Profª Débora Bastos
Recapitulação
 P (c,f(c)) é crítico se f’(c) = 0 ou se f’(c) não existe.
 Para funções contínuas e deriváveis temos pontos
   extremos nos pontos críticos.
 Para funções contínuas e deriváveis temos:
f crescente para valores de x em que f ’(x) > 0
f decrescente para valores de x em que f ’(x) < 0
f côncava para cima para valores de x em f ”(x) > 0
f côncava para baixo para valores de x em f ”(x) < 0
 Ponto de inflexão é o ponto em que há mudança de
   concavidade. Ocorre entre os valores c tais que f ”(c)
   não existe ou f ”(c) = 0.
Traçando um esboço do gráfico de uma
função
Temo até agora como determinar:
 Pontos extremos
 Intervalos onde a função é crescente ou decrescente
 Intervalos onde a função é côncava para cima ou para
   baixo
 Pontos de Inflexão.


Falta ⇒ Estudo das assíntotas.
Exemplos

                                     Assíntota
                                     oblíqua
Assíntota
horizontal




             Assíntota   Assíntota
             vertical    vertical
 Definição 11: A reta x = a será uma assíntota vertical do
   gráfico da função f, se pelo menos uma das afirmativas
   abaixo for verdadeira:
(i) lim f(x) = + ∞
    x  a+
(ii) lim f(x) = + ∞
     x  a-
(iii) lim f(x) = − ∞
       x  a+
(iv) lim f(x) = − ∞
      x  a−
 Definição 12: A reta y = b é denominada uma assíntota       1
  horizontal do gráfico da função f se pelo menos uma das
  seguintes afirmações for válida:
(i) lim f(x) = b e para um nº N, se x > N, então f(x) ≠ b.
    x  +∞



(ii) lim f(x) = b e para um nº N, se x < N, então f(x) ≠ b.
    x  −∞
 Definição 13: Se lim [f(x) – (mx + b)] = 0
                   x ∞
então a reta y = mx + b é chamada assíntota oblíqua, pois a
  distância vertical entre a curva y = mx + b e y = f(x) tende
  a zero.




Nota: Se f(x) for uma função racional as assíntotas obliquas
 ocorrem quando a diferença entre o grau do numerador e
 do denominador é 1.
Exemplo
 Ache as assíntotas do gráfico da função h definida por:
                             x2 + 3
                      h x) =
                       (
                             x − 1
e faça um esboço do gráfico.
Solução:
D(h) = lR – {1}
Investigar o que ocorre à esquerda e à direita de x = 1.
lim h(x) = − ∞
x1-
lim h(x) = + ∞
x1+
A reta x = 1 é uma assíntota vertical de h.
Exemplo
lim h(x) = −∞            lim h(x) = +∞
x −∞                    x+∞
h não possui assíntotas horizontais.
Assíntota obliqua.
       x2 + 3             4
h x) =
 (            = x + 1 +
       x − 1            x − 1

y=x+1
                                     4
Pontos extremos:   h'(x) = 1 −
                                 ( x − 1) 2

h’ existe em D(h)
h’(x) = 0 ⇔ x = − 1 ou x = 3
Procedimentos para obter o gráfico de uma
função bem detalhado.
h   Determine o domínio de f;
n   Ache a intersecção com o eixo oy se houver e se a
    equação de f for fácil ache as raízes da função;
    Teste a simetria em relação ao eixo oy (f(−x)=f(x)) e a
    simetria em relação a origem (f(−x)= − f(x));
ç   Calcule f ’(x) e f ”(x);
    Determine os números críticos de f (f ’(x) não existe ou
    f ’(x) = 0);
ú   Verifique se os valores críticos são extremos (teste da
    segunda derivada);
)   Determine os intervalos em que f é crescente ou
    decrescente (estudo do sinal de f ’);
1. Obtenha os valores de x em que f ”(x) não existe
   ou f ”(x)= 0;
2. Determine os intervalos em que o gráfico de f é côncavo
   para cima ou para baixo (estudo do sinal de f ”).
   Verifique se os valores críticos obtidos no passo
   anterior são de inflexão;
3. Verifique a existência de possíveis assíntotas verticais,
   horizontais e oblíquas.
Exemplo
                             1.    Domínio:
 Faça o esboço do gráfico
                             2.    Intersecções:
 da função f abaixo:
   f x) =
    (
              x              3.    Simetrias:
            x2 − 4           4.    f’ e f”:
                             5.    Pontos críticos:
                             6.    Pontos extremos:
                             7.    Estudo do sinal de f’:
                             8.    Valores críticos de f”:
                             9.    Estudo do sinal de f”:
                             10.   Assíntotas:
Exemplo
                             1.    Domínio:
 Faça o esboço do gráfico
                             2.    Intersecções:
 da função f abaixo:
          6    6             3.    Simetrias:
  f x) =
   (         −
         x 2   x             4.    f’ e f”:
                             5.    Pontos críticos:
                             6.    Pontos extremos:
                             7.    Estudo do sinal de f’:
                             8.    Valores críticos de f”:
                             9.    Estudo do sinal de f”:
                             10.   Assíntotas:
Exercícios
 Faça o mesmo para:

