SlideShare uma empresa Scribd logo
Matemática
Matemática I

Aritmética em N .......................................................3
Conjunto dos Números Racionais ...........................8
Conjunto dos Números Reais ................................13
Unidades de Medida .............................................16
Cálculo Algébrico ...................................................18
Matemática Comercial ..........................................23
Função...................................................................32
Função do 1º grau .................................................41
Função do 2º grau .................................................46
Função Modular .....................................................51

Matemática II


                                                                                      no Código Penal, Artigo 184, parágrafo 1 e 2, com
                                                                               empréstimo, troca ou manutenção em depósito sem
                                                                               autorização do detentor dos direitos autorais é crime previsto
                                                                               A reprodução por qualquer meio, inteira ou em parte, venda,
                                                                               exposição à venda, aluguel, aquisição, ocultamento,



                                                                                       multa e pena de reclusão de 01 a 04 anos.
Geometria Plana

Ângulo ...................................................................56
Polígonos ..............................................................61
Triângulo ................................................................63
Quadriláteros.........................................................67
Circunferência e Círculo ........................................70
Teorema de Thales ...............................................74
Semelhança de Triângulos ....................................75
Relações Métricas no Triângulo Retângulo ...........78
Relações Métricas num Triângulo Qualquer ..........80
Relações Métricas na Circunferência ....................82
Área das Figuras Planas .......................................84




                 JOSÉ AUGUSTO DE MELO
Anotações
Tecnologia   ITAPECURSOS




                                ARITMÉTICA EM N
1- SISTEMA DE NUMERAÇÃO
   Desde o momento em que o homem necessitou                mais útil de todas. Usando dez símbolos, hoje
   contar quantos elementos uma certa coleção possuía,      representados por 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 e
   ele se preocupou em registrar de algum modo essa         algumas regras, inventaram um modo prático e
   contagem.                                                eficiente de representar os números, que usamos
                                                            até hoje.
   Inicialmente usou pedras, cordas, até mesmo
   pedaços de madeira para fazer esses registros.           Os símbolos 0, 1, 2, ..., 9 são chamados algarismos.
                                                            Chamamos de sistema de numeração a todo conjunto
   Com o passar do tempo, percebeu que o uso de
                                                            de símbolos e regras que nos possibilita escrever
   símbolos tornava essa tarefa mais fácil.
                                                            qualquer número. A quantidade de símbolos usados
   Foram os Hindus os criadores da representação            no sistema determina a base do sistema.

2- SISTEMA DE NUMERAÇÃO DECIMAL
   Como o nome diz, é o sistema de base 10. Utiliza os      Desse modo, no número 352, o algarismo 2 vale 2
   algarismos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.                 unidades, pois não está escrito à esquerda de
                                                            nenhum outro, o algarismo 5 vale 50 unidades e o 3
   Baseia-se na propriedade a seguir:
                                                            vale 300 unidades. Como o valor do algarismo
   “Se um algarismo está escrito à esquerda de outro,       depende da posição que ele ocupa no numeral,
   seu valor é 10 vezes mais que esse outro.”               dizemos que esse é um sistema posicional.

3- SISTEMAS DE NUMERAÇÃO EM OUTRAS BASES
   A base de um sistema de numeração não precisa            seu valor é 2 vezes mais que esse outro.”
   ser necessariamente 10. O fato de usarmos o
   sistema decimal é uma “fatalidade” anatômica: temos      Portanto, no sistema binário, no número (111)2, o
   10 dedos nas mãos. Mas nada impede de usarmos            primeiro 1 representa 1 unidade, o segundo 1 x 2
   outras bases.                                            ou seja 2 unidades e o terceiro 1 representa
                                                            1 x 2 x 2 = 4 unidades, representando portanto no
   Assim, por exemplo, no sistema binário, ou seja, de      sistema decimal o valor 7.
   base 2, usaríamos apenas os algarismos 0 e 1, e a        De um modo geral, se b é a base do sistema e pqr
   propriedade:                                             representa um número desse sistema, temos:
   ”Se um algarismo está escrito à esquerda de outro,       (pqr)b = r + q . b + p . b2

4- MUDANÇA DE BASE
4.1- Passar um número da base 10, para uma base qualquer
   Regra: Para escrever um número que está no sistema decimal, num outro sistema de base b, efetuamos sucessivas
   divisões do número dado e dos quocientes obtidos por b, até que se encontre um quociente menor que b.
   Exemplos:
   a) Escreva o número 13 na base 2.                        b) Escreva o número 75 na base 6.
Solução:                                                 Solução:
                      13    2                                                   75        6
                       1    6     2                                              3        12      6
                            0     3      2                                                  0     2
                                  1      1
Resp.: 13 = (1101)2                                      Resp.: 75 = (203)6

Observe que:
  - Para formar o número, usamos os restos e o último quociente obtido.
  - A leitura é feita da direita para a esquerda.
                                                                    Matemática - M1                     3
Tecnologia   ITAPECURSOS


