SlideShare uma empresa Scribd logo
DOMUS_Apostila 02 - MATEMÁTICA I - Módulo 06 (Exercício 07)
                     Exercício 07


 Questão 01

    Considere as funções:                                               a) Dê as coordenadas de M, ponto médio do segmento
f(x) = 2x + 3                                                           AB.
                                                                        b) Mostre que (fog)(x) = x e (gof)(x) = x, para todo x > 0.
g(x) = ax + b.
    Determine o conjunto C, dos pontos (a,b)       ∈       2
                                                       IR tais
que fog = gof.                                                           Questão 05

                                                                                                                                       2
 Questão 02                                                                  Seja a função f: R ë R, definida por f(x) = 3x + 4a ,
                                                                        onde a ∈ IR
   Na figura estão representados os gráficos de uma                        Encontre os possíveis valores de a de modo que seja
função polinomial g, e da função f(x) . A partir da figura              satisfeita a desigualdade f (8)
                                                                                                        -1
                                                                                                                 ≥   0.
                                    2
pode-se determinar que (g(6))           - g(g(6)) vale
aproximadamente:
                                                                         Questão 06


                                                                                                                              ⎛ ðx ⎞
                                                                             Considere as funções dadas por f(x) = sen ⎜           ⎟ g(x)
                                                                                                                              ⎝ 2 ⎠
                                                                        = ax + b, sendo o gráfico de g fornecido na figura.




                                                                                            -1
                                                                             O valor de f (g     (2) ) é:
a) -2
                                                                           ( 2)
b) 4                                                                    a)
                                                                             4
c) 0
                                                                           1
d) -1                                                                   b)
                                                                           2
e) 1
                                                                             ( 2)
                                                                        c)
 Questão 03                                                                    2
                                                                             ( 3)
                                                                        d)
                                        2
                                   1 − y , para y      ∈                       2
    Considere as funções f(y) =                            IR, -1
                                                                        e) 1
≤   y   ≤   1, e g(x) = cos x, para x   ∈   IR. O número de
soluções da equação (f o g)(x) = 1, para 0     ≤   x   ≤   2ð, é:        Questão 07
a) 0.
b) 1.                                                                        Se A é o conjunto dos números reais diferentes de 1,
c) 2.
                                                                                                             (x + 1)
d) 3.
                                                                        seja f: A ë A dada por f(x) =                     .
e) 4.                                                                                                        (x − 1)
                                                                                                             n
                                                                             Para um inteiro positivo n, f (x) é definida por:
 Questão 04                                                                     ⎧f (x ), se n = 1
                                                                                ⎪
                                                                                ⎪
   Considere os gráficos das funções definidas por f(x) =               f (x) = ⎨
                                                                         n
                                                                                ⎪ n−1
                    x
log10(x) e g(x) = 10 , conforme figura (fora de escala).
                                                                                ⎩   (      )
                                                                                ⎪f f (x ) , se n > 1
Aprovação em tudo que você faz.                                     1                                 www.colegiocursointellectus.com.br
DOMUS_Apostila 02 - MATEMÁTICA I - Módulo 06 (Exercício 07)
   Então, f5(x) é igual a:
                                                                    Questão 02
   (x + 1)
a)         .
   (x − 1)                                                              Letra C.
      x
b)
   (x + 1) .                                                        Questão 03
c) x.
    4
d) x .                                                                  Letra C.
          5
   (x + 1)
e)         .                                                        Questão 04
   (x − 1)

                                                                        ⎛ 11 11⎞
  Questão 08                                                       a)   ⎜2, 2⎟
                                                                        ⎝      ⎠
   Considere a função f(x) = (3x - 1)/(1 - 2x), x ≠ 1/2.
           -1           -1
Calcule f(f (x)), onde f (x) é a lei da função inversa de f.        Questão 05


  Questão 09

    Sejam f : [0,6] ë IR a função quadrática definida por
         2                                                          Questão 06
f (x) = x - 6 x + 5 e g : [-5, 5] ë IR a função, cujo
gráfico está esboçado a seguir.
                                                                        Letra C.


                                                                    Questão 07

                                                                        Letra A.


                                                                    Questão 08

                                                                            1
                                                                        f(f (x)) = x
   Sabendo-se que g o f denota a composição da função
g com a função f, resolva a equação (g o f) (x) = 0, na
variável x.                                                         Questão 09

  Questão 10                                                            x = 0 ou x = 2 ou x = 4 ou x = 6.

