SlideShare uma empresa Scribd logo
Função Polinomial do 1º grau
Prof:Zaqueu Oliveira
Objetivos
• Compreender o conceito de função.
• Escrever a lei de formação de uma função
• Identificar a variável dependente e independente.
• Representar uma função por meio de gráficos.
• Classificar as funções em crescente ou
decrescente.
• Determinar o zero de uma função, o ponto de
interseção de seu gráfico.
• Determinar o ponto de máximo e mínimo.
História
•Desde o tempo dos Gregos até à Idade Moderna a
teoria dominante era a Geometria Euclidiana que
tinha como elementos base o ponto, a reta e o plano.
•A noção de função vai ser um dos fundamentos do
Cálculo Infinitesimal. Foi Leibniz (1646 - 1716) quem
primeiro usou o termo "função" em 1673 no
manuscrito Latino "Methodus tangentium inversa, seu
de fuctionibus".
•Um retoque final nesta definição viria a ser dado em
1748 por Euler (1707 - 1783) - um antigo aluno de
Bernoulli - substituindo o termo "quantidade" por
"expressão analítica". Foi também Euler quem
introduziu a notação f(x).
Algumas situações de funções
O valor da fatura de telefone
é calculado em função do
consumo no mês. F(x)= 30+C
O tempo de uma viagem está
em função da velocidade
praticada no trajeto.
Definição
Chama-se função polinomial do 1º grau, ou função
afim,a qualquer função de IR em IR dada por uma lei da
formação f(x)= ax+b .
1. E podemos dizer f(x) = y, logo y= ax+b
2. Onde a e b são números reais dados e a ≠ 0.
3. O gráfico dessa função é sempre uma reta.
4. A função de Primeiro Grau é a função de grau 1.
Exemplos de funções polinomial do 1º grau;
1) f(x) = 5x - 3, onde a = 5 e b = - 3
2) f(x) = -2x - 7, onde a = -2 e b = - 7
3) f(x) = 11x, onde a = 11 e b = 0
Gráfico de uma função
Se cada reta interceptar o gráfico em um único ponto, ela
será uma função. Mas , se uma reta interceptar em dois
ou mais pontos, não é Função.
Representação gráfica de uma função
• O plano cartesiano composto de duas retas (horizontal
e vertical) que se cruzam em um único ponto,
chamado de origem.
• A coordenadas cartesianas, representando-o por um
par ordenado na forma (x,y).
Localização dos pontos
A(4;3)
B(1;2)
C(-2;4)
D (-3;-4)
E (3;-3)
F (-4;0)
Construção do Gráfico
• O jeito mais fácil de se construir uma função de
primeiro grau é criar uma tabela para os valores
de x e determinar os valores associados em y.
y = x + 1
F(x) = x + 1
x y (x,y)
-1 -1+1=0 (-1,0)
0 0+1=1 (0,1)
1 1+1=2 (1,2)
2 2+1=3 (2,3)
3 3+1=4 (3,4)
Construção do Gráfico
• O modo mais recomendado na construção de uma
função é encontrar os interceptos em x e em y.
• y = x + 1
• F(x) = x + 1
Para x=0 Para y=0
y= x+1 y=x+1
y=0+1 0=x+1
y=1 x=-1
Estudo da função
 Imagine a função afim f(x)= a.x+b e função linear f(x)=ax
 Quando (a>0) , teremos uma função crescente
Gráficos das funções y = x + 2 ; y = x – 3 e y=x;
x
y
0 1 2 3–3 –2 –1
1
2
3
–3
–2
–1
4 5–4–5
–5
–4
4
5
a > 0 y = x – 3
y = x + 2
y = x
Estudo da função
 Imagine a função afim f(x)= a.x+b e função linear f(x)=ax
 Quando (a<0), teremos uma função decrescente
Gráficos das funções y=-2x; y = –2x + 4 e y = –2x – 3.
x
y
0 1 2 3–3 –2 –1
1
2
3
–3
–2
–1
4 5–4–5
–5
–4
4
5
y = –2x + 4
y = –2x
a < 0
y = –2x – 3
Quando (a=0), teremos uma função constante
Gráfico da função f(x)=3
Estudo da função
a = 0
f(x)=3
Zero de uma Função Afim
Encontre o zero da função
f(x)=3x-9, onde f(x)=y=0 ;
3x-9=0
3x = 9
3 3
x = 3
Substituindo o valor no X.
y=3(3)-9
y=9-9
y=0
Intersecção
• Em qual ponto as funções y=x+1 e y=-2x+1 se
interceptam?
y= x+1 (I)
y= -2x+1 (II)
x+1= -2x+1
x+2x = 1-1
3x=0
x=0/3
x=0
Substituindo em (I), temos:
y = 0+1
y = 1
Resposta: Nos pontos (0,1) -2
-1
0
1
2
3
4
-5 0 5
Y
Valores
Y
"A mudança deve acontecer de dentro para
fora. Os seus pensamentos determinarão
diretamente a forma que você vê o mundo.
Pense positivo! Pense que você pode e que
você é capaz de coisas maiores." (Dr. Jô
Furlan)
Bibliografia
• Slidesdare
• Google imagens
• Livro didático Vontade de saber de
matemática
• Artigos relacionados as equações do 2º grau.
• Site Só matemática.
Função Polinomial do 2º grau
Prof:Zaqueu Oliveira
Objetivos
• Compreender o conceito de função.
• Escrever a lei de formação de uma função
• Identificar a variável dependente e independente.
• Representar uma função por meio de gráficos.
• Classificar as funções em completa ou incompleta.
• Determinar o zero de uma função, o ponto de
interseção de seu gráfico e o vértice da parábola.
• Determinar o ponto de máximo e mínimo.
História
•Desde o tempo dos Gregos até à Idade Moderna a
