SlideShare uma empresa Scribd logo
Função|Modular| Prof. Luciano Ribeiro AGOSTO/2010
1. Módulo de um número real• O módulo ou valor absoluto de um número real é o próprio número, se ele for positivo. • O módulo ou valor absoluto de um número real será o seu simétrico, se ele for negativo.
|x| =    x, se x ≥ 0 	      -x, se x < 0
Veja alguns exemplos de como calcular módulo ou valor absoluto de números reais. • |+4| = 4 • |-3| = - (-3) = 3 • |10 – 6 | = |+4| = 4 • |-1 – 3| = |-4| = - (-4) = 4 • |-1| + |5| - |6| = -(-1) + 5 – 6 = 1 + 5 - 6 = 6 – 6 = 0 • - | -8| = -[-(-8)] = - 8
Veja alguns exemplos de como encontrar o módulo de valores desconhecidos. • |x + 2| nesse caso teremos duas opções, pois não sabemos o valor da incógnita x. Assim, seguimos a definição: x + 2, se x + 2 ≥ 0, ou seja, x ≥ -2 - (x + 2), se x + 2 < 0, ou seja, x < -2 • |2x – 10| 2x – 10, se 2x – 10 ≥ 0, ou seja, 2x ≥ 10 -> x ≥ 5 -(2x – 10), se 2x – 10 < 0, ou seja, 2x < 10 -> x < 5
• |x2 – 9| x 2 – 9, se x2 – 9 ≥ 0 x 2 – 9 ≥ 0 x 2 ≥ 9 x ≥ 3 ou x ≤ -3  - (x 2 – 9) , se x2 – 9 < 0 x2 – 9 < 0 x2 < 9 -3 < x < 3
2. Função ModularA função modular, ou função módulo, é a função definida como segue:Da definição de módulo de x, temos que a função modular pode ser definida por duas sentenças :
O domínio de f é D( f ) = R e a sua imagem é Im( f ) = R+ . O seu gráfico é dado por:
Vamos considerar agora funções definidas por sentenças do tipo1. g(x) = |f (x)|2. g(x) = f (| x|)Exemplos Vamos construir os gráficos das seguintes funções.
3. Translação gráfico de f(x)=|x|
gráfico de f(x)=|x|+2
gráfico de f(x)=|x|-2
Unindo os três gráficos, temos:
Conclusões:1) Translação de um gráfico é o deslocamento deste, sobre o plano cartesiano;2) Para a função f(x)= |x|, temos que sua raiz é 0, ou seja o início do gráfico será em y = 0;3) Para a função f(x)= |x|+ K, temos que sua raiz é K, ou seja o início do gráfico será em y = K;4) Para a função f(x)= |x|- K, temos que sua raiz é -K, ou seja o início do gráfico será em y = -K;
Vejamos outro tipo de translação; gráfico de f(x)=|x -2|
gráfico de f(x)=|x +2|
Unindo os três gráficos, temos:
Conclusões:1) Para a função f(x)= |x+ K|, temos que sua raiz é -K, ou seja o início do gráfico será em x = -k;2) Para a função f(x)= |x – K|, temos que sua raiz é K, ou seja o início do gráfico será em x = K;
Fim"só é vencido aquele que admite a si mesmo que está derrotado”

Mais conteúdo relacionado

Mais procurados

Mat utfrs 11. fracoes algebricas
Mat utfrs 11. fracoes algebricasMat utfrs 11. fracoes algebricas
Mat utfrs 11. fracoes algebricas
trigono_metria
 
Equação exponencial
Equação exponencialEquação exponencial
Equação exponencial
Péricles Penuel
 
Função inversa
Função inversa Função inversa
Função inversa
Meire de Fatima
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
demervalm
 
Função logarítmica
Função logarítmicaFunção logarítmica
Função logarítmica
NathalyNara
 
Aula de LOGARITMOS
Aula de LOGARITMOSAula de LOGARITMOS
Aula de LOGARITMOS
José Junior Barreto
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
LSKY
 
Sistema de equações
Sistema de equaçõesSistema de equações
Sistema de equações
jtturmina
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
Ariosvaldo Carvalho
 
17 aula intervalos reais
17 aula   intervalos reais17 aula   intervalos reais
17 aula intervalos reais
jatobaesem
 