  O gráfico representa a função f: R ë ]1, + ∞ [; f(x)              Questão 10
          nx
= a + b.2 , sendo a, b e n constantes reais. A partir
                               -1                                       1
dessas informações, calcule f (x).                                      f (x) = 1 - log2 (x - 1)




                       GABARITO


  Questão 01

   3a - b = 3
Aprovação em tudo que você faz.                                2                               www.colegiocursointellectus.com.br

Mais conteúdo relacionado

Mais procurados

Ft 8 FunçõEs Racionais
Ft 8 FunçõEs RacionaisFt 8 FunçõEs Racionais
Ft 8 FunçõEs Racionais
dynysfernandes
 
Volumes de sólidos integral
Volumes de sólidos integralVolumes de sólidos integral
Volumes de sólidos integral
HugoTavares82
 
Exercicios resolv3 mat
Exercicios resolv3 matExercicios resolv3 mat
Exercicios resolv3 mat
trigono_metria
 
Ap extra exercicios_n. complexos
Ap extra exercicios_n. complexosAp extra exercicios_n. complexos
Ap extra exercicios_n. complexos
con_seguir
 
Matemática – função sobrejetora injetora_bijetora 01 – 2014
Matemática – função sobrejetora injetora_bijetora 01 – 2014Matemática – função sobrejetora injetora_bijetora 01 – 2014
Matemática – função sobrejetora injetora_bijetora 01 – 2014
Jakson Raphael Pereira Barbosa
 
Cammpos vetoriais disciplinas calculo_iii_lista04_calculo3
Cammpos vetoriais  disciplinas calculo_iii_lista04_calculo3Cammpos vetoriais  disciplinas calculo_iii_lista04_calculo3
Cammpos vetoriais disciplinas calculo_iii_lista04_calculo3
Bowman Guimaraes
 
Funções racionais. hipérbole.
Funções racionais. hipérbole.Funções racionais. hipérbole.
Funções racionais. hipérbole.
silvia_lfr
 
03 eac proj vest mat módulo 1 função exponencial
03 eac proj vest mat módulo 1 função exponencial03 eac proj vest mat módulo 1 função exponencial
03 eac proj vest mat módulo 1 função exponencial
con_seguir
 
Matematica 3 exercicios gabarito 09
Matematica 3 exercicios gabarito 09Matematica 3 exercicios gabarito 09
Matematica 3 exercicios gabarito 09
comentada
 
Funcoes varias variaveis
Funcoes varias variaveisFuncoes varias variaveis
Funcoes varias variaveis
Filomena Alves
 
Matematica 1 exercicios gabarito 10
Matematica 1 exercicios gabarito 10Matematica 1 exercicios gabarito 10
Matematica 1 exercicios gabarito 10
comentada
 

Mais procurados (20)

Provas 9º ano
Provas 9º anoProvas 9º ano
Provas 9º ano
 
Ft 8 FunçõEs Racionais
Ft 8 FunçõEs RacionaisFt 8 FunçõEs Racionais
Ft 8 FunçõEs Racionais
 
01 funes
01 funes01 funes
01 funes
 
Volumes de sólidos integral
Volumes de sólidos integralVolumes de sólidos integral
Volumes de sólidos integral
 
Lista de exercícios 1 ano
Lista de exercícios 1 anoLista de exercícios 1 ano
Lista de exercícios 1 ano
 
Exercicios resolv3 mat
Exercicios resolv3 matExercicios resolv3 mat
Exercicios resolv3 mat
 
Ap extra exercicios_n. complexos
Ap extra exercicios_n. complexosAp extra exercicios_n. complexos
Ap extra exercicios_n. complexos
 
Matemática – função sobrejetora injetora_bijetora 01 – 2014
Matemática – função sobrejetora injetora_bijetora 01 – 2014Matemática – função sobrejetora injetora_bijetora 01 – 2014
Matemática – função sobrejetora injetora_bijetora 01 – 2014
 
Apostila 3 funções
Apostila 3 funçõesApostila 3 funções
Apostila 3 funções
 
Apostila funcoes
Apostila funcoesApostila funcoes
Apostila funcoes
 
Calcúlo 1 2º termo de papel e celulose
Calcúlo 1   2º termo de papel e celuloseCalcúlo 1   2º termo de papel e celulose
Calcúlo 1 2º termo de papel e celulose
 
Cammpos vetoriais disciplinas calculo_iii_lista04_calculo3
Cammpos vetoriais  disciplinas calculo_iii_lista04_calculo3Cammpos vetoriais  disciplinas calculo_iii_lista04_calculo3
Cammpos vetoriais disciplinas calculo_iii_lista04_calculo3
 
Funções racionais. hipérbole.
Funções racionais. hipérbole.Funções racionais. hipérbole.
Funções racionais. hipérbole.
 
