SlideShare uma empresa Scribd logo
Função Afim
Ao final dessa aula
                  você saberá:
  O que é uma função afim e todas as formas
 de representá-la.
 Como identificar e construir gráficos da
 função afim.
 O que é coeficiente angular, coeficiente
 linear e zero da função
 Identificar se uma função é crescente ou
 decrescente.
 Resolver sistemas através de
   gráficos
 Resolver inequações do 1º grau.
O que é função afim?
       É a função definida por uma expresão do
    1º grau.

Exemplos:            É apresentada na
                          forma:
 f(x) = x +1
                      f(x) = ax + b

   y=    m
         m 5
Como reconhecemos o
                     gráfico de uma função
                             afim?
  O gráfico de uma função afim é sempre
uma reta.               Os valores de x são
 6
     y                              as abscissas e os
                                   valores de y são as
                                       ordenadas.
 5

 4

 3

 2

 1

 0
                               x
         1   2   3     4   5
Como construímos o
            gráfico de uma função
                    afim?
Basta achar dois pontos que pertençam à
reta da função dada.

Exemplo: Sendo a função f(x) = 2x + 1.

1º passo: escolher dois valores para x.
              x = 0 e x = 1
2º passo: calcular o valor de
             y para cada valor de x
             escolhido.
            f(0) = 2.0 + 1 = 1
            f(1) = 2.1 + 1 = 3

Logo, temos que os pontos são (0,1) e (1,3)
              Dessa forma
          garantimos que esses
           pontos pertencem à
                  reta.
3º passo: marcar os pontos no gráfico.
         y


         3

         2

         1
                       x
             1



4º passo: ligar os pontos.
Tente fazer sozinho!


Construa o gráfico da função:
             x 1
        y
              2
Solução
1º passo: x = 3 e x = 5
2º passo: f(3) = 1 e f(5) = 2

3º e 4º passos:
   y




   2

   1
                                 x
       1   2   3   4    5
O que é coeficiente
                  angular?
  É o valor numérico que multiplica a
variável x. Indica a inclinação da reta
em relação ao eixo x.
              Ou seja, é o valor de
              a na expressão: y =
                    ax + b.
Exemplo:
 y = 2x + 1  a = 2

   y = x – 5  a = 1
O que é coeficiente
                      linear?
  É o valor de b em y = ax + b. Indica
o valor de y, onde a reta do gráfico
corta o eixo das ordenadas.

Exemplo:
 y = 2x + 1  b = 1

   y = x – 5  b = -5
O que é Zero da
                      função?
  É o valor de x onde a reta do gráfico
corta o eixo das abscissas.
      Ou seja, o valor de x para y = 0.



Exemplos:
   y = 2x + 1  0 = 2x + 1  x = -1/2

   y = x – 5  0 = x – 5  x = 5
Coeficiente angular

f(x) = 2x – 1         Coeficiente linear
f(0) = 2.0 -1 = -1
                         y
f(1) = 2.1 – 1 = 1
f(2) = 2.2 – 1 = 3
                         3

                         2
                         1
                                                   x
                      -1      1    2   3   4   5
                        -1


   Coeficiente                    Zero da função
     linear                          0 = 2x-1
                                     x = 1/2
Tente fazer sozinho!
I) Encontre y = f(x) sendo f uma função
  polinomial do 1º grau, sabendo que f(-6) = 8
  e f(6) = 12.

II) Seja f uma função real definida pela lei
  f(x) = ax – 3. Se 3 é raiz da função, qual é
  o valor de f(10)?
III) (UF-AM) A função f definida por
     f(x) = -3x +m está representada abaixo:
                y




                               x
                        1

                 f (2) f (1)
Então o valor de              é:
                     f ( 0)
                     7        5
a) -1 b) 0 c) 1 d)         e)
                      5       7
Soluções
I) f(-6) = 8 e f(6) = 12

               8     6a b
 y = ax + b
               12 6a b
   20 = 2b       8 = -6a + 10
    b = 10      -2 = -6a
                  a = 1/3

