SlideShare uma empresa Scribd logo
Escola municipal são José
• Prof:Zaqueu Oliveira

• Revisão geral
Equações do 2º Grau
2
ax

+ bx + c = 0, a ≠ 0
Definição:
Denomina-se equação do 2º grau, na incógnita x, toda
equação da forma: ax2 + bx + c = 0, a ≠ 0.
Observe que:

a representa o coeficiente de x²;
b representa o coeficiente de x;
c representa o termo independente.
Exemplos:

x2 - 5x + 6 = 0, onde a = 1, b = -5 e c = 6.
	 2 - x = 0, onde a = 7, b = -1 e c = 0.
7x
x2 - 36 = 0, onde a = 1, b = 0 e c = -36.
Equações Completas do 2º Grau

Uma equação do 2º grau é completa quando b e c são
diferentes de zero.
Exemplos:
x² - 9x + 20 = 0, onde a = 1, b = -9 e c = 20.
-x² + 10x - 16 = 0, onde a = -1, b = 10 e c = -16.
Equações Incompletas do 2º Grau

Uma equação do 2º grau é incompleta quando b ou c é
igual a zero, ou ainda, quando ambos são iguais a zero.
Equações da forma ax² +bx = 0, (c = 0)

x² - 3x = 0, onde a = 1, b = -3.
-2x² + 4x = 0, onde a = -2, b = 4.
Equações da forma ax² +c = 0, (b = 0)

3x² - 2 = 0, onde a = 3, c = -2.
x² + 5 = 0, onde a = 1, c = 5.
ATIVIDADE-1
1. Obtenha os coeficientes
equações do 2 grau:
a) 5x²-7x-3=0
a:5 b:-7
b) x²-4x +2=0
a:1
b:-4
c) x²-x-1=0
a:1 b:-1
d) 2x²+7x+8=0 a:2 b:7
e) x²-7x=0
a:1 b:-7
f) x²-25=0
a:1
b:0

das

c:-3
c:2
c:-1
c:8
c:0
c:-25
2. Forme as equações do 2° grau em x:
•

a=1;
x²-6x+5=0

b=-6 ;

c= 5

b) a=3;
b=7 ;
3x²+7x+8=0

c= 8

c) a=8;
8x²=0

c=0

b=0 ;

d) a=1;
b=-3 ;
x²-3x+4=0

c= 4
Resolução de Equações Incompletas
Equações da forma:
ax² +bx = 0, (c = 0)

Equações da forma:
ax² +c = 0, (b = 0)

De modo geral, a equação
do tipo ax² +bx = 0 tem
para soluções:

De modo geral, a equação
do tipo ax² +c = 0:

x=0
e

x=-b
a

possui duas raízes reais se:
- c for um nº positivo
a
não possui raiz real se:
- c for um nº negativo
a
ATIVIDADE-2

1.Determine o conjunto verdade das equações:
x²-7x = 0 Δ=b²-4.a.c x=7+7=14/2=7
Δ=7²-4.1.0
Δ=49

x=7-7=0/2=0

b) 3x²-6x = 0
Δ=b²-4.a.c
Δ=-6²-4.3.0
Δ=36

x=6+6=12/6=2
x=6-6=0/2=0

Δ=b²-4.a.c
Δ=5²-4.1.0
Δ=25

x=-5+5=0/2=0
x=-5-5=-10/2=-5

c) x² +5x = 0
2.Determine o conjunto verdade das equações:

X² - 49 = 0 a=1 Δ=0²-4.1.49 x=14/2=7
Δ=196

2x² -32 = 0 Δ=0²-4.2.32

x=16/4 =4

Δ= 0+256
Δ=256

5x² - 20 = 0

Δ=0²-4.5.-20
Δ=400

x= 0+20=20/10=2
Composição de uma Equação do
2º Grau, Conhecidas as Raízes
Considere a equação do 2º grau ax2 + bx + c = 0.
Dividindo todos os termos por a, a ≠ 0, obtemos:

ax2 + bx + c = 0
a
a
a

x2 + bx + c = 0
a
a

Como: S = x’+ x” = -b e P = x’. x” = c
a
a
Podemos escrever a equação desta maneira:
x2 - Sx + P = 0
Exercício sobre Composição
Componha a equação do 2º grau cujas raízes são -2 e 7.
Solução:
A soma das raízes corresponde a:

S = x1 + x2 = -2 + 7 = 5
O produto das raízes corresponde a:
P = x1 . x2 = ( -2) . 7 = -14
A equação é dada por x2 - Sx + P = 0, onde S = 5 e P = -14.
Logo, x2 - 5x - 14 = 0 é a equação procurada.
ATIVIDADE – 4

Componha a equação do 2º grau cujas raízes são:
•
•
•
•
•

•
•
•
•

•
•
•

5 e2
R=x²-sx+p=0
x²-7x+10=0
-2 e -3
R= x²-sx+p=0
x²+5x-6=0
4 e -5
R=x²-sx+p=0
x²+1x - 20=0 => x² + x – 20 = 0
-5 e 5
R= x² -sx+p=0
x²-25=0
Representação gráfica de função
1º grau
Função de 1º grau é toda função do tipo

y = f(x) = ax + b
Em que a e b são constantes reais, com a ≠ 0.