teoria dominante era a Geometria Euclidiana que
tinha como elementos base o ponto, a reta e o plano.
•A noção de função vai ser um dos fundamentos do
Cálculo Infinitesimal. Foi Leibniz (1646 - 1716) quem
primeiro usou o termo "função" em 1673 no
manuscrito Latino "Methodus tangentium inversa, seu
de fuctionibus".
•Um retoque final nesta definição viria a ser dado em
1748 por Euler (1707 - 1783) - um antigo aluno de
Bernoulli - substituindo o termo "quantidade" por
"expressão analítica". Foi também Euler quem
introduziu a notação f(x).
Função do 2° Grau
Uma quadra esportiva tem a forma retangular, com 40m de
comprimento e 20m de largura. O clube pretende ampliá-la.
Para isso, vai construir em volta dela uma faixa de largura
constante.
Sua área é função de x.
A = (40 + 2x) . (20 + 2x)
A = 800 + 80x + 40x + 4x2
A = f(x) = 4x² + 120x + 800
Chama-se função quadrática, ou função polinomial do 2º grau,
qualquer função f de IR em IR dada por uma lei da forma
f(x) = ax² + bx + c, onde a, b e c são números reais e a ≠ 0.
 a é o coeficiente real de x², com a≠0.
b é o coeficiente real de x.
c é um coeficiente real, também chamado termo independente.
Definição
Alguns exemplos de função quadráticas
• Função completa:
f(x) = 3x² - 4x + 1,(completa) onde a = 3, b = - 4 e c = 1
• Função incompleta:
f(x) = x² -1, (incompleta) onde a = 1, b = 0 e c = -1
f(x) = - x² + 8x, (incompleta) onde a = -1, b = 8 e c = 0
f(x) = -4x², (incompleta) onde a = - 4, b = 0 e c = 0
Toda função quadrática
quando a > 0 concavidade
voltada para cima.
a) y= x² - x - 6
Quando a < 0 concavidade
voltada para baixo.
b) y= - 3x²
CONCAVIDADE DA PARÁBOLA
O gráfico de uma função polinomial do 2º grau, y = ax² + bx + c,
com a ≠ 0, é uma curva chamada parábola.
Funções do 1º e 2º grau
A parábola está presente em algumas
situações do cotidiano. Quais são elas?
A antena parabólica A forma de parábola
Gráfico da função quadrática
• Seja a função definida por y = - x²+ 2x - 2
vamos atribuir para x os valores -1, 0, 1, 2 e 3
calcular os valores de y.
-6
-5
-4
-3
-2
-1
0
-2 0 2 4
Valores Y
Valores Y
Gráfico de uma função quadrática
 Todo gráfico de uma função do 2º grau é uma
parábola.
 O gráfico de uma função quadrática é composto de três
partes fundamentais:
1) Zeros da função: é ou são pontos em que o gráfico
corta o eixo das abscissas (eixo x), ou seja , onde y=0.
02) Vértice: ponto mais alto ou mais baixo do gráfico.
03) Termo independente: ponto que o gráfico corta o
eixo das ordenadas (eixo y), Neste ponto x=0.
A quantidade de raízes reais de uma função quadrática
depende do valor obtido para o radicando ∆=b²-4.a.c,
chamado discriminante, a saber:
1)Quando ∆>0, é positivo, há duas raízes reais e distintas;
2)Quando ∆=0, é zero, há duas raízes reais e iguais;
3)Quando ∆<0, é negativo, não há raiz real
Zeros ou raízes
> 0 , tem dois zeros reais e diferentes.
a > 0 a < 0
> 0,tem dois zeros reais e iguais
a > 0 a < 0
< 0, não tem zeros reais.
a > 0 a < 0
Zeros ou Raízes
As raízes são as soluções da equação do 2º grau
ax² + bx + c = 0, as quais são dadas pela chamada fórmula de
Bháskara:
Como determinar a raiz ou zero da Função do 2º grau?
Simplesmente aplicando a resolução de equações do 2º
grau :
Zeros ou Raízes
F(x)= x² + x – 6,igualando f(x)=0 => x² + x – 6=0
1) Identificação de coeficientes
onde a=1, b=1 e c=-6
2) ∆=b²-4.a.c
∆= (1)² - 4.(1).(-6) = 1+24 = 25>0
Como ∆>0, a função terá dois zeros.
3)
-8
-6
-4
-2
0
2
4
6
8
-5 0 5
Valores Y
Resolução de funções Incompletas
Inequações da forma:
ax² +bx = 0, (c = 0)
De modo geral, a equação do
tipo ax² +bx = 0 tem para
soluções:
x = 0
e
x = - b
a
Inequações da forma:
ax² +c = 0, (b = 0)
De modo geral, a equação
do tipo ax² +c = 0:
possui duas raízes reais se:
- c for um nº positivo
a
não possui raiz real se:
- c for um nº negativo
a
O gráfico de uma função quadrática intercepta o eixo
y no ponto de coordenadas (0,c)
Interseção com o eixo y
Coordenadas do vértice da parábola
Quando a > 0, a parábola tem
concavidade voltada para cima e um
ponto de mínimo V
Quando a < 0, a parábola tem
concavidade voltada para baixo e
um ponto de máximo V.
"A mudança deve acontecer de dentro para
fora. Os seus pensamentos determinarão
diretamente a forma que você vê o mundo.
Pense positivo! Pense que você pode e que
você é capaz de coisas maiores." (Dr. Jô
Furlan)
Bibliografia
• Slidesdare
• Google imagens
• Livro didático Vontade de saber de
matemática
• Artigos relacionados as equações do 2º grau.
• Site Só matemática.