4.2- Passar um número do sistema de base b, para o sistema decimal
    Regra: Basta decompor o número dado em seus valores relativos.
    Exemplos:
      a) Passe para a base 10, o número (1011)2.                       b) Escreva na base 10 o número (314)5.
    Solução:                                                        Solução:
       (1011)2 = 1 + 1 . 2 + 0 . 22 + 1 . 23 = 1 + 2 + 0 + 8 = 11      (314)5 = 4 + 1 . 5 + 3 . 52 = 4 + 5 + 75 = 84

5- DIVISÃO EUCLIDEANA
    Sejam a e b números naturais com b ¹ 0. Então, existe um único par de números naturais (q, r) tal que:
       a) a = b . q + r
       b) r < b
    Representamos a divisão por: a               b
                                 r               q
    O número a chama-se dividendo, b é o divisor, q o quociente e r é o resto. Se r = 0, dizemos que a divisão é
    exata e teremos a = b . q. Nesse caso, diz-se também que a é múltiplo de b, ou a é divisível por b ou ainda b
    é divisor de a.

6- NÚMEROS PRIMOS E COMPOSTOS
    Definição 1: Um número natural n é primo, se ele tiver apenas dois divisores.
    Definição 2: Um número natural n é composto, se n ¹ 0 e possuir mais de dois divisores.
    Observe que de acordo com essa definição, os números 0 e 1 não são primos nem compostos.
    Os números primos formam a sucessão
    2, 3, 5, 7, 11, 13, 17, 19, 23,...
    que o matemático Euclides, que viveu no século III A.C., provou ter infinitos elementos.


7- TEOREMA FUNDAMENTAL DA ARITMÉTICA
      Todo número composto é igual a um produto de números primos.

    Quando escrevemos um número composto como um produto de números primos, nós dizemos que o número
    dado foi decomposto em seus fatores primos ou, ainda, que o número foi fatorado.
    Exemplo: Decompor em fatores primos os números 72, 540 e 1800.
    Solução:
    Regra: Coloque à direita do traço vertical o menor número primo que divide o número dado. Continue
    procedendo do mesmo modo com os quocientes obtidos, até encontrar o quociente 1.
    Veja:
               72      2
               36      2
               18      2
                 9     3
                 3     3
                 1                   Logo: 72 = 23 x 32




             4                Matemática - M1
Tecnologia   ITAPECURSOS


 Quando um número termina em zeros, podemos cancelá-los e substituí-los pelo produto 2n x 5n, onde n é a
 quantidade de zeros cortados. Observe:
 540        2.5
  54        2
  27        3
   9        3                 Resp.: 540 = 22 . 33 . 5
   3        3
   1


 1800       22 . 52
   18           2
       9        3
       3        3
       1                      Resp.: 1800 = 23 . 32 . 52



8- COMO ACHAR OS DIVISORES DE UM NÚMERO
 Regra:
       a) Decomponha o número em seus fatores primos.
       b) Coloque à direita e acima do primeiro fator primo o número 1.
       c) Multiplique os fatores primos obtidos por todos os números à direita e acima deles (valores repetidos
          não precisam ser colocados).
 Exemplo.: Ache os divisores do número 72.
 Solução:
                        1
       72           2   2
       36           2   4
       18           2   8
        9           3   3, 6, 12, 24
        3           3   9, 18, 36, 72
        1

9- QUANTIDADE DE DIVISORES DE UM NÚMERO
 Regra:
                                                        Solução:
       a) Decomponha o número dado em fatores primos.      60     2
    b) Acrescente uma unidade aos expoentes.               30     2
    c) Multiplique as somas obtidas em b.                  15     3
 Exemplo.: Determine quantos divisores tem o número 60.     5     5
                                                            1
                                                           Resp.: 12 divisores.
                                                           360 = 22 . 3 . 5. Logo o nº de divisores de 60 é
                                                           n = (2 + 1) . (1 + 1) . (1 + 1) = 12

                                                                    Matemática - M1                5
Tecnologia     ITAPECURSOS


10- REGRA GERAL DE DIVISIBILIDADE
    Sejam a e b dois números, decompostos em seus fatores primos. O número a será divisível por b se ele
    contiver todos os fatores primos de b, com expoentes maiores ou iguais.
    Exemplo.:
         a) O número 23 . 32 . 7 é divisível por 3 . 7.
         b) O número 34 . 52 . 7 é divisível por 32 . 52
         c) O número 25 . 32 . 5 não é divisível por 23 . 35.
         d) O número 32 . 5 . 73 não é divisível por 2 . 3 . 72.

11- MÁXIMO DIVISOR COMUM
    Definição
    Se a e b são dois números naturais, tal que um deles pelo menos é diferente de zero, chama-se maior divisor
    comum de a e b, e representa-se por m.d.c. (a, b), ao maior número que divide simultaneamente a e b.
    Exemplo.: Se D(n) representa o conjunto dos divisores do número n, teremos:
         D(8) = {1, 2, 4, 8}
         D(12) = {1, 2, 3, 4, 6, 12}
         Daí temos que: D(8)        D(12) = {1, 2, 4}, e então m.d.c. (8, 12) = 4.
    É importante observar que:
        a) Se um dos números é divisível pelo outro, o menor deles será o m.d.c.
        Exemplo: 36 é divisível por 12; então m.d.c. (36, 12) = 12.
        b) Pode acontecer do m.d.c. (a, b) = 1. Nesse caso dizemos que a e b são primos entre si.
        Exemplo: m.d.c. (4, 9) = 1, logo 4 e 9 são primos entre si.
        c) Os divisores comuns a dois números são divisores do seu m.d.c.
        Exemplo: O m.d.c. (54, 72) = 18. Logo os divisores comuns a 54 e 72, são os divisores de 18 ou seja, 1,
        2, 3, 6, 9 e 18.