Se b = 0, temos a função y = f(x) = ax, chamada, também, função linear.
Características da função de 1º grau y = f(x) = ax + b.
• A fórmula que a define é um polinômio de 1º grau; seu termo
independente pode ser nulo ou não.
• Se b = 0, temos a função f(x) = ax, chamada de função linear.
• A constante real a, não-nula, é o coeficiente angular. Ela é a mesma,
qualquer que seja o intervalo considerado.
Características da função de 1º grau y = f(x) = ax + b.
• A constante real b é o coeficiente linear.

• Seu gráfico cartesiano é uma linha reta, não paralela aos eixos. Ela
pode conter a origem (caso b = 0) ou não conter origem (caso b ≠
0).
• O crescimento ou o decrescimento da função estão relacionados
com o sinal de a. A reta é ascendente para a > 0 e descendente
para a < 0.
Crescimento e decrescimento.

a > 0 ⇒ função crescente
⇒ reta ascendente (sobe da esquerda p/ direita)
a < 0 ⇒ função decrescente
⇒

reta descendente (desce da esquerda p/ direita)
•

Exemplos
Veja o gráficos das funções y = x; y = 2x e y = x/2.
y

a>0

y = 2x
5

y=x

4
3

y = x/2

2
1

x
–5 –4

–3

–2

–1

0
–1
–2
–3

–4
–5

1

2

3

4

5
Exemplos
•

Veja o gráficos das funções y = –x; y = –2x e y = –x/2 em que
y

a<0
5

4
3
2
1

x
–5 –4

–3

–2

–1

0

1

2

3

4

5

–1
–2

y = –x/2

–3

–4

y = –x

–5

y = –2x
A temperatura de uma substância é 30 ºC. Sua temperatura varia
com o tempo de maneira uniforme, aumentando 10 ºC por
minuto.

Veja as temperaturas da substância, medidas minuto a minuto.

t(min)

0

1

2

3

4

5

T(oC)

30

40

50

60

70

80

A taxa de variação da temperatura é positiva (10 oC/min).
Após t minutos, a temperatura T da substância em oC é,
T = 30 + 10.t
Veja o gráfico cartesiano da função

T(oC)
t(min)

T(oC)

0

30

1

40

2

50

3

60

4

70

5

80

80
60
40
20
t(min)

T = 30 + 10.t

0

1

2

3

4

5
A temperatura de uma substância é 30 ºC Sua temperatura varia
com o tempo de maneira uniforme, diminuindo 10 ºC por
minuto.
Veja as temperaturas da substância, medidas minuto a minuto.

t(min)

0

1

2

3

4

5

T(oC)

30

20

10

0

–10

– 20

A taxa de variação da temperatura é negativa (10 oC/min).
Após t minutos, a temperatura T da substância em oC é,
T = 30 – 10.t
Veja o gráfico cartesiano da função
T(oC)
t(min)

T(oC)

0

30

1

20

2

10

3

0

4

–10

5

60

–20

40
20
t(min)

0
–20

T = 30 – 10.t

–40

1

2

3

4

5
Definição
Chama-se função quadrática, ou função
polinomial do 2º grau, qualquer função f de IR em
IR dada por uma lei da forma f(x) = ax2 + bx + c,
onde a, b e c são números reais e a 0.
Vejamos alguns exemplos de função quadráticas:
f(x) = 3x2 - 4x + 1, onde a = 3, b = - 4 e c = 1
f(x) = x2 -1, onde a = 1, b = 0 e c = -1
f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5
f(x) = - x2 + 8x, onde a = -1, b = 8 e c = 0
f(x) = -4x2, onde a = - 4, b = 0 e c = 0
Pontos notáveis da parábola
Os pontos de interseção com o eixo Ox (se
existirem)
Para resolvê-la, utilizamos a fórmula de
Bhaskara :
 x=
em que,
2
Se > 0 , temos duas reízes reais
distintas.
Se < 0 , não temos raízes reais.
Se = 0 , temos duas raízes reais e iguais.
> 0
a>0

a<0

= 0
a>0

a<0

< 0
a>0

a<0
Raízes ou zeros da função
• Denominam-se zeros ou raízes de uma função
de 2° grau os valores de x que anulam a
função, ou seja, que tornam f(x)=0
• As raízes da função nada mais é onde a
parábola corta no eixo do x.
Vértice da parábola
Vértice da parábola
V (Xv, Yv)