Mais conteúdo relacionado

Mais procurados

Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afim
ProfessoraIve
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
demervalm
 
Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grau
leilamaluf
 
Função polinomial do 1º grau
Função polinomial do 1º grauFunção polinomial do 1º grau
Função polinomial do 1º grau
Jesrayne Nascimento
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
estrelaeia
 
Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
Murilo Cretuchi de Oliveira
 
4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos
celiomelosouza
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
Adriano Souza
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
Horacimar Cotrim
 
Domínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma funçãoDomínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma função
Dosvaldo Alves
 
Polinomios
PolinomiosPolinomios
Polinomios
rosania39
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
PROFESSOR GLEDSON GUIMARÃES
 
Cone questões resolvidas - fundamentos de matemática elementar
Cone   questões resolvidas - fundamentos de matemática elementarCone   questões resolvidas - fundamentos de matemática elementar
Cone questões resolvidas - fundamentos de matemática elementar
CelsodoRozrioBrasilG
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
Ariosvaldo Carvalho
 
Função do 1º grau em ppt
Função do 1º grau em pptFunção do 1º grau em ppt
Função do 1º grau em ppt
Lucimeires Cabral Dias
 
Aula 22 probabilidade - parte 1
Aula 22   probabilidade - parte 1Aula 22   probabilidade - parte 1
Funcao modular
Funcao modularFuncao modular
Funcao modular
con_seguir
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
Rodrigo Carvalho
 
19 exercícios - estudo sinal função 1° grau
19   exercícios - estudo sinal função 1° grau19   exercícios - estudo sinal função 1° grau
19 exercícios - estudo sinal função 1° grau
Felipe Ferreira
 
Exercícios (arranjo simples)
Exercícios (arranjo simples)Exercícios (arranjo simples)
Exercícios (arranjo simples)
Carlos Santos Junior
 

Mais procurados (20)

Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afim
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grau
 
Função polinomial do 1º grau
Função polinomial do 1º grauFunção polinomial do 1º grau
Função polinomial do 1º grau
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 
Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
 
4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Domínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma funçãoDomínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma função
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
Cone questões resolvidas - fundamentos de matemática elementar
Cone   questões resolvidas - fundamentos de matemática elementarCone   questões resolvidas - fundamentos de matemática elementar
Cone questões resolvidas - fundamentos de matemática elementar
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
Função do 1º grau em ppt
Função do 1º grau em pptFunção do 1º grau em ppt
Função do 1º grau em ppt
 
Aula 22 probabilidade - parte 1
Aula 22   probabilidade - parte 1Aula 22   probabilidade - parte 1
Aula 22 probabilidade - parte 1
 
Funcao modular
Funcao modularFuncao modular
Funcao modular
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
 