Produtos Notavéis 8º ano
Produtos Notavéis 8º ano Produtos Notavéis 8º ano
Produtos Notavéis 8º ano
Lucimeires Cabral Dias
 
Intervalos Reais
Intervalos ReaisIntervalos Reais
Intervalos Reais
Vínicius Gabriel
 
Gráfico (seno e cosseno)
Gráfico (seno e cosseno)Gráfico (seno e cosseno)
Gráfico (seno e cosseno)
neliosnahum
 
Logaritmos
LogaritmosLogaritmos
Revisão de polinômios
Revisão de polinômiosRevisão de polinômios
Revisão de polinômios
matheuslw
 
Aula 5 - Função do 2º grau
Aula 5 - Função do 2º grauAula 5 - Função do 2º grau
Aula 5 - Função do 2º grau
Turma1NC
 
Função composta
Função compostaFunção composta
Função composta
Meire de Fatima
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
Raquel1966
 
Aula 02 Cálculo de limites - Conceitos Básicos
Aula 02   Cálculo de limites - Conceitos BásicosAula 02   Cálculo de limites - Conceitos Básicos
Teoria dos Conjuntos
Teoria dos Conjuntos   Teoria dos Conjuntos
Teoria dos Conjuntos
Luciano Pessanha
 

Mais procurados (20)

Mat utfrs 11. fracoes algebricas
Mat utfrs 11. fracoes algebricasMat utfrs 11. fracoes algebricas
Mat utfrs 11. fracoes algebricas
 
Equação exponencial
Equação exponencialEquação exponencial
Equação exponencial
 
Função inversa
Função inversa Função inversa
Função inversa
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Função logarítmica
Função logarítmicaFunção logarítmica
Função logarítmica
 
Aula de LOGARITMOS
Aula de LOGARITMOSAula de LOGARITMOS
Aula de LOGARITMOS
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
 
Sistema de equações
Sistema de equaçõesSistema de equações
Sistema de equações
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
17 aula intervalos reais
17 aula   intervalos reais17 aula   intervalos reais
17 aula intervalos reais
 
Produtos Notavéis 8º ano
Produtos Notavéis 8º ano Produtos Notavéis 8º ano
Produtos Notavéis 8º ano
 
Intervalos Reais
Intervalos ReaisIntervalos Reais
Intervalos Reais
 
Gráfico (seno e cosseno)
Gráfico (seno e cosseno)Gráfico (seno e cosseno)
Gráfico (seno e cosseno)
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Revisão de polinômios
Revisão de polinômiosRevisão de polinômios
Revisão de polinômios
 
Aula 5 - Função do 2º grau
Aula 5 - Função do 2º grauAula 5 - Função do 2º grau
Aula 5 - Função do 2º grau
 
Função composta
Função compostaFunção composta
Função composta
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
 
Aula 02 Cálculo de limites - Conceitos Básicos
Aula 02   Cálculo de limites - Conceitos BásicosAula 02   Cálculo de limites - Conceitos Básicos
Aula 02 Cálculo de limites - Conceitos Básicos
 
Teoria dos Conjuntos
Teoria dos Conjuntos   Teoria dos Conjuntos
Teoria dos Conjuntos
 

Destaque

Gráfico de uma função modular
Gráfico de uma função modularGráfico de uma função modular
Gráfico de uma função modular
jvcastromattos
 
Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° graus
Daniel Muniz
 
Função modular propriedades
Função modular   propriedadesFunção modular   propriedades
Função modular propriedades
Péricles Penuel
 
Demonstração - Propriedade de módulo
Demonstração - Propriedade de móduloDemonstração - Propriedade de módulo
Demonstração - Propriedade de módulo
Rodrigo Thiago Passos Silva
 
Modular
ModularModular
Modular
gdw147
 
Funções
FunçõesFunções
Funções
aldaalves
 
Funções de 1º e 2º grau
Funções de 1º e 2º grauFunções de 1º e 2º grau
Funções de 1º e 2º grau
Gustavo Mercado
 
Exercicios função
 Exercicios função Exercicios função
Exercicios função
Robson S
 
Aula sobre funções
Aula sobre funçõesAula sobre funções
Aula sobre funções
josivaldopassos
 