Xv =

Yv =
Raízes ou zeros da função
• Denominam-se zeros ou raízes de uma função
de 2° grau os valores de x que anulam a
função, ou seja, que tornam f(x)=0
• As raízes da função nada mais é onde a
parábola corta no eixo do x.
Valor mínimo da função
• Mínimo :
• Se a > 0, yv =
é o valor mínimo da função
Im= {y Є IR / y ≥
}
Valor máximo da função
• Máximo:
• Se a < 0, yv =
é o valor máximo da função
Im= {y Є IR / y ≤
}
EXEMPLO:
Estudar o sinal da função f(x)= x2 - 5x + 6.
x2 - 5x + 6 = 0 (determina-se a raiz da função)
(marcam-se as raízes em uma reta e analisa-se
a concavidade da parábola)
(faz-se o estudo do sinal)
f(x) > 0, para x<2 ou x>3
f(x)=0, para x=2 ou x=3
f(x) < 0, para 2 < x < 3
Gráficos
• O gráfico das Funções Quadráticas:
• O gráfico de uma função quadrática, f(x)=ax2+bx+c, com a diferente de
0, é uma curva chamada parábola. Ao construir um gráfico de uma
função quadrática f(x)=ax2+bx+c, notaremos sempre que:
• a>0, a parábola tem a concavidade voltada para cima (U)
• a<0, a parábola tem a concavidade voltada para baixo
Y = X2 + X
x
-3
-2
-1

y
6
2
0

0
1
2

0
2
6
1.RAZÃO
Arazão de dois números a e b, com b 0, é o quociente
do primeiro pelo segundo:

OBSERVAÇÃO:

Apalavra razão vem do latim ratio, que
significa divisão.
Exemplos
2.RAZÃO DE DOIS SEGMENTOS
Chamamos razão de dois segmentos a razão ou quociente
entre os números que exprimem as medidas desses
segmentos, tomados na mesma unidade.
Exemplos:
Determinar a razão entre os segmentos AB e CD, sendo
AB = 6 cm e CD = 12 cm.(Lembre-se :AB representa a
medida do segmento AB.)
Exemplos:
1) Verifique se os segmentosAB =4 cm, CD = 6 cm, EF =
8 cm e GH = 12 cm formam, nessa ordem, uma proporção.

Podemos afirmar que os segmentos, nessa ordem, são
proporcionais.
3.SEGMENTOS PROPORCIONAIS
Dizemos que quatro segmentos, AB, CD, EF e GH, nessa
ordem, são proporcionais, quando a razão entre os dois
primeiros for igual à razão entre os dois últimos, ou
seja:AB, CD, EF e GH são, nessa ordem, proporcionais
se, e somente se:
2) Verifique se os segmentos AB = 7 cm, CD = 10cm, EF =
12 cm e GH = 5 cm formam, nessa ordem, uma proporção.

Podemos afirmar que os segmentos, nessa ordem, não são
proporcionais.
3) Quatro segmentos AB, MN, PQ e RS, nesta ordem, são
proporcionais. SeAB=5 cm, MN= 15 cm e PQ= 4 cm, qual
a medida de RS?

5x = 60

x= 12
Que tal você tentar resolver o
Problema abaixo usando a relação
Entre as alturas propostas por Tales
1) (Saresp) Um prédio projeta uma sombra de 40 m ao mesmo
tempo que um poste de 2 m projeta uma sombra de 5 m.
Então, a altura do prédio é
A)
B)
C)
D)

10 m.
12 m.
14 m.
16 m.

Mais conteúdo relacionado

Mais procurados

Ad2 info
Ad2 infoAd2 info
Adição e subtração
Adição e subtraçãoAdição e subtração
Adição e subtração
Maria José Ferreira Justino
 
Funcao Polinomial De 2 Grau
Funcao Polinomial De 2 GrauFuncao Polinomial De 2 Grau
Funcao Polinomial De 2 Grau
Antonio Carneiro
 
Logaritmos
LogaritmosLogaritmos
Geometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontosGeometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontos
Camila Oliveira
 
Funções
FunçõesFunções
O estádio das operações concretas
O estádio das operações concretasO estádio das operações concretas
O estádio das operações concretas
Luis De Sousa Rodrigues
 
Função exponencial e função logarítmica
Função exponencial e função logarítmicaFunção exponencial e função logarítmica
Função exponencial e função logarítmica
Everton Moraes
 
Equações Do 2º Grau - Profº P.Cesar
Equações Do 2º Grau - Profº P.CesarEquações Do 2º Grau - Profº P.Cesar
Equações Do 2º Grau - Profº P.Cesar
paulocante
 
Propriedades da potenciação
Propriedades da potenciaçãoPropriedades da potenciação
Propriedades da potenciação
julio2012souto
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
Rodrigo Carvalho
 
Relatório precipitação das proteínas
Relatório precipitação das proteínasRelatório precipitação das proteínas
Relatório precipitação das proteínas
Ilana Moura
 
Aula 3_Volumetria.ppt
Aula 3_Volumetria.pptAula 3_Volumetria.ppt
Aula 3_Volumetria.ppt
jamilsondossantosfre
 
# Conjuntos
# Conjuntos# Conjuntos
# Conjuntos
Sergio Manoel
 
Função quadratica história e curiosidades
Função quadratica história e curiosidadesFunção quadratica história e curiosidades
Função quadratica história e curiosidades
monica_cassia
 