 Logo, f(x) = 1/3 x + 10
II) f(x) = ax - 3
    f(3) = 3a - 3 = 0
               3a = 3
                a = 1

    f(x) = x – 3
    f(10) = 10 – 3
    f(10) = 7
III) f(x) = -3x + m
     f(1) = -3.1 + m = 0
            -3 + m = 0  m = 3
f(x)   =   -3x + 3
f(0)   =   -3.0 + 3 = 3
f(1)   =   -3.1 + 3 = 0
f(2)   =   -3.2 + 3 = -3

 f (2) f (1)       3 0
                           1
     f (0)          3
Como identificamos se uma função
  é crescente ou decrescente?
  Verificando o sinal do a em y=ax+b. Se a
for negativo, então a função é decrescente.
Se a for positivo, então a função é crescente.

Exemplos:
 y = -x + 2  a = -1  função decrescente


   Y = ½ + 4  a = ½  função crescente
Também podemos fazer a
y
    análise gráfica:

              Função
            decrescente
        x



y


             Função
            crescente
        x
Como resolvemos sistemas
              através de gráficos?
  Basta traçar os gráficos das duas
equações, no mesmo plano cartesiano. O
resultado é o ponto de interseção.
Exemplo:   x y 5
            x 2y     4
Pontos da 1ª equação: (1,4) e (3,2)
Pontos da 2ª equação: (0,2) e (-2,1)
y

       4
       3            I = (2,3)
       2

       1
                                    x
-2   -1     1   2    3   4      5
       -1
      -2




Logo, S = (2,3)
Como é feito o estudo
             do sinal de uma função?
Seguindo os passos:
1º passo: Localizar o zero da função na
 reta real.
2º passo: traçar a reta do gráfico.
3º passo: analisamos os intervalos onde a
 função é positiva ou negativa.
Exemplo: y = x - 2
 1º passo: x – 2 = 0  x = 2
 2º passo: função crescente

                          x
              2



 3º passo: y < 0, para x < 2
           y = 0, para x = 2
           y > 0, para x > 2
Como resolvemos uma
            inequação do 1º grau?
        Fazendo o estudo do sinal.

Exemplo: 2x – 7 > 0
 zero da função: 2x – 7 = 0  x = 7/2
 a > 0  função crescente

                           x
                  7/2



Resposta: 7 2 ,
E se for uma inequação
                produto ou uma
             inequação quociente?
  Se for uma inequação produto devemos
fazer o estudo do sinal de cada fator. Se
for inequação quociente, devemos fazer o
estudo do sinal do dividendo e do divisor,
separadamente.
Exemplos:
I) (x-2) (1-2x) ≥ 0
x – 2 = 0  x = 2 e 1 – 2x = 0  x = ½

      +++        --------------------------
                                              x
              1/2
       -----------------------       +++++
                                              x
                                 2
         -             +               -      x
             1/2                 2



            S = [1/2 , 2]
II)   x 3
                0, x 1
      x 1
x + 3 = 0  x = -3 e x – 1 = 0  x = 1

        --------        +++++++++++++
                                             x
                   -3
         --------------------       ++++++
                                             x
                                1

            +           -             +      x
                   -3           1


      S=]-∞,-3[ U ]1,+ ∞[
Tente fazer sozinho!
(UFC-CE) O conjunto solução, nos números
                    1 x
reais, da inequação     1 é igual a:
                  1 x

  a ) x R; x  1
  b) x R; x 0
  c) x R; x 1
  d ) x R; x 2
  e) x R; x 3
Solução
1 x           1 x                1 x 1 x        2
      1           1 0                      0         0
1 x           1 x                  1 x         1 x

            1+x=0                x = -1

          ---------     ++++++++++++
                                       x
                  -1


                S=]-1,+ ∞[
                       letra A

Mais conteúdo relacionado

Mais procurados

Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
Herlan Ribeiro de Souza
 
Aula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
Aula 7 - Funções Logarítmicas, Exponenciais e TrigonometricasAula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
Aula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
Turma1NC
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade ii
Welison Lopes
 