MatemáTica Intro FunçõEs
MatemáTica Intro FunçõEsMatemáTica Intro FunçõEs
MatemáTica Intro FunçõEs
educacao f
 
Equações modulares
Equações modularesEquações modulares
Equações modulares
jvcastromattos
 
Condições das inequações modulares
Condições das inequações modularesCondições das inequações modulares
Condições das inequações modulares
Andréia Rodrigues
 
Resumo função modular 1
Resumo função modular 1Resumo função modular 1
Resumo função modular 1
cristianomatematico
 
03 modulo
03 modulo03 modulo
03 modulo
carlos monteiro
 
Teoria de estimação
Teoria de estimaçãoTeoria de estimação
Teoria de estimação
Manuel Vargas
 
Números complexos
Números complexos Números complexos
Números complexos
Jorge Barros
 
Matemática -Domínio e gráficos de função
Matemática -Domínio e gráficos de funçãoMatemática -Domínio e gráficos de função
Matemática -Domínio e gráficos de função
Raimundo Mizael Gonçalves da Luz
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
Clarice Leclaire
 
Matemática função domínio e imagem 01 – 2013
Matemática   função domínio e imagem 01 – 2013Matemática   função domínio e imagem 01 – 2013
Matemática função domínio e imagem 01 – 2013
Jakson Raphael Pereira Barbosa
 

Destaque (20)

Gráfico de uma função modular
Gráfico de uma função modularGráfico de uma função modular
Gráfico de uma função modular
 
Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° graus
 
Função modular propriedades
Função modular   propriedadesFunção modular   propriedades
Função modular propriedades
 
Demonstração - Propriedade de módulo
Demonstração - Propriedade de móduloDemonstração - Propriedade de módulo
Demonstração - Propriedade de módulo
 
Modular
ModularModular
Modular
 
Funções
FunçõesFunções
Funções
 
Funções de 1º e 2º grau
Funções de 1º e 2º grauFunções de 1º e 2º grau
Funções de 1º e 2º grau
 
Exercicios função
 Exercicios função Exercicios função
Exercicios função
 
Aula sobre funções
Aula sobre funçõesAula sobre funções
Aula sobre funções
 
MatemáTica Intro FunçõEs
MatemáTica Intro FunçõEsMatemáTica Intro FunçõEs
MatemáTica Intro FunçõEs
 
Equações modulares
Equações modularesEquações modulares
Equações modulares
 
Condições das inequações modulares
Condições das inequações modularesCondições das inequações modulares
Condições das inequações modulares
 
Resumo função modular 1
Resumo função modular 1Resumo função modular 1
Resumo função modular 1
 
03 modulo
03 modulo03 modulo
03 modulo
 
Função modular
Função modularFunção modular
Função modular
 
Teoria de estimação
Teoria de estimaçãoTeoria de estimação
Teoria de estimação
 
Números complexos
Números complexos Números complexos
Números complexos
 
Matemática -Domínio e gráficos de função
Matemática -Domínio e gráficos de funçãoMatemática -Domínio e gráficos de função
Matemática -Domínio e gráficos de função
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 
Matemática função domínio e imagem 01 – 2013
Matemática   função domínio e imagem 01 – 2013Matemática   função domínio e imagem 01 – 2013
Matemática função domínio e imagem 01 – 2013
 

Semelhante a Função modular

Função quadrática projeto final
Função quadrática projeto finalFunção quadrática projeto final
Função quadrática projeto final
Carlota-lu
 
Equações e enequações modulares.
Equações e  enequações modulares.Equações e  enequações modulares.
Equações e enequações modulares.
Noely Menezes
 
Funçoes modulares
Funçoes modularesFunçoes modulares
Funçoes modulares
João Raphael Cunha
 
Ms impresso aula05
Ms impresso aula05Ms impresso aula05
Ms impresso aula05
Fabiano Ferraz
 
Funcao Polinomial De 2 Grau
Funcao Polinomial De 2 GrauFuncao Polinomial De 2 Grau
Funcao Polinomial De 2 Grau
Antonio Carneiro
 
Mat equações
Mat equaçõesMat equações
Mat equações
zeramento contabil
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade ii
Welison Lopes
 
Func mod
Func modFunc mod
3ª unidade Função modular
3ª unidade Função modular3ª unidade Função modular
3ª unidade Função modular
Cleiton Cunha
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
trigono_metria
 