Química 9º ano
Química 9º anoQuímica 9º ano
Química 9º ano
tomasquintais
 
Logarítmos
LogarítmosLogarítmos
Matematica Basica
Matematica BasicaMatematica Basica
Matematica Basica
Nyedson Barbosa
 
Equação exponencial
Equação exponencialEquação exponencial
Equação exponencial
Péricles Penuel
 
Aula de Digital de Química - Sais
Aula de Digital de Química - SaisAula de Digital de Química - Sais
Aula de Digital de Química - Sais
Nelson Virgilio Carvalho Filho
 

Mais procurados (20)

Ad2 info
Ad2 infoAd2 info
Ad2 info
 
Adição e subtração
Adição e subtraçãoAdição e subtração
Adição e subtração
 
Funcao Polinomial De 2 Grau
Funcao Polinomial De 2 GrauFuncao Polinomial De 2 Grau
Funcao Polinomial De 2 Grau
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Geometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontosGeometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontos
 
Funções
FunçõesFunções
Funções
 
O estádio das operações concretas
O estádio das operações concretasO estádio das operações concretas
O estádio das operações concretas
 
Função exponencial e função logarítmica
Função exponencial e função logarítmicaFunção exponencial e função logarítmica
Função exponencial e função logarítmica
 
Equações Do 2º Grau - Profº P.Cesar
Equações Do 2º Grau - Profº P.CesarEquações Do 2º Grau - Profº P.Cesar
Equações Do 2º Grau - Profº P.Cesar
 
Propriedades da potenciação
Propriedades da potenciaçãoPropriedades da potenciação
Propriedades da potenciação
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
 
Relatório precipitação das proteínas
Relatório precipitação das proteínasRelatório precipitação das proteínas
Relatório precipitação das proteínas
 
Aula 3_Volumetria.ppt
Aula 3_Volumetria.pptAula 3_Volumetria.ppt
Aula 3_Volumetria.ppt
 
# Conjuntos
# Conjuntos# Conjuntos
# Conjuntos
 
Função quadratica história e curiosidades
Função quadratica história e curiosidadesFunção quadratica história e curiosidades
Função quadratica história e curiosidades
 
Química 9º ano
Química 9º anoQuímica 9º ano
Química 9º ano
 
Logarítmos
LogarítmosLogarítmos
Logarítmos
 
Matematica Basica
Matematica BasicaMatematica Basica
Matematica Basica
 
Equação exponencial
Equação exponencialEquação exponencial
Equação exponencial
 
Aula de Digital de Química - Sais
Aula de Digital de Química - SaisAula de Digital de Química - Sais
Aula de Digital de Química - Sais
 

Semelhante a Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos Proporcionais etc.

Funções
Funções Funções
Funções
Ray Sousa
 
Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
ZejucanaMatematica
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
Ariosvaldo Carvalho
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
sosoazevedo
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
Antonio Carneiro
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
trigono_metria
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
LSKY
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
Adelson Diogo de Carvalho
 
Aulaemgrupo
AulaemgrupoAulaemgrupo
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
con_seguir
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
Magda Damião
 
Matemática 6 9 apresent
Matemática 6 9 apresentMatemática 6 9 apresent
Matemática 6 9 apresent
Roseny90
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
jwfb
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
Celia Lana
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
Aab2507
 
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
Beatriz Góes
 
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
Clarice Leclaire
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
profmribeiro
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
Antonio Carneiro
 
Função do 1º grau
Função do 1º grau Função do 1º grau
Função do 1º grau
Leandro Montino
 

Semelhante a Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos Proporcionais etc. (20)

Funções
Funções Funções
Funções
 
Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
Aulaemgrupo
AulaemgrupoAulaemgrupo
Aulaemgrupo
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
 
Matemática 6 9 apresent
Matemática 6 9 apresentMatemática 6 9 apresent
Matemática 6 9 apresent
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
Função do 1º grau
Função do 1º grau Função do 1º grau
Função do 1º grau
 

Mais de Zaqueu Oliveira

A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
Zaqueu Oliveira
 
Media,moda,mediana
Media,moda,medianaMedia,moda,mediana
Media,moda,mediana
Zaqueu Oliveira
 
Inequações do 1º e 2º grau
Inequações do 1º e 2º grauInequações do 1º e 2º grau
Inequações do 1º e 2º grau
Zaqueu Oliveira
 
Funções do 1º e 2º grau
Funções do 1º e 2º grauFunções do 1º e 2º grau
Funções do 1º e 2º grau
Zaqueu Oliveira
 
Enade
EnadeEnade
Teorema do valor intermediário - Análise Real
Teorema do valor intermediário - Análise RealTeorema do valor intermediário - Análise Real
Teorema do valor intermediário - Análise Real
Zaqueu Oliveira
 
Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2
Zaqueu Oliveira
 
Neurodidatica versus
Neurodidatica versusNeurodidatica versus
Neurodidatica versus
Zaqueu Oliveira
 

Mais de Zaqueu Oliveira (8)

A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
 
Media,moda,mediana
Media,moda,medianaMedia,moda,mediana
Media,moda,mediana
 
Inequações do 1º e 2º grau
Inequações do 1º e 2º grauInequações do 1º e 2º grau
Inequações do 1º e 2º grau
 