19 exercícios - estudo sinal função 1° grau
19   exercícios - estudo sinal função 1° grau19   exercícios - estudo sinal função 1° grau
19 exercícios - estudo sinal função 1° grau
 
Exercícios (arranjo simples)
Exercícios (arranjo simples)Exercícios (arranjo simples)
Exercícios (arranjo simples)
 

Destaque

Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° graus
Daniel Muniz
 
Funções de 1º e 2º grau
Funções de 1º e 2º grauFunções de 1º e 2º grau
Funções de 1º e 2º grau
Gustavo Mercado
 
MatemáTica Intro FunçõEs
MatemáTica Intro FunçõEsMatemáTica Intro FunçõEs
MatemáTica Intro FunçõEs
educacao f
 
Funções
FunçõesFunções
Funções
bethbal
 
Funções Do 1ºGrau
Funções Do 1ºGrauFunções Do 1ºGrau
Funções Do 1ºGrau
profmarcialucas
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
betontem
 
Graficos de funcoes
Graficos de funcoesGraficos de funcoes
Graficos de funcoes
debyreis
 
Função afim-linear-constante-gráficos
Função  afim-linear-constante-gráficosFunção  afim-linear-constante-gráficos
Função afim-linear-constante-gráficos
marmorei
 
Aula sobre funções
Aula sobre funçõesAula sobre funções
Aula sobre funções
josivaldopassos
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
Herlan Ribeiro de Souza
 
Funções
FunçõesFunções
Funções
Gabriele Veleda
 
Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matériaGráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
O Bichinho do Saber
 
Vetores, translações e isometrias
Vetores, translações e isometriasVetores, translações e isometrias
Vetores, translações e isometrias
O Bichinho do Saber
 
Introdução ao estudo das funções
Introdução ao estudo das funçõesIntrodução ao estudo das funções
Introdução ao estudo das funções
lilianamcvieira1986
 
Funções
FunçõesFunções
Funções
aldaalves
 
Resumo do 7º e 8º ano
Resumo do 7º e 8º anoResumo do 7º e 8º ano
Resumo do 7º e 8º ano
Tiiagu
 

Destaque (16)

Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° graus
 
Funções de 1º e 2º grau
Funções de 1º e 2º grauFunções de 1º e 2º grau
Funções de 1º e 2º grau
 
MatemáTica Intro FunçõEs
MatemáTica Intro FunçõEsMatemáTica Intro FunçõEs
MatemáTica Intro FunçõEs
 
Funções
FunçõesFunções
Funções
 
Funções Do 1ºGrau
Funções Do 1ºGrauFunções Do 1ºGrau
Funções Do 1ºGrau
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Graficos de funcoes
Graficos de funcoesGraficos de funcoes
Graficos de funcoes
 
Função afim-linear-constante-gráficos
Função  afim-linear-constante-gráficosFunção  afim-linear-constante-gráficos
Função afim-linear-constante-gráficos
 
Aula sobre funções
Aula sobre funçõesAula sobre funções
Aula sobre funções
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Funções
FunçõesFunções
Funções
 
Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matériaGráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
 
Vetores, translações e isometrias
Vetores, translações e isometriasVetores, translações e isometrias
Vetores, translações e isometrias
 
Introdução ao estudo das funções
Introdução ao estudo das funçõesIntrodução ao estudo das funções
Introdução ao estudo das funções
 
Funções
FunçõesFunções
Funções
 
Resumo do 7º e 8º ano
Resumo do 7º e 8º anoResumo do 7º e 8º ano
Resumo do 7º e 8º ano
 

Semelhante a Funções do 1º e 2º grau

Funções
Funções Funções
Funções
Ray Sousa
 
Trabalho informatica educativa2 mary
Trabalho informatica educativa2 maryTrabalho informatica educativa2 mary
Trabalho informatica educativa2 mary
josiasjulio
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
sosoazevedo
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FabiolaSouza36
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
Antonio Carneiro
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
Antonio Carneiro
 
Função do 2º grau ou função quadrática
Função do 2º grau ou função quadráticaFunção do 2º grau ou função quadrática
Função do 2º grau ou função quadrática
Antonio Carlos Luguetti
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
jwfb
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
iraciva
 
Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
Magda Damião
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
Magda Damião
 
Função de 2º grau 17122016
Função de 2º grau 17122016Função de 2º grau 17122016
Função de 2º grau 17122016
Antonio Carneiro
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
Celia Lana
 
Função polinomial do 2°grau
Função polinomial do 2°grauFunção polinomial do 2°grau
Função polinomial do 2°grau
mlsdesa
 
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
Beatriz Góes
 
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
Clarice Leclaire
 
Slide Função Afim.pptx
Slide Função Afim.pptxSlide Função Afim.pptx
Slide Função Afim.pptx
JonathasAureliano1
 