Função de 2º grau 17122016
Função de 2º grau 17122016Função de 2º grau 17122016
Função de 2º grau 17122016
Antonio Carneiro
 
Função modular
Função modularFunção modular
Função modular
ISJ
 
Apostila Alvaro Lim Deriv
Apostila Alvaro Lim DerivApostila Alvaro Lim Deriv
Apostila Alvaro Lim Deriv
Atila Haber
 
Aula 6 - Funções Exponenciais e Logarítmicas
Aula 6 - Funções Exponenciais e LogarítmicasAula 6 - Funções Exponenciais e Logarítmicas
Aula 6 - Funções Exponenciais e Logarítmicas
Turma1NC
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
sosoazevedo
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
iraciva
 
Origem E Fundamentos Da FunçãO QuadráTica Tarefa Final
Origem E Fundamentos Da FunçãO QuadráTica   Tarefa FinalOrigem E Fundamentos Da FunçãO QuadráTica   Tarefa Final
Origem E Fundamentos Da FunçãO QuadráTica Tarefa Final
guest7fc9be
 
Elementos de Matemática Básica - Funções
Elementos de Matemática Básica - FunçõesElementos de Matemática Básica - Funções
Elementos de Matemática Básica - Funções
Milton Henrique do Couto Neto
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
Aulas De Matemática Apoio
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
Aab2507
 
Limites, derivadas e suas aplicações
Limites, derivadas e suas aplicaçõesLimites, derivadas e suas aplicações
Limites, derivadas e suas aplicações
Afonso Celso Siqueira Silva
 
Exame matematica
Exame matematicaExame matematica
Exame matematica
João Pinto
 
Ache a assíntota vertical e faça um esboço do gráfico da função
Ache a assíntota vertical e faça um esboço do gráfico da funçãoAche a assíntota vertical e faça um esboço do gráfico da função
Ache a assíntota vertical e faça um esboço do gráfico da função
Vinicius Loiola Beserra
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
Aab2507
 
07 logaritmo funçao
07 logaritmo funçao07 logaritmo funçao
07 logaritmo funçao
Helen Milene
 
Resumo função modular 1
Resumo função modular 1Resumo função modular 1
Resumo função modular 1
cristianomatematico
 
Doc matematica _250829635
Doc matematica _250829635Doc matematica _250829635
Doc matematica _250829635
Joel Augusto
 

Mais procurados (20)

Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Aula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
Aula 7 - Funções Logarítmicas, Exponenciais e TrigonometricasAula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
Aula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade ii
 
Função de 2º grau 17122016
Função de 2º grau 17122016Função de 2º grau 17122016
Função de 2º grau 17122016
 
Função modular
Função modularFunção modular
Função modular
 
Apostila Alvaro Lim Deriv
Apostila Alvaro Lim DerivApostila Alvaro Lim Deriv
Apostila Alvaro Lim Deriv
 
Aula 6 - Funções Exponenciais e Logarítmicas
Aula 6 - Funções Exponenciais e LogarítmicasAula 6 - Funções Exponenciais e Logarítmicas
Aula 6 - Funções Exponenciais e Logarítmicas
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
 
Origem E Fundamentos Da FunçãO QuadráTica Tarefa Final
Origem E Fundamentos Da FunçãO QuadráTica   Tarefa FinalOrigem E Fundamentos Da FunçãO QuadráTica   Tarefa Final
Origem E Fundamentos Da FunçãO QuadráTica Tarefa Final
 
Elementos de Matemática Básica - Funções
Elementos de Matemática Básica - FunçõesElementos de Matemática Básica - Funções
Elementos de Matemática Básica - Funções
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
Limites, derivadas e suas aplicações
Limites, derivadas e suas aplicaçõesLimites, derivadas e suas aplicações
Limites, derivadas e suas aplicações
 