Funções do 1º e 2º grau
Funções do 1º e 2º grauFunções do 1º e 2º grau
Funções do 1º e 2º grau
 
Enade
EnadeEnade
Enade
 
Teorema do valor intermediário - Análise Real
Teorema do valor intermediário - Análise RealTeorema do valor intermediário - Análise Real
Teorema do valor intermediário - Análise Real
 
Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2
 
Neurodidatica versus
Neurodidatica versusNeurodidatica versus
Neurodidatica versus
 

Último

TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptxTREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
erssstcontato
 
12072423052012Critica_Literaria_-_Aula_07.pdf
12072423052012Critica_Literaria_-_Aula_07.pdf12072423052012Critica_Literaria_-_Aula_07.pdf
12072423052012Critica_Literaria_-_Aula_07.pdf
JohnnyLima16
 
As sequências didáticas: práticas educativas
As sequências didáticas: práticas educativasAs sequências didáticas: práticas educativas
As sequências didáticas: práticas educativas
rloureiro1
 
Tudo sobre a Inglaterra, curiosidades, moeda.pptx
Tudo sobre a Inglaterra, curiosidades, moeda.pptxTudo sobre a Inglaterra, curiosidades, moeda.pptx
Tudo sobre a Inglaterra, curiosidades, moeda.pptx
IACEMCASA
 
Roteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptxRoteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptx
pamellaaraujo10
 
1_10_06_2024_Criança e Cultura Escrita, Ana Maria de Oliveira Galvão.pdf
1_10_06_2024_Criança e Cultura Escrita, Ana Maria de Oliveira Galvão.pdf1_10_06_2024_Criança e Cultura Escrita, Ana Maria de Oliveira Galvão.pdf
1_10_06_2024_Criança e Cultura Escrita, Ana Maria de Oliveira Galvão.pdf
SILVIAREGINANAZARECA
 
UFCD_6580_Cuidados na saúde a populações mais vulneráveis_índice.pdf
UFCD_6580_Cuidados na saúde a populações mais vulneráveis_índice.pdfUFCD_6580_Cuidados na saúde a populações mais vulneráveis_índice.pdf
UFCD_6580_Cuidados na saúde a populações mais vulneráveis_índice.pdf
Manuais Formação
 
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
fagnerlopes11
 
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdfUFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
Manuais Formação
 
A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...
ANDRÉA FERREIRA
 
A Núbia e o Reino De Cuxe- 6º ano....ppt
A Núbia e o Reino De Cuxe- 6º ano....pptA Núbia e o Reino De Cuxe- 6º ano....ppt
A Núbia e o Reino De Cuxe- 6º ano....ppt
WilianeBarbosa2
 
Vogais Ilustrados para alfabetização infantil
Vogais Ilustrados para alfabetização infantilVogais Ilustrados para alfabetização infantil
Vogais Ilustrados para alfabetização infantil
mamaeieby
 
Slide de biologia aula2 2 bimestre no ano de 2024
Slide de biologia aula2  2 bimestre no ano de 2024Slide de biologia aula2  2 bimestre no ano de 2024
Slide de biologia aula2 2 bimestre no ano de 2024
vinibolado86
 
ESTRUTURA E FORMAÇÃO DE PALAVRAS- 9º ANO A - 2024.ppt
ESTRUTURA E FORMAÇÃO DE PALAVRAS- 9º ANO A - 2024.pptESTRUTURA E FORMAÇÃO DE PALAVRAS- 9º ANO A - 2024.ppt
ESTRUTURA E FORMAÇÃO DE PALAVRAS- 9º ANO A - 2024.ppt
maria-oliveira
 
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIASA SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
HisrelBlog
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
Zenir Carmen Bez Trombeta
 
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptxSlides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
cronograma-enem-2024-planejativo-estudos.pdf
cronograma-enem-2024-planejativo-estudos.pdfcronograma-enem-2024-planejativo-estudos.pdf
cronograma-enem-2024-planejativo-estudos.pdf
todorokillmepls
 
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
ProfessoraTatianaT
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
MarcosPaulo777883
 

Último (20)

TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptxTREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
 
12072423052012Critica_Literaria_-_Aula_07.pdf
12072423052012Critica_Literaria_-_Aula_07.pdf12072423052012Critica_Literaria_-_Aula_07.pdf
12072423052012Critica_Literaria_-_Aula_07.pdf
 
As sequências didáticas: práticas educativas
As sequências didáticas: práticas educativasAs sequências didáticas: práticas educativas
As sequências didáticas: práticas educativas
 
Tudo sobre a Inglaterra, curiosidades, moeda.pptx
Tudo sobre a Inglaterra, curiosidades, moeda.pptxTudo sobre a Inglaterra, curiosidades, moeda.pptx
Tudo sobre a Inglaterra, curiosidades, moeda.pptx
 
Roteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptxRoteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptx
 
1_10_06_2024_Criança e Cultura Escrita, Ana Maria de Oliveira Galvão.pdf
1_10_06_2024_Criança e Cultura Escrita, Ana Maria de Oliveira Galvão.pdf1_10_06_2024_Criança e Cultura Escrita, Ana Maria de Oliveira Galvão.pdf
1_10_06_2024_Criança e Cultura Escrita, Ana Maria de Oliveira Galvão.pdf
 
UFCD_6580_Cuidados na saúde a populações mais vulneráveis_índice.pdf
UFCD_6580_Cuidados na saúde a populações mais vulneráveis_índice.pdfUFCD_6580_Cuidados na saúde a populações mais vulneráveis_índice.pdf
UFCD_6580_Cuidados na saúde a populações mais vulneráveis_índice.pdf
 
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
 
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdfUFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
 
A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...
 