               3    2
 f x) = (x − 1) x
  (

          x
  f x) = e x
   (

Matematica2 3

  • 1.
  • 2.
    Recapitulação  P (c,f(c))é crítico se f’(c) = 0 ou se f’(c) não existe.  Para funções contínuas e deriváveis temos pontos extremos nos pontos críticos.  Para funções contínuas e deriváveis temos: f crescente para valores de x em que f ’(x) > 0 f decrescente para valores de x em que f ’(x) < 0 f côncava para cima para valores de x em f ”(x) > 0 f côncava para baixo para valores de x em f ”(x) < 0  Ponto de inflexão é o ponto em que há mudança de concavidade. Ocorre entre os valores c tais que f ”(c) não existe ou f ”(c) = 0.
  • 3.
    Traçando um esboçodo gráfico de uma função Temo até agora como determinar:  Pontos extremos  Intervalos onde a função é crescente ou decrescente  Intervalos onde a função é côncava para cima ou para baixo  Pontos de Inflexão. Falta ⇒ Estudo das assíntotas.
  • 4.
    Exemplos Assíntota oblíqua Assíntota horizontal Assíntota Assíntota vertical vertical
  • 5.
     Definição 11:A reta x = a será uma assíntota vertical do gráfico da função f, se pelo menos uma das afirmativas abaixo for verdadeira: (i) lim f(x) = + ∞ x  a+ (ii) lim f(x) = + ∞ x  a- (iii) lim f(x) = − ∞ x  a+ (iv) lim f(x) = − ∞ x  a−
  • 6.
     Definição 12:A reta y = b é denominada uma assíntota 1 horizontal do gráfico da função f se pelo menos uma das seguintes afirmações for válida: (i) lim f(x) = b e para um nº N, se x > N, então f(x) ≠ b. x  +∞ (ii) lim f(x) = b e para um nº N, se x < N, então f(x) ≠ b. x  −∞
  • 7.
     Definição 13:Se lim [f(x) – (mx + b)] = 0 x ∞ então a reta y = mx + b é chamada assíntota oblíqua, pois a distância vertical entre a curva y = mx + b e y = f(x) tende a zero. Nota: Se f(x) for uma função racional as assíntotas obliquas ocorrem quando a diferença entre o grau do numerador e do denominador é 1.
  • 8.
    Exemplo  Ache asassíntotas do gráfico da função h definida por: x2 + 3 h x) = ( x − 1 e faça um esboço do gráfico. Solução: D(h) = lR – {1} Investigar o que ocorre à esquerda e à direita de x = 1. lim h(x) = − ∞ x1- lim h(x) = + ∞ x1+ A reta x = 1 é uma assíntota vertical de h.
  • 9.
    Exemplo lim h(x) =−∞ lim h(x) = +∞ x −∞ x+∞ h não possui assíntotas horizontais. Assíntota obliqua. x2 + 3 4 h x) = ( = x + 1 + x − 1 x − 1 y=x+1 4 Pontos extremos: h'(x) = 1 − ( x − 1) 2 h’ existe em D(h) h’(x) = 0 ⇔ x = − 1 ou x = 3
  • 10.
    Procedimentos para obtero gráfico de uma função bem detalhado. h Determine o domínio de f; n Ache a intersecção com o eixo oy se houver e se a equação de f for fácil ache as raízes da função; Teste a simetria em relação ao eixo oy (f(−x)=f(x)) e a simetria em relação a origem (f(−x)= − f(x)); ç Calcule f ’(x) e f ”(x); Determine os números críticos de f (f ’(x) não existe ou f ’(x) = 0); ú Verifique se os valores críticos são extremos (teste da segunda derivada); ) Determine os intervalos em que f é crescente ou decrescente (estudo do sinal de f ’);
  • 11.
    1. Obtenha osvalores de x em que f ”(x) não existe ou f ”(x)= 0; 2. Determine os intervalos em que o gráfico de f é côncavo para cima ou para baixo (estudo do sinal de f ”). Verifique se os valores críticos obtidos no passo anterior são de inflexão; 3. Verifique a existência de possíveis assíntotas verticais, horizontais e oblíquas.
  • 12.
    Exemplo 1. Domínio:  Faça o esboço do gráfico 2. Intersecções: da função f abaixo: f x) = ( x 3. Simetrias: x2 − 4 4. f’ e f”: 5. Pontos críticos: 6. Pontos extremos: 7. Estudo do sinal de f’: 8. Valores críticos de f”: 9. Estudo do sinal de f”: 10. Assíntotas:
  • 13.
    Exemplo 1. Domínio:  Faça o esboço do gráfico 2. Intersecções: da função f abaixo: 6 6 3. Simetrias: f x) = ( − x 2 x 4. f’ e f”: 5. Pontos críticos: 6. Pontos extremos: 7. Estudo do sinal de f’: 8. Valores críticos de f”: 9. Estudo do sinal de f”: 10. Assíntotas:
  • 14.
    Exercícios  Faça omesmo para: 3 2 f x) = (x − 1) x ( x f x) = e x (