Exame matematica
Exame matematicaExame matematica
Exame matematica
 
Ache a assíntota vertical e faça um esboço do gráfico da função
Ache a assíntota vertical e faça um esboço do gráfico da funçãoAche a assíntota vertical e faça um esboço do gráfico da função
Ache a assíntota vertical e faça um esboço do gráfico da função
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
07 logaritmo funçao
07 logaritmo funçao07 logaritmo funçao
07 logaritmo funçao
 
Resumo função modular 1
Resumo função modular 1Resumo função modular 1
Resumo função modular 1
 
Doc matematica _250829635
Doc matematica _250829635Doc matematica _250829635
Doc matematica _250829635
 

Semelhante a www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim

www.aulaparticularonline.net.br - Matemática - Função Afim
www.aulaparticularonline.net.br - Matemática -  Função Afimwww.aulaparticularonline.net.br - Matemática -  Função Afim
www.aulaparticularonline.net.br - Matemática - Função Afim
Lucia Silveira
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
Aulas De Matemática Apoio
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
Ariosvaldo Carvalho
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
Antonio Carneiro
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
con_seguir
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Zaqueu Oliveira
 
Apostila 001 trigonometria funcoes
Apostila  001 trigonometria funcoesApostila  001 trigonometria funcoes
Apostila 001 trigonometria funcoes
con_seguir
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
profmribeiro
 
1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I
marcelotorraca
 
1ano-funoafim-1105141aa85848-phpapp01.ppt
1ano-funoafim-1105141aa85848-phpapp01.ppt1ano-funoafim-1105141aa85848-phpapp01.ppt
1ano-funoafim-1105141aa85848-phpapp01.ppt
marcosjunior02
 
Resumo MatemÔÇática.pdf
Resumo MatemÔÇática.pdfResumo MatemÔÇática.pdf
Resumo MatemÔÇática.pdf
Marcelo Martelli Rossilho
 
Funções
Funções Funções
Funções
Ray Sousa
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
Adelson Diogo de Carvalho
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
Antonio Carneiro
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadrática
Josenildo Lima
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
rosilemes
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
Celia Lana
 
Mat logaritmos 005
Mat logaritmos  005Mat logaritmos  005
Mat logaritmos 005
trigono_metrico
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
trigono_metria
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
Jean Silveira
 

Semelhante a www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim (20)

www.aulaparticularonline.net.br - Matemática - Função Afim
www.aulaparticularonline.net.br - Matemática -  Função Afimwww.aulaparticularonline.net.br - Matemática -  Função Afim
www.aulaparticularonline.net.br - Matemática - Função Afim
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Apostila 001 trigonometria funcoes
Apostila  001 trigonometria funcoesApostila  001 trigonometria funcoes
Apostila 001 trigonometria funcoes
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
 
1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I
 
1ano-funoafim-1105141aa85848-phpapp01.ppt
1ano-funoafim-1105141aa85848-phpapp01.ppt1ano-funoafim-1105141aa85848-phpapp01.ppt
1ano-funoafim-1105141aa85848-phpapp01.ppt
 
Resumo MatemÔÇática.pdf
Resumo MatemÔÇática.pdfResumo MatemÔÇática.pdf
Resumo MatemÔÇática.pdf
 
Funções
Funções Funções
Funções
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadrática
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
 
Mat logaritmos 005
Mat logaritmos  005Mat logaritmos  005
Mat logaritmos 005
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
 