A Núbia e o Reino De Cuxe- 6º ano....ppt
A Núbia e o Reino De Cuxe- 6º ano....pptA Núbia e o Reino De Cuxe- 6º ano....ppt
A Núbia e o Reino De Cuxe- 6º ano....ppt
 
Vogais Ilustrados para alfabetização infantil
Vogais Ilustrados para alfabetização infantilVogais Ilustrados para alfabetização infantil
Vogais Ilustrados para alfabetização infantil
 
Slide de biologia aula2 2 bimestre no ano de 2024
Slide de biologia aula2  2 bimestre no ano de 2024Slide de biologia aula2  2 bimestre no ano de 2024
Slide de biologia aula2 2 bimestre no ano de 2024
 
ESTRUTURA E FORMAÇÃO DE PALAVRAS- 9º ANO A - 2024.ppt
ESTRUTURA E FORMAÇÃO DE PALAVRAS- 9º ANO A - 2024.pptESTRUTURA E FORMAÇÃO DE PALAVRAS- 9º ANO A - 2024.ppt
ESTRUTURA E FORMAÇÃO DE PALAVRAS- 9º ANO A - 2024.ppt
 
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIASA SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
 
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptxSlides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
 
cronograma-enem-2024-planejativo-estudos.pdf
cronograma-enem-2024-planejativo-estudos.pdfcronograma-enem-2024-planejativo-estudos.pdf
cronograma-enem-2024-planejativo-estudos.pdf
 
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
 

Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos Proporcionais etc.