03 eac proj vest mat módulo 1 função exponencial
03 eac proj vest mat módulo 1 função exponencial03 eac proj vest mat módulo 1 função exponencial
03 eac proj vest mat módulo 1 função exponencial
 
Matematica 3 exercicios gabarito 09
Matematica 3 exercicios gabarito 09Matematica 3 exercicios gabarito 09
Matematica 3 exercicios gabarito 09
 
Funcoes varias variaveis
Funcoes varias variaveisFuncoes varias variaveis
Funcoes varias variaveis
 
Aula no
Aula noAula no
Aula no
 
10
1010
10
 
Matematica 1 exercicios gabarito 10
Matematica 1 exercicios gabarito 10Matematica 1 exercicios gabarito 10
Matematica 1 exercicios gabarito 10
 
Ap matemática m2
Ap matemática m2Ap matemática m2
Ap matemática m2
 

Semelhante a Matematica 1 exercicios gabarito 07

Prova suplementar 2º semestre 9º ano
Prova suplementar 2º semestre  9º anoProva suplementar 2º semestre  9º ano
Prova suplementar 2º semestre 9º ano
Adriano Capilupe
 
1997 matematica efomm
1997 matematica efomm1997 matematica efomm
1997 matematica efomm
Bruno Aguiar
 
Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14
comentada
 
Matematica 3 exercicios gabarito 13
Matematica 3 exercicios gabarito 13Matematica 3 exercicios gabarito 13
Matematica 3 exercicios gabarito 13
comentada
 
Mat logaritmos 005 exercicios
Mat logaritmos  005 exerciciosMat logaritmos  005 exercicios
Mat logaritmos 005 exercicios
trigono_metrico
 
Matematica 4 exercicios gabarito 04
Matematica 4 exercicios gabarito 04Matematica 4 exercicios gabarito 04
Matematica 4 exercicios gabarito 04
comentada
 

Semelhante a Matematica 1 exercicios gabarito 07 (20)

Função exponencial logaritmo_2012
Função exponencial logaritmo_2012Função exponencial logaritmo_2012
Função exponencial logaritmo_2012
 
Lista de exerc_funçao_quadrática_ano_2012
Lista de exerc_funçao_quadrática_ano_2012Lista de exerc_funçao_quadrática_ano_2012
Lista de exerc_funçao_quadrática_ano_2012
 
Prova suplementar 2º semestre 9º ano
Prova suplementar 2º semestre  9º anoProva suplementar 2º semestre  9º ano
Prova suplementar 2º semestre 9º ano
 
Função composta
Função compostaFunção composta
Função composta
 
Unidade7
Unidade7Unidade7
Unidade7
 
1997 matematica efomm
1997 matematica efomm1997 matematica efomm
1997 matematica efomm
 
Introd Funcao 3
Introd Funcao 3Introd Funcao 3
Introd Funcao 3
 
Função 2o grau
Função 2o grauFunção 2o grau
Função 2o grau
 
Lista efomm math aleph
Lista efomm math alephLista efomm math aleph
Lista efomm math aleph
 
Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14
 
Matematica 3 exercicios gabarito 13
Matematica 3 exercicios gabarito 13Matematica 3 exercicios gabarito 13
Matematica 3 exercicios gabarito 13
 
Mat logaritmos 005 exercicios
Mat logaritmos  005 exerciciosMat logaritmos  005 exercicios
Mat logaritmos 005 exercicios
 
Mecânica Clássica X Mecânica Quântica
Mecânica Clássica X Mecânica QuânticaMecânica Clássica X Mecânica Quântica
Mecânica Clássica X Mecânica Quântica
 
P3 calculo i_ (3)
P3 calculo i_ (3)P3 calculo i_ (3)
P3 calculo i_ (3)
 