FunçãO De 2º Grau QuadráTica
FunçãO De  2º Grau   QuadráTicaFunçãO De  2º Grau   QuadráTica
FunçãO De 2º Grau QuadráTica
rosemere75
 
Aula gaba
Aula gabaAula gaba
Aula gaba
Jean Heisenberg
 
Slide - Função Afim/ Matemática Básica.pdf
Slide - Função Afim/ Matemática Básica.pdfSlide - Função Afim/ Matemática Básica.pdf
Slide - Função Afim/ Matemática Básica.pdf
JonathasAureliano1
 

Semelhante a Funções do 1º e 2º grau (20)

Funções
Funções Funções
Funções
 
Trabalho informatica educativa2 mary
Trabalho informatica educativa2 maryTrabalho informatica educativa2 mary
Trabalho informatica educativa2 mary
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
Função do 2º grau ou função quadrática
Função do 2º grau ou função quadráticaFunção do 2º grau ou função quadrática
Função do 2º grau ou função quadrática
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
 
Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
 
Função de 2º grau 17122016
Função de 2º grau 17122016Função de 2º grau 17122016
Função de 2º grau 17122016
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
 
Função polinomial do 2°grau
Função polinomial do 2°grauFunção polinomial do 2°grau
Função polinomial do 2°grau
 
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 
Slide Função Afim.pptx
Slide Função Afim.pptxSlide Função Afim.pptx
Slide Função Afim.pptx
 
FunçãO De 2º Grau QuadráTica
FunçãO De  2º Grau   QuadráTicaFunçãO De  2º Grau   QuadráTica
FunçãO De 2º Grau QuadráTica
 
Aula gaba
Aula gabaAula gaba
Aula gaba
 
Slide - Função Afim/ Matemática Básica.pdf
Slide - Função Afim/ Matemática Básica.pdfSlide - Função Afim/ Matemática Básica.pdf
Slide - Função Afim/ Matemática Básica.pdf
 

Mais de Zaqueu Oliveira

A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
Zaqueu Oliveira
 
Media,moda,mediana
Media,moda,medianaMedia,moda,mediana
Media,moda,mediana
Zaqueu Oliveira
 
Inequações do 1º e 2º grau
Inequações do 1º e 2º grauInequações do 1º e 2º grau
Inequações do 1º e 2º grau
Zaqueu Oliveira
 
Equação do 1º e 2º grau
Equação do 1º e 2º grauEquação do 1º e 2º grau
Equação do 1º e 2º grau
Zaqueu Oliveira
 
Enade
EnadeEnade
Teorema do valor intermediário - Análise Real
Teorema do valor intermediário - Análise RealTeorema do valor intermediário - Análise Real
Teorema do valor intermediário - Análise Real
Zaqueu Oliveira
 
Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2
Zaqueu Oliveira
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Zaqueu Oliveira
 
Neurodidatica versus
Neurodidatica versusNeurodidatica versus
Neurodidatica versus
Zaqueu Oliveira
 

Mais de Zaqueu Oliveira (9)

A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
 
Media,moda,mediana
Media,moda,medianaMedia,moda,mediana
Media,moda,mediana
 
Inequações do 1º e 2º grau
Inequações do 1º e 2º grauInequações do 1º e 2º grau
Inequações do 1º e 2º grau
 
Equação do 1º e 2º grau
Equação do 1º e 2º grauEquação do 1º e 2º grau
Equação do 1º e 2º grau
 
Enade
EnadeEnade
Enade
 
Teorema do valor intermediário - Análise Real
Teorema do valor intermediário - Análise RealTeorema do valor intermediário - Análise Real
Teorema do valor intermediário - Análise Real
 
Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Neurodidatica versus
Neurodidatica versusNeurodidatica versus
Neurodidatica versus
 

Último

Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptxSlides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
LuizHenriquedeAlmeid6
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
felipescherner
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
Falcão Brasil
 
Oficina de bases de dados - Dimensions.pdf
Oficina de bases de dados - Dimensions.pdfOficina de bases de dados - Dimensions.pdf
Oficina de bases de dados - Dimensions.pdf
beathrizalves131
 
Noite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsxNoite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsx
Luzia Gabriele
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
LuizHenriquedeAlmeid6
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
LeilaVilasboas
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Mary Alvarenga
 
Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24
DirceuSilva26
 
Acróstico - Bullying é crime!
Acróstico - Bullying é crime!Acróstico - Bullying é crime!
Acróstico - Bullying é crime!
Mary Alvarenga
 
Alfabetização de adultos.pdf
Alfabetização de             adultos.pdfAlfabetização de             adultos.pdf
Alfabetização de adultos.pdf
arodatos81
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Centro Jacques Delors
 