  • 1. Escola municipal são José • Prof:Zaqueu Oliveira • Revisão geral
  • 2. Equações do 2º Grau 2 ax + bx + c = 0, a ≠ 0
  • 3. Definição: Denomina-se equação do 2º grau, na incógnita x, toda equação da forma: ax2 + bx + c = 0, a ≠ 0. Observe que: a representa o coeficiente de x²; b representa o coeficiente de x; c representa o termo independente. Exemplos: x2 - 5x + 6 = 0, onde a = 1, b = -5 e c = 6. 2 - x = 0, onde a = 7, b = -1 e c = 0. 7x x2 - 36 = 0, onde a = 1, b = 0 e c = -36.
  • 4. Equações Completas do 2º Grau Uma equação do 2º grau é completa quando b e c são diferentes de zero. Exemplos: x² - 9x + 20 = 0, onde a = 1, b = -9 e c = 20. -x² + 10x - 16 = 0, onde a = -1, b = 10 e c = -16.
  • 5. Equações Incompletas do 2º Grau Uma equação do 2º grau é incompleta quando b ou c é igual a zero, ou ainda, quando ambos são iguais a zero. Equações da forma ax² +bx = 0, (c = 0) x² - 3x = 0, onde a = 1, b = -3. -2x² + 4x = 0, onde a = -2, b = 4. Equações da forma ax² +c = 0, (b = 0) 3x² - 2 = 0, onde a = 3, c = -2. x² + 5 = 0, onde a = 1, c = 5.
  • 6. ATIVIDADE-1 1. Obtenha os coeficientes equações do 2 grau: a) 5x²-7x-3=0 a:5 b:-7 b) x²-4x +2=0 a:1 b:-4 c) x²-x-1=0 a:1 b:-1 d) 2x²+7x+8=0 a:2 b:7 e) x²-7x=0 a:1 b:-7 f) x²-25=0 a:1 b:0 das c:-3 c:2 c:-1 c:8 c:0 c:-25
  • 7. 2. Forme as equações do 2° grau em x: • a=1; x²-6x+5=0 b=-6 ; c= 5 b) a=3; b=7 ; 3x²+7x+8=0 c= 8 c) a=8; 8x²=0 c=0 b=0 ; d) a=1; b=-3 ; x²-3x+4=0 c= 4
  • 8. Resolução de Equações Incompletas Equações da forma: ax² +bx = 0, (c = 0) Equações da forma: ax² +c = 0, (b = 0) De modo geral, a equação do tipo ax² +bx = 0 tem para soluções: De modo geral, a equação do tipo ax² +c = 0: x=0 e x=-b a possui duas raízes reais se: - c for um nº positivo a não possui raiz real se: - c for um nº negativo a
  • 9. ATIVIDADE-2 1.Determine o conjunto verdade das equações: x²-7x = 0 Δ=b²-4.a.c x=7+7=14/2=7 Δ=7²-4.1.0 Δ=49 x=7-7=0/2=0 b) 3x²-6x = 0 Δ=b²-4.a.c Δ=-6²-4.3.0 Δ=36 x=6+6=12/6=2 x=6-6=0/2=0 Δ=b²-4.a.c Δ=5²-4.1.0 Δ=25 x=-5+5=0/2=0 x=-5-5=-10/2=-5 c) x² +5x = 0
  • 10. 2.Determine o conjunto verdade das equações: X² - 49 = 0 a=1 Δ=0²-4.1.49 x=14/2=7 Δ=196 2x² -32 = 0 Δ=0²-4.2.32 x=16/4 =4 Δ= 0+256 Δ=256 5x² - 20 = 0 Δ=0²-4.5.-20 Δ=400 x= 0+20=20/10=2
  • 11. Composição de uma Equação do 2º Grau, Conhecidas as Raízes Considere a equação do 2º grau ax2 + bx + c = 0. Dividindo todos os termos por a, a ≠ 0, obtemos: ax2 + bx + c = 0 a a a x2 + bx + c = 0 a a Como: S = x’+ x” = -b e P = x’. x” = c a a Podemos escrever a equação desta maneira: x2 - Sx + P = 0
  • 12. Exercício sobre Composição Componha a equação do 2º grau cujas raízes são -2 e 7. Solução: A soma das raízes corresponde a: S = x1 + x2 = -2 + 7 = 5 O produto das raízes corresponde a: P = x1 . x2 = ( -2) . 7 = -14 A equação é dada por x2 - Sx + P = 0, onde S = 5 e P = -14. Logo, x2 - 5x - 14 = 0 é a equação procurada.
  • 13. ATIVIDADE – 4 Componha a equação do 2º grau cujas raízes são: • • • • • • • • • • • • 5 e2 R=x²-sx+p=0 x²-7x+10=0 -2 e -3 R= x²-sx+p=0 x²+5x-6=0 4 e -5 R=x²-sx+p=0 x²+1x - 20=0 => x² + x – 20 = 0 -5 e 5 R= x² -sx+p=0 x²-25=0
  • 14. Representação gráfica de função 1º grau
  • 15. Função de 1º grau é toda função do tipo y = f(x) = ax + b Em que a e b são constantes reais, com a ≠ 0. Se b = 0, temos a função y = f(x) = ax, chamada, também, função linear.
  • 16. Características da função de 1º grau y = f(x) = ax + b. • A fórmula que a define é um polinômio de 1º grau; seu termo independente pode ser nulo ou não. • Se b = 0, temos a função f(x) = ax, chamada de função linear. • A constante real a, não-nula, é o coeficiente angular. Ela é a mesma, qualquer que seja o intervalo considerado.
  • 17. Características da função de 1º grau y = f(x) = ax + b. • A constante real b é o coeficiente linear. • Seu gráfico cartesiano é uma linha reta, não paralela aos eixos. Ela pode conter a origem (caso b = 0) ou não conter origem (caso b ≠ 0). • O crescimento ou o decrescimento da função estão relacionados com o sinal de a. A reta é ascendente para a > 0 e descendente para a < 0.
  • 18. Crescimento e decrescimento. a > 0 ⇒ função crescente ⇒ reta ascendente (sobe da esquerda p/ direita) a < 0 ⇒ função decrescente ⇒ reta descendente (desce da esquerda p/ direita)
  • 19. • Exemplos Veja o gráficos das funções y = x; y = 2x e y = x/2. y a>0 y = 2x 5 y=x 4 3 y = x/2 2 1 x –5 –4 –3 –2 –1 0 –1 –2 –3 –4 –5 1 2 3 4 5
  • 20. Exemplos • Veja o gráficos das funções y = –x; y = –2x e y = –x/2 em que y a<0 5 4 3 2 1 x –5 –4 –3 –2 –1 0 1 2 3 4 5 –1 –2 y = –x/2 –3 –4 y = –x –5 y = –2x