1 lista 3 bim 9 ano
1 lista 3 bim 9 ano1 lista 3 bim 9 ano
1 lista 3 bim 9 ano
 
Mat logaritmos 004
Mat logaritmos  004Mat logaritmos  004
Mat logaritmos 004
 
Lista 1 - Cálculo 4 - SOCIESC
Lista 1 - Cálculo 4 - SOCIESCLista 1 - Cálculo 4 - SOCIESC
Lista 1 - Cálculo 4 - SOCIESC
 
Prova p1 calc4_2011_2_eng
Prova p1 calc4_2011_2_engProva p1 calc4_2011_2_eng
Prova p1 calc4_2011_2_eng
 
Final do 9º ano
Final do 9º anoFinal do 9º ano
Final do 9º ano
 
Matematica 4 exercicios gabarito 04
Matematica 4 exercicios gabarito 04Matematica 4 exercicios gabarito 04
Matematica 4 exercicios gabarito 04
 

Mais de comentada

Matematica 4 exercicios gabarito 13
Matematica 4 exercicios gabarito 13Matematica 4 exercicios gabarito 13
Matematica 4 exercicios gabarito 13
comentada
 
Matematica 4 exercicios gabarito 12
Matematica 4 exercicios gabarito 12Matematica 4 exercicios gabarito 12
Matematica 4 exercicios gabarito 12
comentada
 
Matematica 4 exercicios gabarito 11
Matematica 4 exercicios gabarito 11Matematica 4 exercicios gabarito 11
Matematica 4 exercicios gabarito 11
comentada
 
Matematica 4 exercicios gabarito 10
Matematica 4 exercicios gabarito 10Matematica 4 exercicios gabarito 10
Matematica 4 exercicios gabarito 10
comentada
 
Matematica 4 exercicios gabarito 09
Matematica 4 exercicios gabarito 09Matematica 4 exercicios gabarito 09
Matematica 4 exercicios gabarito 09
comentada
 
Matematica 4 exercicios gabarito 08
Matematica 4 exercicios gabarito 08Matematica 4 exercicios gabarito 08
Matematica 4 exercicios gabarito 08
comentada
 
Matematica 4 exercicios gabarito 07
Matematica 4 exercicios gabarito 07Matematica 4 exercicios gabarito 07
Matematica 4 exercicios gabarito 07
comentada
 
Matematica 4 exercicios gabarito 06
Matematica 4 exercicios gabarito 06Matematica 4 exercicios gabarito 06
Matematica 4 exercicios gabarito 06
comentada
 
Matematica 4 exercicios gabarito 05
Matematica 4 exercicios gabarito 05Matematica 4 exercicios gabarito 05
Matematica 4 exercicios gabarito 05
comentada
 
Matematica 4 exercicios gabarito 02
Matematica 4 exercicios gabarito 02Matematica 4 exercicios gabarito 02
Matematica 4 exercicios gabarito 02
comentada
 
Matematica 4 exercicios gabarito 01
Matematica 4 exercicios gabarito 01Matematica 4 exercicios gabarito 01
Matematica 4 exercicios gabarito 01
comentada
 
Matematica 3 exercicios gabarito 15
Matematica 3 exercicios gabarito 15Matematica 3 exercicios gabarito 15
Matematica 3 exercicios gabarito 15
comentada
 
Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12
comentada
 
Matematica 3 exercicios gabarito 11
Matematica 3 exercicios gabarito 11Matematica 3 exercicios gabarito 11
Matematica 3 exercicios gabarito 11
comentada
 
Matematica 3 exercicios gabarito 10
Matematica 3 exercicios gabarito 10Matematica 3 exercicios gabarito 10
Matematica 3 exercicios gabarito 10
comentada
 
Matematica 3 exercicios gabarito 08
Matematica 3 exercicios gabarito 08Matematica 3 exercicios gabarito 08
Matematica 3 exercicios gabarito 08
comentada
 
Matematica 3 exercicios gabarito 07
Matematica 3 exercicios gabarito 07Matematica 3 exercicios gabarito 07
Matematica 3 exercicios gabarito 07
comentada
 
Matematica 3 exercicios gabarito 06
Matematica 3 exercicios gabarito 06Matematica 3 exercicios gabarito 06
Matematica 3 exercicios gabarito 06
comentada
 