Mais de Clarice Leclaire

www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
 www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Conjunto de Números Inteiros
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Conjunto de Números Inteiros www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Conjunto de Números Inteiros
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Conjunto de Números Inteiros
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercícios Resolvidos de F...
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercícios Resolvidos de F... www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercícios Resolvidos de F...
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercícios Resolvidos de F...
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Produto Notável
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Produto Notável www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Produto Notável
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Produto Notável
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Matrizes
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Matrizes www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Matrizes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Matrizes
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Fatoração Conceitual
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Fatoração Conceitual www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Fatoração Conceitual
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Introdução às Funções
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Introdução às Funções www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Introdução às Funções
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Introdução às Funções
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Frações Algébricas
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Frações Algébricas www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Frações Algébricas
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Frações Algébricas
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Análise Combinatória
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Análise Combinatória www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Análise Combinatória
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Análise Combinatória
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Exercícios Semelhança de T... www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Exercícios Semelhança de T...
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Exercícios Semelhança de T...
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Progressão Aritimética www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Progressão Aritimética
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Probabilidade
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Probabilidade www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Probabilidade
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Probabilidade
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Prismas e Cilindros
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Prismas e Cilindros www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Prismas e Cilindros
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Prismas e Cilindros
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Potenciação
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Potenciação www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Potenciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Potenciação
Clarice Leclaire
 

Mais de Clarice Leclaire (20)

www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
 www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Conjunto de Números Inteiros
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Conjunto de Números Inteiros www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Conjunto de Números Inteiros
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Conjunto de Números Inteiros
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercícios Resolvidos de F...
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercícios Resolvidos de F... www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercícios Resolvidos de F...
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercícios Resolvidos de F...
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Produto Notável
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Produto Notável www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Produto Notável
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Produto Notável
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Matrizes
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Matrizes www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Matrizes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Matrizes
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Fatoração Conceitual
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Fatoração Conceitual www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Introdução às Funções
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Introdução às Funções www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Introdução às Funções
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Introdução às Funções
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Frações Algébricas
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Frações Algébricas www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Frações Algébricas
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Frações Algébricas
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Análise Combinatória
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Análise Combinatória www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Análise Combinatória
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Análise Combinatória
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Exercícios Semelhança de T... www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Exercícios Semelhança de T...
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Exercícios Semelhança de T...
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Progressão Aritimética www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Progressão Aritimética
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Probabilidade
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Probabilidade www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Probabilidade
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Probabilidade
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Prismas e Cilindros
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Prismas e Cilindros www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Prismas e Cilindros
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Potenciação
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Potenciação www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Potenciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Potenciação
 

Último

Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
Mary Alvarenga
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
LeilaVilasboas
 
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
Sandra Pratas
 
reconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docxreconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docx
felipescherner
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
felipescherner
 
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdfCaderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
shirleisousa9166
 
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
Sandra Pratas
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
shirleisousa9166
 
Caderno 1 - Módulo Água JMS 2024 (1).pdf
Caderno 1 -  Módulo Água JMS 2024 (1).pdfCaderno 1 -  Módulo Água JMS 2024 (1).pdf
Caderno 1 - Módulo Água JMS 2024 (1).pdf
SupervisoEMAC
 
Infografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UEInfografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UE
Centro Jacques Delors
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
Falcão Brasil
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
Colaborar Educacional
 
quadro de rotina semanal da coord.docx.pdf
quadro de rotina semanal da coord.docx.pdfquadro de rotina semanal da coord.docx.pdf
quadro de rotina semanal da coord.docx.pdf
marcos oliveira
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Mary Alvarenga
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Centro Jacques Delors
 
Trabalho Colaborativo na educação especial.pdf
Trabalho Colaborativo na educação especial.pdfTrabalho Colaborativo na educação especial.pdf
Trabalho Colaborativo na educação especial.pdf
marcos oliveira
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 

Último (20)

Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
 
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
 
reconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docxreconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docx
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
 
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdfCaderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
 
TALENTOS DA NOSSA ESCOLA .
TALENTOS DA NOSSA ESCOLA                .TALENTOS DA NOSSA ESCOLA                .
TALENTOS DA NOSSA ESCOLA .
 