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
Beatriz Góes
 
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
Clarice Leclaire
 
Funções
Funções Funções
Funções
Ray Sousa
 
Trabalho individual objetos de aprendizagem
Trabalho individual objetos de aprendizagemTrabalho individual objetos de aprendizagem
Trabalho individual objetos de aprendizagem
Edson Júnio
 
Derivadas regra da cadeia_ Técnicas de derivação
Derivadas regra da cadeia_ Técnicas de derivaçãoDerivadas regra da cadeia_ Técnicas de derivação
Derivadas regra da cadeia_ Técnicas de derivação
wanderleysouza23
 
lista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponenciallista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponencial
Ministério da Educação
 
Aula de Funções - Noções básicas, Inequações
Aula de Funções - Noções básicas, InequaçõesAula de Funções - Noções básicas, Inequações
Aula de Funções - Noções básicas, Inequações
LUCASMOREIRA104731
 
Função modular
Função modularFunção modular
Função modular
Jesrayne Nascimento
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadrática
Josenildo Lima
 
guia-de-func3a7c3a3o-4a-parte-cc3a1lculo-integral2.doc
guia-de-func3a7c3a3o-4a-parte-cc3a1lculo-integral2.docguia-de-func3a7c3a3o-4a-parte-cc3a1lculo-integral2.doc
guia-de-func3a7c3a3o-4a-parte-cc3a1lculo-integral2.doc
ShirleyCristinaCosta
 

Semelhante a Função modular (20)

Função quadrática projeto final
Função quadrática projeto finalFunção quadrática projeto final
Função quadrática projeto final
 
Equações e enequações modulares.
Equações e  enequações modulares.Equações e  enequações modulares.
Equações e enequações modulares.
 
Funçoes modulares
Funçoes modularesFunçoes modulares
Funçoes modulares
 
Ms impresso aula05
Ms impresso aula05Ms impresso aula05
Ms impresso aula05
 
Funcao Polinomial De 2 Grau
Funcao Polinomial De 2 GrauFuncao Polinomial De 2 Grau
Funcao Polinomial De 2 Grau
 
Mat equações
Mat equaçõesMat equações
Mat equações
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade ii
 
Func mod
Func modFunc mod
Func mod
 
3ª unidade Função modular
3ª unidade Função modular3ª unidade Função modular
3ª unidade Função modular
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
 
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 
Funções
Funções Funções
Funções
 
Trabalho individual objetos de aprendizagem
Trabalho individual objetos de aprendizagemTrabalho individual objetos de aprendizagem
Trabalho individual objetos de aprendizagem
 
Derivadas regra da cadeia_ Técnicas de derivação
Derivadas regra da cadeia_ Técnicas de derivaçãoDerivadas regra da cadeia_ Técnicas de derivação
Derivadas regra da cadeia_ Técnicas de derivação
 
lista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponenciallista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponencial
 
Aula de Funções - Noções básicas, Inequações
Aula de Funções - Noções básicas, InequaçõesAula de Funções - Noções básicas, Inequações
Aula de Funções - Noções básicas, Inequações
 
Função modular
Função modularFunção modular
Função modular
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadrática
 
guia-de-func3a7c3a3o-4a-parte-cc3a1lculo-integral2.doc
guia-de-func3a7c3a3o-4a-parte-cc3a1lculo-integral2.docguia-de-func3a7c3a3o-4a-parte-cc3a1lculo-integral2.doc
guia-de-func3a7c3a3o-4a-parte-cc3a1lculo-integral2.doc
 

Mais de ISJ

Jogos lavras
Jogos lavrasJogos lavras
Jogos lavras
ISJ
 
Convite
ConviteConvite
Convite
ISJ
 
Convite
ConviteConvite
Convite
ISJ
 
Convite
ConviteConvite
Convite
ISJ
 
7º ano cap 23 mamíferos
7º ano cap 23  mamíferos7º ano cap 23  mamíferos
7º ano cap 23 mamíferos
ISJ
 
7º ano cap 22 as aves
7º ano cap 22 as aves7º ano cap 22 as aves
7º ano cap 22 as aves
ISJ
 