Painel para comemerorar odia dos avós grátis.pdf
Painel  para comemerorar odia dos avós grátis.pdfPainel  para comemerorar odia dos avós grátis.pdf
Painel para comemerorar odia dos avós grátis.pdf
marcos oliveira
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
Mary Alvarenga
 
Relatório de Atividades 2011 CENSIPAM.pdf
Relatório de Atividades 2011 CENSIPAM.pdfRelatório de Atividades 2011 CENSIPAM.pdf
Relatório de Atividades 2011 CENSIPAM.pdf
Falcão Brasil
 
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptxA perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
marcos oliveira
 
Aprendizagem Imersiva: Conceitos e Caminhos
Aprendizagem Imersiva: Conceitos e CaminhosAprendizagem Imersiva: Conceitos e Caminhos
Aprendizagem Imersiva: Conceitos e Caminhos
Leonel Morgado
 

Último (20)

Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptxSlides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
 
Oficina de bases de dados - Dimensions.pdf
Oficina de bases de dados - Dimensions.pdfOficina de bases de dados - Dimensions.pdf
Oficina de bases de dados - Dimensions.pdf
 
Noite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsxNoite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsx
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
 
FOTOS_AS CIÊNCIAS EM AÇÃO .
FOTOS_AS CIÊNCIAS EM AÇÃO                .FOTOS_AS CIÊNCIAS EM AÇÃO                .
FOTOS_AS CIÊNCIAS EM AÇÃO .
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
 
RECORDANDO BONS MOMENTOS! _
RECORDANDO BONS MOMENTOS!               _RECORDANDO BONS MOMENTOS!               _
RECORDANDO BONS MOMENTOS! _
 
Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24
 
TALENTOS DA NOSSA ESCOLA .
TALENTOS DA NOSSA ESCOLA                .TALENTOS DA NOSSA ESCOLA                .
TALENTOS DA NOSSA ESCOLA .
 
Acróstico - Bullying é crime!
Acróstico - Bullying é crime!Acróstico - Bullying é crime!
Acróstico - Bullying é crime!
 
Alfabetização de adultos.pdf
Alfabetização de             adultos.pdfAlfabetização de             adultos.pdf
Alfabetização de adultos.pdf
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
 
Painel para comemerorar odia dos avós grátis.pdf
Painel  para comemerorar odia dos avós grátis.pdfPainel  para comemerorar odia dos avós grátis.pdf
Painel para comemerorar odia dos avós grátis.pdf
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
 
Relatório de Atividades 2011 CENSIPAM.pdf
Relatório de Atividades 2011 CENSIPAM.pdfRelatório de Atividades 2011 CENSIPAM.pdf
Relatório de Atividades 2011 CENSIPAM.pdf
 
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptxA perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
 
Aprendizagem Imersiva: Conceitos e Caminhos
Aprendizagem Imersiva: Conceitos e CaminhosAprendizagem Imersiva: Conceitos e Caminhos
Aprendizagem Imersiva: Conceitos e Caminhos
 