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
 
Caderno 1 - Módulo Água JMS 2024 (1).pdf
Caderno 1 -  Módulo Água JMS 2024 (1).pdfCaderno 1 -  Módulo Água JMS 2024 (1).pdf
Caderno 1 - Módulo Água JMS 2024 (1).pdf
 
Infografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UEInfografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UE
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
 
RECORDANDO BONS MOMENTOS! _
RECORDANDO BONS MOMENTOS!               _RECORDANDO BONS MOMENTOS!               _
RECORDANDO BONS MOMENTOS! _
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
 
FOTOS_AS CIÊNCIAS EM AÇÃO .
FOTOS_AS CIÊNCIAS EM AÇÃO                .FOTOS_AS CIÊNCIAS EM AÇÃO                .
FOTOS_AS CIÊNCIAS EM AÇÃO .
 
quadro de rotina semanal da coord.docx.pdf
quadro de rotina semanal da coord.docx.pdfquadro de rotina semanal da coord.docx.pdf
quadro de rotina semanal da coord.docx.pdf
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
 
Trabalho Colaborativo na educação especial.pdf
Trabalho Colaborativo na educação especial.pdfTrabalho Colaborativo na educação especial.pdf
Trabalho Colaborativo na educação especial.pdf
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 

www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim

  • 2. Ao final dessa aula você saberá:  O que é uma função afim e todas as formas de representá-la.  Como identificar e construir gráficos da função afim.  O que é coeficiente angular, coeficiente linear e zero da função  Identificar se uma função é crescente ou decrescente.  Resolver sistemas através de gráficos  Resolver inequações do 1º grau.
  • 3. O que é função afim? É a função definida por uma expresão do 1º grau. Exemplos: É apresentada na forma:  f(x) = x +1 f(x) = ax + b  y= m m 5
  • 4. Como reconhecemos o gráfico de uma função afim? O gráfico de uma função afim é sempre uma reta. Os valores de x são 6 y as abscissas e os valores de y são as ordenadas. 5 4 3 2 1 0 x 1 2 3 4 5
  • 5. Como construímos o gráfico de uma função afim? Basta achar dois pontos que pertençam à reta da função dada. Exemplo: Sendo a função f(x) = 2x + 1. 1º passo: escolher dois valores para x. x = 0 e x = 1
  • 6. 2º passo: calcular o valor de y para cada valor de x escolhido. f(0) = 2.0 + 1 = 1 f(1) = 2.1 + 1 = 3 Logo, temos que os pontos são (0,1) e (1,3) Dessa forma garantimos que esses pontos pertencem à reta.
  • 7. 3º passo: marcar os pontos no gráfico. y 3 2 1 x 1 4º passo: ligar os pontos.
  • 8. Tente fazer sozinho! Construa o gráfico da função: x 1 y 2
  • 9. Solução 1º passo: x = 3 e x = 5 2º passo: f(3) = 1 e f(5) = 2 3º e 4º passos: y 2 1 x 1 2 3 4 5
  • 10. O que é coeficiente angular? É o valor numérico que multiplica a variável x. Indica a inclinação da reta em relação ao eixo x. Ou seja, é o valor de a na expressão: y = ax + b. Exemplo:  y = 2x + 1  a = 2  y = x – 5  a = 1
  • 11. O que é coeficiente linear? É o valor de b em y = ax + b. Indica o valor de y, onde a reta do gráfico corta o eixo das ordenadas. Exemplo:  y = 2x + 1  b = 1  y = x – 5  b = -5
  • 12. O que é Zero da função? É o valor de x onde a reta do gráfico corta o eixo das abscissas. Ou seja, o valor de x para y = 0. Exemplos:  y = 2x + 1  0 = 2x + 1  x = -1/2  y = x – 5  0 = x – 5  x = 5