Will e going to 1º ano -4º bimestre
Will e going to   1º ano -4º bimestreWill e going to   1º ano -4º bimestre
Will e going to 1º ano -4º bimestre
ISJ
 
Relative pronouns 8ª série - 4º bimestre
Relative pronouns   8ª série - 4º bimestreRelative pronouns   8ª série - 4º bimestre
Relative pronouns 8ª série - 4º bimestre
ISJ
 
8ª série make -let - be allowed
8ª série   make -let - be allowed8ª série   make -let - be allowed
8ª série make -let - be allowed
ISJ
 
4º bimestre 3º ano had better
4º bimestre   3º ano had better4º bimestre   3º ano had better
4º bimestre 3º ano had better
ISJ
 
7º ano cap 17 artrópodes
7º ano cap 17  artrópodes7º ano cap 17  artrópodes
7º ano cap 17 artrópodes
ISJ
 
7º ano cap 16 moluscos
7º ano cap 16   moluscos7º ano cap 16   moluscos
7º ano cap 16 moluscos
ISJ
 
7º ano cap 16 anelideos
7º ano cap 16   anelideos7º ano cap 16   anelideos
7º ano cap 16 anelideos
ISJ
 
7º ano cap 18 equinodermos
7º ano  cap 18 equinodermos7º ano  cap 18 equinodermos
7º ano cap 18 equinodermos
ISJ
 
Relative pronouns 3º ano - 3º bimestre
Relative pronouns   3º ano - 3º bimestreRelative pronouns   3º ano - 3º bimestre
Relative pronouns 3º ano - 3º bimestre
ISJ
 
7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos
ISJ
 
7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados
ISJ
 
7º ano cap 14 cnidários 2012
7º ano  cap 14 cnidários 20127º ano  cap 14 cnidários 2012
7º ano cap 14 cnidários 2012
ISJ
 
6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água
ISJ
 
6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial
ISJ
 

Mais de ISJ (20)

Jogos lavras
Jogos lavrasJogos lavras
Jogos lavras
 
Convite
ConviteConvite
Convite
 
Convite
ConviteConvite
Convite
 
Convite
ConviteConvite
Convite
 
7º ano cap 23 mamíferos
7º ano cap 23  mamíferos7º ano cap 23  mamíferos
7º ano cap 23 mamíferos
 
7º ano cap 22 as aves
7º ano cap 22 as aves7º ano cap 22 as aves
7º ano cap 22 as aves
 
Will e going to 1º ano -4º bimestre
Will e going to   1º ano -4º bimestreWill e going to   1º ano -4º bimestre
Will e going to 1º ano -4º bimestre
 
Relative pronouns 8ª série - 4º bimestre
Relative pronouns   8ª série - 4º bimestreRelative pronouns   8ª série - 4º bimestre
Relative pronouns 8ª série - 4º bimestre
 
8ª série make -let - be allowed
8ª série   make -let - be allowed8ª série   make -let - be allowed
8ª série make -let - be allowed
 
4º bimestre 3º ano had better
4º bimestre   3º ano had better4º bimestre   3º ano had better
4º bimestre 3º ano had better
 
7º ano cap 17 artrópodes
7º ano cap 17  artrópodes7º ano cap 17  artrópodes
7º ano cap 17 artrópodes
 
7º ano cap 16 moluscos
7º ano cap 16   moluscos7º ano cap 16   moluscos
7º ano cap 16 moluscos
 
7º ano cap 16 anelideos
7º ano cap 16   anelideos7º ano cap 16   anelideos
7º ano cap 16 anelideos
 
7º ano cap 18 equinodermos
7º ano  cap 18 equinodermos7º ano  cap 18 equinodermos
7º ano cap 18 equinodermos
 
Relative pronouns 3º ano - 3º bimestre
Relative pronouns   3º ano - 3º bimestreRelative pronouns   3º ano - 3º bimestre
Relative pronouns 3º ano - 3º bimestre
 
7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos
 
7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados
 
7º ano cap 14 cnidários 2012
7º ano  cap 14 cnidários 20127º ano  cap 14 cnidários 2012
7º ano cap 14 cnidários 2012
 
6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água
 
6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial
 

Último

PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
O século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptxO século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptx
geiseortiz1
 