Funções do 1º e 2º grau

  • 1. Função Polinomial do 1º grau Prof:Zaqueu Oliveira
  • 2. Objetivos • Compreender o conceito de função. • Escrever a lei de formação de uma função • Identificar a variável dependente e independente. • Representar uma função por meio de gráficos. • Classificar as funções em crescente ou decrescente. • Determinar o zero de uma função, o ponto de interseção de seu gráfico. • Determinar o ponto de máximo e mínimo.
  • 3. História •Desde o tempo dos Gregos até à Idade Moderna a teoria dominante era a Geometria Euclidiana que tinha como elementos base o ponto, a reta e o plano. •A noção de função vai ser um dos fundamentos do Cálculo Infinitesimal. Foi Leibniz (1646 - 1716) quem primeiro usou o termo "função" em 1673 no manuscrito Latino "Methodus tangentium inversa, seu de fuctionibus". •Um retoque final nesta definição viria a ser dado em 1748 por Euler (1707 - 1783) - um antigo aluno de Bernoulli - substituindo o termo "quantidade" por "expressão analítica". Foi também Euler quem introduziu a notação f(x).
  • 4. Algumas situações de funções O valor da fatura de telefone é calculado em função do consumo no mês. F(x)= 30+C O tempo de uma viagem está em função da velocidade praticada no trajeto.
  • 5. Definição Chama-se função polinomial do 1º grau, ou função afim,a qualquer função de IR em IR dada por uma lei da formação f(x)= ax+b . 1. E podemos dizer f(x) = y, logo y= ax+b 2. Onde a e b são números reais dados e a ≠ 0. 3. O gráfico dessa função é sempre uma reta. 4. A função de Primeiro Grau é a função de grau 1.
  • 6. Exemplos de funções polinomial do 1º grau; 1) f(x) = 5x - 3, onde a = 5 e b = - 3 2) f(x) = -2x - 7, onde a = -2 e b = - 7 3) f(x) = 11x, onde a = 11 e b = 0 Gráfico de uma função Se cada reta interceptar o gráfico em um único ponto, ela será uma função. Mas , se uma reta interceptar em dois ou mais pontos, não é Função.
  • 7. Representação gráfica de uma função • O plano cartesiano composto de duas retas (horizontal e vertical) que se cruzam em um único ponto, chamado de origem. • A coordenadas cartesianas, representando-o por um par ordenado na forma (x,y). Localização dos pontos A(4;3) B(1;2) C(-2;4) D (-3;-4) E (3;-3) F (-4;0)
  • 8. Construção do Gráfico • O jeito mais fácil de se construir uma função de primeiro grau é criar uma tabela para os valores de x e determinar os valores associados em y. y = x + 1 F(x) = x + 1 x y (x,y) -1 -1+1=0 (-1,0) 0 0+1=1 (0,1) 1 1+1=2 (1,2) 2 2+1=3 (2,3) 3 3+1=4 (3,4)
  • 9. Construção do Gráfico • O modo mais recomendado na construção de uma função é encontrar os interceptos em x e em y. • y = x + 1 • F(x) = x + 1 Para x=0 Para y=0 y= x+1 y=x+1 y=0+1 0=x+1 y=1 x=-1
  • 10. Estudo da função  Imagine a função afim f(x)= a.x+b e função linear f(x)=ax  Quando (a>0) , teremos uma função crescente Gráficos das funções y = x + 2 ; y = x – 3 e y=x; x y 0 1 2 3–3 –2 –1 1 2 3 –3 –2 –1 4 5–4–5 –5 –4 4 5 a > 0 y = x – 3 y = x + 2 y = x
  • 11. Estudo da função  Imagine a função afim f(x)= a.x+b e função linear f(x)=ax  Quando (a<0), teremos uma função decrescente Gráficos das funções y=-2x; y = –2x + 4 e y = –2x – 3. x y 0 1 2 3–3 –2 –1 1 2 3 –3 –2 –1 4 5–4–5 –5 –4 4 5 y = –2x + 4 y = –2x a < 0 y = –2x – 3
  • 12. Quando (a=0), teremos uma função constante Gráfico da função f(x)=3 Estudo da função a = 0 f(x)=3
  • 13. Zero de uma Função Afim Encontre o zero da função f(x)=3x-9, onde f(x)=y=0 ; 3x-9=0 3x = 9 3 3 x = 3 Substituindo o valor no X. y=3(3)-9 y=9-9 y=0
  • 14. Intersecção • Em qual ponto as funções y=x+1 e y=-2x+1 se interceptam? y= x+1 (I) y= -2x+1 (II) x+1= -2x+1 x+2x = 1-1 3x=0 x=0/3 x=0 Substituindo em (I), temos: y = 0+1 y = 1 Resposta: Nos pontos (0,1) -2 -1 0 1 2 3 4 -5 0 5 Y Valores Y
  • 15. "A mudança deve acontecer de dentro para fora. Os seus pensamentos determinarão diretamente a forma que você vê o mundo. Pense positivo! Pense que você pode e que você é capaz de coisas maiores." (Dr. Jô Furlan)
  • 16. Bibliografia • Slidesdare • Google imagens • Livro didático Vontade de saber de matemática • Artigos relacionados as equações do 2º grau. • Site Só matemática.
  • 17. Função Polinomial do 2º grau Prof:Zaqueu Oliveira
  • 18. Objetivos • Compreender o conceito de função. • Escrever a lei de formação de uma função • Identificar a variável dependente e independente. • Representar uma função por meio de gráficos. • Classificar as funções em completa ou incompleta. • Determinar o zero de uma função, o ponto de interseção de seu gráfico e o vértice da parábola. • Determinar o ponto de máximo e mínimo.
