUÍMOS QUE: ∆ = 0 ,uma raiz real ∆ > 0, duas raízes reais ∆ < 0, nenhuma raiz dupla (a parábola diferentes (a parábola real (a parábola não intersecta o eixo x intersecta o eixo x em intersecta o eixo). em um só ponto). dois pontos).
  • 15. AGORA VAMOS PRATICAR UM POUCO! Determine, se existirem, os zeros das funções quadráticas usando a fórmula: a) F(x)= x² - 3x b) F(x) = x² + 4x + 5 c) F(x) = - x² + 2x + 8 d) F(x) = x² + 10x + 25 (Extraídos do Livro Matemática Contextos e Aplicações, do autor Dante, Volume 1 Ensino Médio, pág.162)
  • 16. Estudando o efeito dos coeficientes a, b e c na parábola que representa a função f(x) = ax² + bx + c. Para isso vamos utilizar a ajuda de um software chamado VARIAÇÃO DA FUNÇÃO QUADRÁTICA, acessando o endereço: http://www.cdme.im.-uff.mat.br/quadratica/quadratica/-html/QP1.html
  • 17. REFORÇANDO O QUE OBSERVAMOS NO SIMULADOR “VARIAÇÃO DE UMA FUNÇÃO QUADRÁTICA” O coeficiente a é responsável pela concavidade e abertura da parábola. Concluímos que: Se a > 0, a concavidade é para cima e a função é chamada de crescente. Se a < 0, a concavidade é para baixo e a função é chamada de decrescente.
  • 18. O coeficiente b indica se a parábola intersecta o eixo y no ramo crescente ou decrescente da função. Concluímos que: Se b > 0, a parábola intersecta o eixo y no ramo crescente. Se b < 0, a parábola intersecta o eixo y no ramo decrescente.
  • 19. O coeficiente c indica o ponto onde a parábola intersecta o eixo y. Concluímos que: A parábola cruza o eixo y no ponto (0,c). C=3 C=3 C=0 C=-2
  • 20. AGORA VAMOS ESTUDAR MAIS UM PONTO MUITO IMPORTANTE NO GRÁFICO DE UMA FUNÇÃO QUADRÁTICA Sabe que ponto é este? É o vértice da parábola...isso mesmo o vértice é o ponto em que a parábola faz a curva, ou seja, o ponto em que a curva muda de direção. O vértice permite determinar a Imagem da função e também seu valor máximo ou mínimo.
  • 21. DETERMINANDO O VÉRTICE DA PARÁBOLA A parábola é simétrica em relação ao eixo vertical, logo o valor do x do vértice será a média aritmética entre os valores das raízes da função. Exemplo: Dada a função f(x) = x² - 7x + 6 , temos como raízes x’ = 1 e x” = 6 Xv = x’ + x” = 1 + 6 = 7 = 3,5 logo substituindo x = 3,5 na função teremos, 2 2 2 f(3,5) = 3,5² - 7 . 3,5 + 6 = 12,25 – 24,5 + 6 = - 6,25, esse é o valor do yv . Conclusões: o vértice desta parábola é o ponto (3,5; -6,25); O valor mínimo desta função é : - 6,25; A imagem é definida por : Im = { y є IR/y > - 6,25 }
  • 22. A outra forma de determinar as coordenadas do vértice da parábola é aplicando as fórmulas: Xv = - b e yv = - ∆ 2a 4a Dada a mesma função anterior f(x) = x² - 7x + 6, teremos utilizando as fórmulas: Xv = - b = - ( - 7) = 3,5 2a 2.1 e yv = - ∆ = - 25 = - 6,25 4a 4.1 VIRAM COMO ENCONTRAMOS OS MESMOS VALORES!
  • 23. REFORÇAMOS QUE: SE A CONCAVIDADE DA PARÁBOLA É PARA CIMA ( a > 0), O yv SERÁ VALOR MÍNIMO DA FUNÇÃO E Im = { y є IR/ y > yv} SE A CONCAVIDADE DA PARÁBOLA É PARA BAIXO (a < 0), O yv SERÁ O VALOR MÁXIMO DA FUNÇÃO E Im = { y є IR/ y < yv}
  • 24. EXERCITANDO UM POUCO: 1. Determine o ponto V(xv, yv), vértice da parábola que representa o gráfico das seguintes funções: a) y = x² - 6x + 5 b) y = 3x² - 4x c) y = x² - 4 d) y = - 6x² e) y = - x² + x – 3 Exercícios extraídos do Livro: Matemática Fundamental – Uma Nova Abordagem, de Giovanni, Bonjorno e Giovanni Jr. Pág. 133
  • 25. AGORA CHEGAMOS NA MELHOR HORA...
  • 26. PARA CONHECER ALGUMAS APLICAÇÕES VAMOS ASSISTIR AO VÍDEO
  • 27. VAMOS VER ALGUMAS APLICAÇÕES EM FÍSICA Voltando e acessando o endereço abaixo que é do Software de “Variação de uma Função Quadrática”, teremos algumas atividades com velocidade... http://www.cdme.im.-uff.mat.br/quadratica/quadratica/-html/QP1.html
  • 28. OUTRAS APLICAÇÕES: 1. Em nossa Escola será construída uma quadra poliesportiva, a área disponível para esta construção é de 375m². Sabe-se que o comprimento da quadra excede a largura em 10 unidades.Qual será as dimensões desta quadra? Plano de solução – vamos desenhar para entendermos melhor , vejamos: largura = x comprimento = x + 10 Essa medida que não conhecemos o valor será a nossa incógnita que chamaremos de x. Devemos encontrar o valor de x. Sabemos que trata-se de uma quadra retangular, pois os lados são diferentes, sabemos também que a área do retângulo é dado por base x altura, ou comprimento x largura, logo teremos: A = x (x + 10) A = x. x + x .10 A = X² + 10 X agora é só resolver a equação!
  • 29. 2. Um diagramador está definindo as dimensões que terá uma revista. Necessita que o comprimento de cada página seja igual à largura e que a superfície da cada página seja de 324cm². Quais as medidas que cumprem as duas condições? 3. O lucro, em reais, de uma empresa na venda de determinado produto é dado pela função l(x) = – 2x2 + 300x – 16, onde l(x) é o lucro e x representa a quantidade de produtos vendidos.Determine o lucro máximo obtido pela empresa na venda desse produto. 4. Uma bola, ao ser chutada num tiro de meta por um goleiro, numa partida de futebol, teve sua trajetória descrita pela equação h(t) = -2t² + 8t, onde t é o tempo medido em segundos e h(t) é a altura em metros da bola no instante t. Determine: a. O instante em que a bola retornará ao solo. b. A altura máxima atingida pela bola.