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
Manuais Formação
 
Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
vitorreissouzasilva
 
Copia de cartilla de portugués 1 2024.pdf
Copia de cartilla de portugués 1 2024.pdfCopia de cartilla de portugués 1 2024.pdf
Copia de cartilla de portugués 1 2024.pdf
davidreyes364666
 
Resumo de Química 10º ano Estudo exames nacionais
Resumo de Química 10º ano Estudo exames nacionaisResumo de Química 10º ano Estudo exames nacionais
Resumo de Química 10º ano Estudo exames nacionais
beatrizsilva525654
 
DNA e RNA - Estrutura dos Ácidos nucleicos
DNA e RNA - Estrutura dos Ácidos nucleicosDNA e RNA - Estrutura dos Ácidos nucleicos
DNA e RNA - Estrutura dos Ácidos nucleicos
jonny615148
 
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptxSlides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
LuizHenriquedeAlmeid6
 
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdfUFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
Manuais Formação
 
Como montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdfComo montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdf
AlineOliveira625820
 
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdfMAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
GracinhaSantos6
 
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdfConcurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
TathyLopes1
 
Apostila-Microbiologia-e-Parasitologia-doc.pdf
Apostila-Microbiologia-e-Parasitologia-doc.pdfApostila-Microbiologia-e-Parasitologia-doc.pdf
Apostila-Microbiologia-e-Parasitologia-doc.pdf
bmgrama
 
Vivendo a Arquitetura Salesforce - 01.pptx
Vivendo a Arquitetura Salesforce - 01.pptxVivendo a Arquitetura Salesforce - 01.pptx
Vivendo a Arquitetura Salesforce - 01.pptx
Mauricio Alexandre Silva
 
Aula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de GeografiaAula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de Geografia
WELTONROBERTOFREITAS
 
Exercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica BasicaExercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica Basica
ElinarioCosta
 
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptxDEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
ConservoConstrues
 
Dicas de normas ABNT para trabalho de conclusão de curso
Dicas de normas ABNT para trabalho de conclusão de cursoDicas de normas ABNT para trabalho de conclusão de curso
Dicas de normas ABNT para trabalho de conclusão de curso
Simone399395
 
Eurodeputados Portugueses 2024-2029 | Parlamento Europeu
Eurodeputados Portugueses 2024-2029 | Parlamento EuropeuEurodeputados Portugueses 2024-2029 | Parlamento Europeu
Eurodeputados Portugueses 2024-2029 | Parlamento Europeu
Centro Jacques Delors
 
Caça-palavaras e cruzadinha - Dígrafos.
Caça-palavaras  e cruzadinha  - Dígrafos.Caça-palavaras  e cruzadinha  - Dígrafos.
Caça-palavaras e cruzadinha - Dígrafos.
Mary Alvarenga
 

Último (20)

PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
 
O século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptxO século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptx
 
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
 
Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
 
Copia de cartilla de portugués 1 2024.pdf
Copia de cartilla de portugués 1 2024.pdfCopia de cartilla de portugués 1 2024.pdf
Copia de cartilla de portugués 1 2024.pdf
 
Resumo de Química 10º ano Estudo exames nacionais
Resumo de Química 10º ano Estudo exames nacionaisResumo de Química 10º ano Estudo exames nacionais
Resumo de Química 10º ano Estudo exames nacionais
 
DNA e RNA - Estrutura dos Ácidos nucleicos
DNA e RNA - Estrutura dos Ácidos nucleicosDNA e RNA - Estrutura dos Ácidos nucleicos
DNA e RNA - Estrutura dos Ácidos nucleicos
 
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptxSlides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
 
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdfUFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
 
Como montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdfComo montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdf
 
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdfMAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
 
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdfConcurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
 
Apostila-Microbiologia-e-Parasitologia-doc.pdf
Apostila-Microbiologia-e-Parasitologia-doc.pdfApostila-Microbiologia-e-Parasitologia-doc.pdf
Apostila-Microbiologia-e-Parasitologia-doc.pdf
 
Vivendo a Arquitetura Salesforce - 01.pptx
Vivendo a Arquitetura Salesforce - 01.pptxVivendo a Arquitetura Salesforce - 01.pptx
Vivendo a Arquitetura Salesforce - 01.pptx
 
Aula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de GeografiaAula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de Geografia
 
Exercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica BasicaExercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica Basica
 
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptxDEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
DEUS CURA TODAS AS FERIDAS ESCONDIDAS DA NOSSA.pptx
 
Dicas de normas ABNT para trabalho de conclusão de curso
Dicas de normas ABNT para trabalho de conclusão de cursoDicas de normas ABNT para trabalho de conclusão de curso
Dicas de normas ABNT para trabalho de conclusão de curso
 
Eurodeputados Portugueses 2024-2029 | Parlamento Europeu
Eurodeputados Portugueses 2024-2029 | Parlamento EuropeuEurodeputados Portugueses 2024-2029 | Parlamento Europeu
Eurodeputados Portugueses 2024-2029 | Parlamento Europeu
 
Caça-palavaras e cruzadinha - Dígrafos.
Caça-palavaras  e cruzadinha  - Dígrafos.Caça-palavaras  e cruzadinha  - Dígrafos.
Caça-palavaras e cruzadinha - Dígrafos.
 

Função modular

  • 1. Função|Modular| Prof. Luciano Ribeiro AGOSTO/2010
  • 2. 1. Módulo de um número real• O módulo ou valor absoluto de um número real é o próprio número, se ele for positivo. • O módulo ou valor absoluto de um número real será o seu simétrico, se ele for negativo.
  • 3. |x| = x, se x ≥ 0 -x, se x < 0
  • 4. Veja alguns exemplos de como calcular módulo ou valor absoluto de números reais. • |+4| = 4 • |-3| = - (-3) = 3 • |10 – 6 | = |+4| = 4 • |-1 – 3| = |-4| = - (-4) = 4 • |-1| + |5| - |6| = -(-1) + 5 – 6 = 1 + 5 - 6 = 6 – 6 = 0 • - | -8| = -[-(-8)] = - 8
  • 5. Veja alguns exemplos de como encontrar o módulo de valores desconhecidos. • |x + 2| nesse caso teremos duas opções, pois não sabemos o valor da incógnita x. Assim, seguimos a definição: x + 2, se x + 2 ≥ 0, ou seja, x ≥ -2 - (x + 2), se x + 2 < 0, ou seja, x < -2 • |2x – 10| 2x – 10, se 2x – 10 ≥ 0, ou seja, 2x ≥ 10 -> x ≥ 5 -(2x – 10), se 2x – 10 < 0, ou seja, 2x < 10 -> x < 5
  • 6. • |x2 – 9| x 2 – 9, se x2 – 9 ≥ 0 x 2 – 9 ≥ 0 x 2 ≥ 9 x ≥ 3 ou x ≤ -3 - (x 2 – 9) , se x2 – 9 < 0 x2 – 9 < 0 x2 < 9 -3 < x < 3
  • 7. 2. Função ModularA função modular, ou função módulo, é a função definida como segue:Da definição de módulo de x, temos que a função modular pode ser definida por duas sentenças :
  • 8. O domínio de f é D( f ) = R e a sua imagem é Im( f ) = R+ . O seu gráfico é dado por:
  • 9. Vamos considerar agora funções definidas por sentenças do tipo1. g(x) = |f (x)|2. g(x) = f (| x|)Exemplos Vamos construir os gráficos das seguintes funções.
  • 10.
  • 11.
  • 12.
  • 13.
  • 17. Unindo os três gráficos, temos:
  • 18. Conclusões:1) Translação de um gráfico é o deslocamento deste, sobre o plano cartesiano;2) Para a função f(x)= |x|, temos que sua raiz é 0, ou seja o início do gráfico será em y = 0;3) Para a função f(x)= |x|+ K, temos que sua raiz é K, ou seja o início do gráfico será em y = K;4) Para a função f(x)= |x|- K, temos que sua raiz é -K, ou seja o início do gráfico será em y = -K;
  • 19. Vejamos outro tipo de translação; gráfico de f(x)=|x -2|
  • 21. Unindo os três gráficos, temos:
  • 22. Conclusões:1) Para a função f(x)= |x+ K|, temos que sua raiz é -K, ou seja o início do gráfico será em x = -k;2) Para a função f(x)= |x – K|, temos que sua raiz é K, ou seja o início do gráfico será em x = K;
  • 23. Fim"só é vencido aquele que admite a si mesmo que está derrotado”