  • 13. Coeficiente angular f(x) = 2x – 1 Coeficiente linear f(0) = 2.0 -1 = -1 y f(1) = 2.1 – 1 = 1 f(2) = 2.2 – 1 = 3 3 2 1 x -1 1 2 3 4 5 -1 Coeficiente Zero da função linear 0 = 2x-1 x = 1/2
  • 14. Tente fazer sozinho! I) Encontre y = f(x) sendo f uma função polinomial do 1º grau, sabendo que f(-6) = 8 e f(6) = 12. II) Seja f uma função real definida pela lei f(x) = ax – 3. Se 3 é raiz da função, qual é o valor de f(10)?
  • 15. III) (UF-AM) A função f definida por f(x) = -3x +m está representada abaixo: y x 1 f (2) f (1) Então o valor de é: f ( 0) 7 5 a) -1 b) 0 c) 1 d) e) 5 7
  • 16. Soluções I) f(-6) = 8 e f(6) = 12 8 6a b y = ax + b 12 6a b 20 = 2b 8 = -6a + 10 b = 10 -2 = -6a a = 1/3 Logo, f(x) = 1/3 x + 10
  • 17. II) f(x) = ax - 3 f(3) = 3a - 3 = 0 3a = 3 a = 1 f(x) = x – 3 f(10) = 10 – 3 f(10) = 7
  • 18. III) f(x) = -3x + m f(1) = -3.1 + m = 0 -3 + m = 0  m = 3 f(x) = -3x + 3 f(0) = -3.0 + 3 = 3 f(1) = -3.1 + 3 = 0 f(2) = -3.2 + 3 = -3 f (2) f (1) 3 0 1 f (0) 3
  • 19. Como identificamos se uma função é crescente ou decrescente? Verificando o sinal do a em y=ax+b. Se a for negativo, então a função é decrescente. Se a for positivo, então a função é crescente. Exemplos:  y = -x + 2  a = -1  função decrescente  Y = ½ + 4  a = ½  função crescente
  • 20. Também podemos fazer a y análise gráfica: Função decrescente x y Função crescente x
  • 21. Como resolvemos sistemas através de gráficos? Basta traçar os gráficos das duas equações, no mesmo plano cartesiano. O resultado é o ponto de interseção. Exemplo: x y 5 x 2y 4 Pontos da 1ª equação: (1,4) e (3,2) Pontos da 2ª equação: (0,2) e (-2,1)
  • 22. y 4 3 I = (2,3) 2 1 x -2 -1 1 2 3 4 5 -1 -2 Logo, S = (2,3)
  • 23. Como é feito o estudo do sinal de uma função? Seguindo os passos: 1º passo: Localizar o zero da função na reta real. 2º passo: traçar a reta do gráfico. 3º passo: analisamos os intervalos onde a função é positiva ou negativa.
  • 24. Exemplo: y = x - 2 1º passo: x – 2 = 0  x = 2 2º passo: função crescente x 2 3º passo: y < 0, para x < 2 y = 0, para x = 2 y > 0, para x > 2
  • 25. Como resolvemos uma inequação do 1º grau? Fazendo o estudo do sinal. Exemplo: 2x – 7 > 0  zero da função: 2x – 7 = 0  x = 7/2  a > 0  função crescente x 7/2 Resposta: 7 2 ,
  • 26. E se for uma inequação produto ou uma inequação quociente? Se for uma inequação produto devemos fazer o estudo do sinal de cada fator. Se for inequação quociente, devemos fazer o estudo do sinal do dividendo e do divisor, separadamente.
  • 27. Exemplos: I) (x-2) (1-2x) ≥ 0 x – 2 = 0  x = 2 e 1 – 2x = 0  x = ½ +++ -------------------------- x 1/2 ----------------------- +++++ x 2 - + - x 1/2 2 S = [1/2 , 2]
  • 28. II) x 3 0, x 1 x 1 x + 3 = 0  x = -3 e x – 1 = 0  x = 1 -------- +++++++++++++ x -3 -------------------- ++++++ x 1 + - + x -3 1 S=]-∞,-3[ U ]1,+ ∞[
  • 29. Tente fazer sozinho! (UFC-CE) O conjunto solução, nos números 1 x reais, da inequação 1 é igual a: 1 x a ) x R; x 1 b) x R; x 0 c) x R; x 1 d ) x R; x 2 e) x R; x 3
  • 30. Solução 1 x 1 x 1 x 1 x 2 1 1 0 0 0 1 x 1 x 1 x 1 x 1+x=0 x = -1 --------- ++++++++++++ x -1 S=]-1,+ ∞[ letra A