  • 21. A temperatura de uma substância é 30 ºC. Sua temperatura varia com o tempo de maneira uniforme, aumentando 10 ºC por minuto. Veja as temperaturas da substância, medidas minuto a minuto. t(min) 0 1 2 3 4 5 T(oC) 30 40 50 60 70 80 A taxa de variação da temperatura é positiva (10 oC/min). Após t minutos, a temperatura T da substância em oC é, T = 30 + 10.t
  • 22. Veja o gráfico cartesiano da função T(oC) t(min) T(oC) 0 30 1 40 2 50 3 60 4 70 5 80 80 60 40 20 t(min) T = 30 + 10.t 0 1 2 3 4 5
  • 23. A temperatura de uma substância é 30 ºC Sua temperatura varia com o tempo de maneira uniforme, diminuindo 10 ºC por minuto. Veja as temperaturas da substância, medidas minuto a minuto. t(min) 0 1 2 3 4 5 T(oC) 30 20 10 0 –10 – 20 A taxa de variação da temperatura é negativa (10 oC/min). Após t minutos, a temperatura T da substância em oC é, T = 30 – 10.t
  • 24. Veja o gráfico cartesiano da função T(oC) t(min) T(oC) 0 30 1 20 2 10 3 0 4 –10 5 60 –20 40 20 t(min) 0 –20 T = 30 – 10.t –40 1 2 3 4 5
  • 25.
  • 26. Definição Chama-se função quadrática, ou função polinomial do 2º grau, qualquer função f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c são números reais e a 0. Vejamos alguns exemplos de função quadráticas: f(x) = 3x2 - 4x + 1, onde a = 3, b = - 4 e c = 1 f(x) = x2 -1, onde a = 1, b = 0 e c = -1 f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5 f(x) = - x2 + 8x, onde a = -1, b = 8 e c = 0 f(x) = -4x2, onde a = - 4, b = 0 e c = 0
  • 27. Pontos notáveis da parábola Os pontos de interseção com o eixo Ox (se existirem) Para resolvê-la, utilizamos a fórmula de Bhaskara :  x= em que, 2 Se > 0 , temos duas reízes reais distintas. Se < 0 , não temos raízes reais. Se = 0 , temos duas raízes reais e iguais.
  • 29. Raízes ou zeros da função • Denominam-se zeros ou raízes de uma função de 2° grau os valores de x que anulam a função, ou seja, que tornam f(x)=0 • As raízes da função nada mais é onde a parábola corta no eixo do x.
  • 30. Vértice da parábola Vértice da parábola V (Xv, Yv) Xv = Yv =
  • 31. Raízes ou zeros da função • Denominam-se zeros ou raízes de uma função de 2° grau os valores de x que anulam a função, ou seja, que tornam f(x)=0 • As raízes da função nada mais é onde a parábola corta no eixo do x.
  • 32. Valor mínimo da função • Mínimo : • Se a > 0, yv = é o valor mínimo da função Im= {y Є IR / y ≥ }
  • 33. Valor máximo da função • Máximo: • Se a < 0, yv = é o valor máximo da função Im= {y Є IR / y ≤ }
  • 34. EXEMPLO: Estudar o sinal da função f(x)= x2 - 5x + 6. x2 - 5x + 6 = 0 (determina-se a raiz da função) (marcam-se as raízes em uma reta e analisa-se a concavidade da parábola) (faz-se o estudo do sinal) f(x) > 0, para x<2 ou x>3 f(x)=0, para x=2 ou x=3 f(x) < 0, para 2 < x < 3
  • 35. Gráficos • O gráfico das Funções Quadráticas: • O gráfico de uma função quadrática, f(x)=ax2+bx+c, com a diferente de 0, é uma curva chamada parábola. Ao construir um gráfico de uma função quadrática f(x)=ax2+bx+c, notaremos sempre que: • a>0, a parábola tem a concavidade voltada para cima (U) • a<0, a parábola tem a concavidade voltada para baixo
  • 36. Y = X2 + X x -3 -2 -1 y 6 2 0 0 1 2 0 2 6
  • 37. 1.RAZÃO Arazão de dois números a e b, com b 0, é o quociente do primeiro pelo segundo: OBSERVAÇÃO: Apalavra razão vem do latim ratio, que significa divisão. Exemplos
  • 38. 2.RAZÃO DE DOIS SEGMENTOS Chamamos razão de dois segmentos a razão ou quociente entre os números que exprimem as medidas desses segmentos, tomados na mesma unidade. Exemplos: Determinar a razão entre os segmentos AB e CD, sendo AB = 6 cm e CD = 12 cm.(Lembre-se :AB representa a medida do segmento AB.)
  • 39. Exemplos: 1) Verifique se os segmentosAB =4 cm, CD = 6 cm, EF = 8 cm e GH = 12 cm formam, nessa ordem, uma proporção. Podemos afirmar que os segmentos, nessa ordem, são proporcionais.
  • 40. 3.SEGMENTOS PROPORCIONAIS Dizemos que quatro segmentos, AB, CD, EF e GH, nessa ordem, são proporcionais, quando a razão entre os dois primeiros for igual à razão entre os dois últimos, ou seja:AB, CD, EF e GH são, nessa ordem, proporcionais se, e somente se:
  • 41. 2) Verifique se os segmentos AB = 7 cm, CD = 10cm, EF = 12 cm e GH = 5 cm formam, nessa ordem, uma proporção. Podemos afirmar que os segmentos, nessa ordem, não são proporcionais.
  • 42. 3) Quatro segmentos AB, MN, PQ e RS, nesta ordem, são proporcionais. SeAB=5 cm, MN= 15 cm e PQ= 4 cm, qual a medida de RS? 5x = 60 x= 12
  • 43. Que tal você tentar resolver o Problema abaixo usando a relação Entre as alturas propostas por Tales 1) (Saresp) Um prédio projeta uma sombra de 40 m ao mesmo tempo que um poste de 2 m projeta uma sombra de 5 m. Então, a altura do prédio é A) B) C) D) 10 m. 12 m. 14 m. 16 m.