  • 19. História •Desde o tempo dos Gregos até à Idade Moderna a teoria dominante era a Geometria Euclidiana que tinha como elementos base o ponto, a reta e o plano. •A noção de função vai ser um dos fundamentos do Cálculo Infinitesimal. Foi Leibniz (1646 - 1716) quem primeiro usou o termo "função" em 1673 no manuscrito Latino "Methodus tangentium inversa, seu de fuctionibus". •Um retoque final nesta definição viria a ser dado em 1748 por Euler (1707 - 1783) - um antigo aluno de Bernoulli - substituindo o termo "quantidade" por "expressão analítica". Foi também Euler quem introduziu a notação f(x).
  • 20. Função do 2° Grau Uma quadra esportiva tem a forma retangular, com 40m de comprimento e 20m de largura. O clube pretende ampliá-la. Para isso, vai construir em volta dela uma faixa de largura constante. Sua área é função de x. A = (40 + 2x) . (20 + 2x) A = 800 + 80x + 40x + 4x2 A = f(x) = 4x² + 120x + 800
  • 21. Chama-se função quadrática, ou função polinomial do 2º grau, qualquer função f de IR em IR dada por uma lei da forma f(x) = ax² + bx + c, onde a, b e c são números reais e a ≠ 0.  a é o coeficiente real de x², com a≠0. b é o coeficiente real de x. c é um coeficiente real, também chamado termo independente. Definição
  • 22. Alguns exemplos de função quadráticas • Função completa: f(x) = 3x² - 4x + 1,(completa) onde a = 3, b = - 4 e c = 1 • Função incompleta: f(x) = x² -1, (incompleta) onde a = 1, b = 0 e c = -1 f(x) = - x² + 8x, (incompleta) onde a = -1, b = 8 e c = 0 f(x) = -4x², (incompleta) onde a = - 4, b = 0 e c = 0
  • 23. Toda função quadrática quando a > 0 concavidade voltada para cima. a) y= x² - x - 6 Quando a < 0 concavidade voltada para baixo. b) y= - 3x² CONCAVIDADE DA PARÁBOLA O gráfico de uma função polinomial do 2º grau, y = ax² + bx + c, com a ≠ 0, é uma curva chamada parábola.
  • 25. A parábola está presente em algumas situações do cotidiano. Quais são elas? A antena parabólica A forma de parábola
  • 26. Gráfico da função quadrática • Seja a função definida por y = - x²+ 2x - 2 vamos atribuir para x os valores -1, 0, 1, 2 e 3 calcular os valores de y. -6 -5 -4 -3 -2 -1 0 -2 0 2 4 Valores Y Valores Y
  • 27. Gráfico de uma função quadrática  Todo gráfico de uma função do 2º grau é uma parábola.  O gráfico de uma função quadrática é composto de três partes fundamentais: 1) Zeros da função: é ou são pontos em que o gráfico corta o eixo das abscissas (eixo x), ou seja , onde y=0. 02) Vértice: ponto mais alto ou mais baixo do gráfico. 03) Termo independente: ponto que o gráfico corta o eixo das ordenadas (eixo y), Neste ponto x=0.
  • 28. A quantidade de raízes reais de uma função quadrática depende do valor obtido para o radicando ∆=b²-4.a.c, chamado discriminante, a saber: 1)Quando ∆>0, é positivo, há duas raízes reais e distintas; 2)Quando ∆=0, é zero, há duas raízes reais e iguais; 3)Quando ∆<0, é negativo, não há raiz real Zeros ou raízes
  • 29. > 0 , tem dois zeros reais e diferentes. a > 0 a < 0 > 0,tem dois zeros reais e iguais a > 0 a < 0 < 0, não tem zeros reais. a > 0 a < 0
  • 30. Zeros ou Raízes As raízes são as soluções da equação do 2º grau ax² + bx + c = 0, as quais são dadas pela chamada fórmula de Bháskara: Como determinar a raiz ou zero da Função do 2º grau? Simplesmente aplicando a resolução de equações do 2º grau :
  • 31. Zeros ou Raízes F(x)= x² + x – 6,igualando f(x)=0 => x² + x – 6=0 1) Identificação de coeficientes onde a=1, b=1 e c=-6 2) ∆=b²-4.a.c ∆= (1)² - 4.(1).(-6) = 1+24 = 25>0 Como ∆>0, a função terá dois zeros. 3) -8 -6 -4 -2 0 2 4 6 8 -5 0 5 Valores Y
  • 32. Resolução de funções Incompletas Inequações da forma: ax² +bx = 0, (c = 0) De modo geral, a equação do tipo ax² +bx = 0 tem para soluções: x = 0 e x = - b a Inequações da forma: ax² +c = 0, (b = 0) De modo geral, a equação do tipo ax² +c = 0: possui duas raízes reais se: - c for um nº positivo a não possui raiz real se: - c for um nº negativo a
  • 33. O gráfico de uma função quadrática intercepta o eixo y no ponto de coordenadas (0,c) Interseção com o eixo y
  • 34. Coordenadas do vértice da parábola Quando a > 0, a parábola tem concavidade voltada para cima e um ponto de mínimo V Quando a < 0, a parábola tem concavidade voltada para baixo e um ponto de máximo V.
  • 35. "A mudança deve acontecer de dentro para fora. Os seus pensamentos determinarão diretamente a forma que você vê o mundo. Pense positivo! Pense que você pode e que você é capaz de coisas maiores." (Dr. Jô Furlan)
  • 36. Bibliografia • Slidesdare • Google imagens • Livro didático Vontade de saber de matemática • Artigos relacionados as equações do 2º grau. • Site Só matemática.