Matematica 3 exercicios gabarito 05
Matematica 3 exercicios gabarito 05Matematica 3 exercicios gabarito 05
Matematica 3 exercicios gabarito 05
comentada
 
Matematica 3 exercicios gabarito 04
Matematica 3 exercicios gabarito 04Matematica 3 exercicios gabarito 04
Matematica 3 exercicios gabarito 04
comentada
 

Mais de comentada (20)

Matematica 4 exercicios gabarito 13
Matematica 4 exercicios gabarito 13Matematica 4 exercicios gabarito 13
Matematica 4 exercicios gabarito 13
 
Matematica 4 exercicios gabarito 12
Matematica 4 exercicios gabarito 12Matematica 4 exercicios gabarito 12
Matematica 4 exercicios gabarito 12
 
Matematica 4 exercicios gabarito 11
Matematica 4 exercicios gabarito 11Matematica 4 exercicios gabarito 11
Matematica 4 exercicios gabarito 11
 
Matematica 4 exercicios gabarito 10
Matematica 4 exercicios gabarito 10Matematica 4 exercicios gabarito 10
Matematica 4 exercicios gabarito 10
 
Matematica 4 exercicios gabarito 09
Matematica 4 exercicios gabarito 09Matematica 4 exercicios gabarito 09
Matematica 4 exercicios gabarito 09
 
Matematica 4 exercicios gabarito 08
Matematica 4 exercicios gabarito 08Matematica 4 exercicios gabarito 08
Matematica 4 exercicios gabarito 08
 
Matematica 4 exercicios gabarito 07
Matematica 4 exercicios gabarito 07Matematica 4 exercicios gabarito 07
Matematica 4 exercicios gabarito 07
 
Matematica 4 exercicios gabarito 06
Matematica 4 exercicios gabarito 06Matematica 4 exercicios gabarito 06
Matematica 4 exercicios gabarito 06
 
Matematica 4 exercicios gabarito 05
Matematica 4 exercicios gabarito 05Matematica 4 exercicios gabarito 05
Matematica 4 exercicios gabarito 05
 
Matematica 4 exercicios gabarito 02
Matematica 4 exercicios gabarito 02Matematica 4 exercicios gabarito 02
Matematica 4 exercicios gabarito 02
 
Matematica 4 exercicios gabarito 01
Matematica 4 exercicios gabarito 01Matematica 4 exercicios gabarito 01
Matematica 4 exercicios gabarito 01
 
Matematica 3 exercicios gabarito 15
Matematica 3 exercicios gabarito 15Matematica 3 exercicios gabarito 15
Matematica 3 exercicios gabarito 15
 
Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12
 
Matematica 3 exercicios gabarito 11
Matematica 3 exercicios gabarito 11Matematica 3 exercicios gabarito 11
Matematica 3 exercicios gabarito 11
 
Matematica 3 exercicios gabarito 10
Matematica 3 exercicios gabarito 10Matematica 3 exercicios gabarito 10
Matematica 3 exercicios gabarito 10
 
Matematica 3 exercicios gabarito 08
Matematica 3 exercicios gabarito 08Matematica 3 exercicios gabarito 08
Matematica 3 exercicios gabarito 08
 
Matematica 3 exercicios gabarito 07
Matematica 3 exercicios gabarito 07Matematica 3 exercicios gabarito 07
Matematica 3 exercicios gabarito 07
 
Matematica 3 exercicios gabarito 06
Matematica 3 exercicios gabarito 06Matematica 3 exercicios gabarito 06
Matematica 3 exercicios gabarito 06
 
Matematica 3 exercicios gabarito 05
Matematica 3 exercicios gabarito 05Matematica 3 exercicios gabarito 05
Matematica 3 exercicios gabarito 05
 
Matematica 3 exercicios gabarito 04
Matematica 3 exercicios gabarito 04Matematica 3 exercicios gabarito 04
Matematica 3 exercicios gabarito 04
 

Último

Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdfHans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
rarakey779
 
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docxCONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
EduardaMedeiros18
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
rarakey779
 
clubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaclubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importância
LuanaAlves940822
 

Último (20)

Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdfHans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
 
Exercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfExercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdf
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anos
 
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docxCONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditiva
 
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdfLabor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdf
 
Atividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfAtividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdf
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
 
clubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaclubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importância
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - Falamansa
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
 
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docxAtividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptx
 
Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024
 
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdfRespostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
 
Unidade 4 (Texto poético) (Teste sem correção) (2).docx
Unidade 4 (Texto poético) (Teste sem correção) (2).docxUnidade 4 (Texto poético) (Teste sem correção) (2).docx
Unidade 4 (Texto poético) (Teste sem correção) (2).docx
 
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
 
Poema - Reciclar é preciso
Poema            -        Reciclar é precisoPoema            -        Reciclar é preciso
Poema - Reciclar é preciso
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é preciso
 

Matematica 1 exercicios gabarito 07

  • 1. DOMUS_Apostila 02 - MATEMÁTICA I - Módulo 06 (Exercício 07) Exercício 07 Questão 01 Considere as funções: a) Dê as coordenadas de M, ponto médio do segmento f(x) = 2x + 3 AB. b) Mostre que (fog)(x) = x e (gof)(x) = x, para todo x > 0. g(x) = ax + b. Determine o conjunto C, dos pontos (a,b) ∈ 2 IR tais que fog = gof. Questão 05 2 Questão 02 Seja a função f: R ë R, definida por f(x) = 3x + 4a , onde a ∈ IR Na figura estão representados os gráficos de uma Encontre os possíveis valores de a de modo que seja função polinomial g, e da função f(x) . A partir da figura satisfeita a desigualdade f (8) -1 ≥ 0. 2 pode-se determinar que (g(6)) - g(g(6)) vale aproximadamente: Questão 06 ⎛ ðx ⎞ Considere as funções dadas por f(x) = sen ⎜ ⎟ g(x) ⎝ 2 ⎠ = ax + b, sendo o gráfico de g fornecido na figura. -1 O valor de f (g (2) ) é: a) -2 ( 2) b) 4 a) 4 c) 0 1 d) -1 b) 2 e) 1 ( 2) c) Questão 03 2 ( 3) d) 2 1 − y , para y ∈ 2 Considere as funções f(y) = IR, -1 e) 1 ≤ y ≤ 1, e g(x) = cos x, para x ∈ IR. O número de soluções da equação (f o g)(x) = 1, para 0 ≤ x ≤ 2ð, é: Questão 07 a) 0. b) 1. Se A é o conjunto dos números reais diferentes de 1, c) 2. (x + 1) d) 3. seja f: A ë A dada por f(x) = . e) 4. (x − 1) n Para um inteiro positivo n, f (x) é definida por: Questão 04 ⎧f (x ), se n = 1 ⎪ ⎪ Considere os gráficos das funções definidas por f(x) = f (x) = ⎨ n ⎪ n−1 x log10(x) e g(x) = 10 , conforme figura (fora de escala). ⎩ ( ) ⎪f f (x ) , se n > 1 Aprovação em tudo que você faz. 1 www.colegiocursointellectus.com.br
  • 2. DOMUS_Apostila 02 - MATEMÁTICA I - Módulo 06 (Exercício 07) Então, f5(x) é igual a: Questão 02 (x + 1) a) . (x − 1) Letra C. x b) (x + 1) . Questão 03 c) x. 4 d) x . Letra C. 5 (x + 1) e) . Questão 04 (x − 1) ⎛ 11 11⎞ Questão 08 a) ⎜2, 2⎟ ⎝ ⎠ Considere a função f(x) = (3x - 1)/(1 - 2x), x ≠ 1/2. -1 -1 Calcule f(f (x)), onde f (x) é a lei da função inversa de f. Questão 05 Questão 09 Sejam f : [0,6] ë IR a função quadrática definida por 2 Questão 06 f (x) = x - 6 x + 5 e g : [-5, 5] ë IR a função, cujo gráfico está esboçado a seguir. Letra C. Questão 07 Letra A. Questão 08 1 f(f (x)) = x Sabendo-se que g o f denota a composição da função g com a função f, resolva a equação (g o f) (x) = 0, na variável x. Questão 09 Questão 10 x = 0 ou x = 2 ou x = 4 ou x = 6. O gráfico representa a função f: R ë ]1, + ∞ [; f(x) Questão 10 nx = a + b.2 , sendo a, b e n constantes reais. A partir -1 1 dessas informações, calcule f (x). f (x) = 1 - log2 (x - 1) GABARITO Questão 01 3a - b = 3 Aprovação em tudo que você faz. 2 www.colegiocursointellectus.com.br