12- CÁLCULO DO M.D.C. PELA DECOMPOSIÇÃO EM FATORES PRIMOS
    Regra:
      a) Fatore os números.
      b) Forme o produto com os fatores comuns aos números, tomados com o menor expoente.
    Exemplo: Calcule o m.d.c. (72, 90).
    Solução:
       Fatorando os números, teremos:
       72 = 23 . 32
       90 = 2 . 32 . 5
       Logo: m.d.c. (72, 90) = 2 . 32 = 18

13- CÁLCULO DO M.D.C. PELO ALGORITMO DE EUCLIDES
    Daremos um exemplo. Seu professor explicará como o cálculo é feito. Seja calcular m.d.c. (228, 180).
    Solução:
                1      3       1     3
         228    180    48      36    12
         48     36     12      0                                Resp.: m.d.c. (228, 180) = 12


               6               Matemática - M1
Tecnologia   ITAPECURSOS


14- MÍNIMO MÚLTIPLO COMUM
 Definição
 Sejam a e b dois números naturais não nulos. Chama-se mínimo múltiplo comum de a e b e representa-se por
 m.m.c. (a, b), ao menor dos múltiplos, não nulos, comuns aos números a e b.
 Exemplo: Se M(n) representa o conjunto dos múltiplos do número natural n, então:
    M(4) = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...}
    M(6) = {0, 6, 12, 18, 24, 30, 36, 42 ...}
    M(4)     M(6) = {0, 12, 24, 36,...}
    Portanto m.m.c. (a, b) = 12
 Observe que:
    a) Se um dos números for divisível pelo outro, o maior deles será o m.m.c.
    Exemplo: 18 é divisível por 6. Logo m.m.c. (18, 6) = 18
    b) Se dois números são primos entre si, o m.m.c. entre eles é igual ao seu produto.
    Exemplo: 4 e 9 são primos entre si; então m.m.c. (4, 9) = 36
    c) m.m.c. (ap, bp) = p. m.m.c. (a, b)
    d) m.d.c. (a, b) x m.m.c.(a, b) = a.b
    Exemplo: m.d.c. (4, 6) = 2 e m.m.c. (4, 6) = 12
    Observe que m.d.c. (4, 6) x m.m.c. (4, 6) = 4.6
    e) Os múltiplos comuns a dois números a e b, são múltiplos do seu m.m.c.
    Exemplo: Como vimos, m.m.c. (4, 6) = 12. Logo os múltiplos comuns a 4 e 6 são os múltiplos de 12 ou 12,
    24, 36, 48, ... (múltiplos positivos)

15- CÁLCULO DO M.M.C. PELA DECOMPOSIÇÃO EM FATORES PRIMOS
 Regra:
    a) Fatore os números.
    b) Forme o produto com os fatores comuns e não comuns aos números, tomados com o maior expoente.
 Exemplo: Calcule o m.m.c. (12, 15)
    Solução:
    Fatorando os números, obtemos:
    12 = 22. 3
    15 = 3 . 5
    Logo, aplicando a regra, achamos:
    m.m.c. (12, 15) = 22. 3 . 5 = 60

16- CÁLCULO DO M.M.C. PELA DECOMPOSIÇÃO SIMULTÂNEA
 Veja o exemplo: m.m.c. (9, 12, 15).
    Solução:
    9, 12, 15        2
    9,    6,   15    2
    9,    3,   15    3
    3,    1,     5   3
    1,    1,     5   5
    1,    1,     1                                           Resp.: m.m.c. (9, 12, 15) = 22 . 32. 5 = 180
                                                                 Matemática - M1                 7
Tecnologia   ITAPECURSOS




    CONJUNTO DOS NÚMEROS RACIONAIS
1- O QUE É UMA FRAÇÃO?
                                                                     a
    Definição: Chama-se fração todo número representado pelo símbolo , onde a e b são números inteiros,
                                                                    b
    com b ≠ 0.
               3 10 5 7
    Exemplos: ;    ; ; etc.
               4 2 5 3
                                                                                   a
    Geralmente, a fração representa partes de um inteiro. Na representação           , o número a é chamado de
                                                                                   b
    numerador da fração e b é o denominador.
    O denominador indica em quantas partes o inteiro foi dividido, e o numerador, quantas dessas partes foram
    tomadas.

2- O CONJUNTO DOS NÚMEROS RACIONAIS
    Seja Z = {..., -2, -1, 0, 1, 2, ...} o conjunto dos números inteiros. Chama-se conjunto dos números racionais,
    e representa-se por Q, o conjunto definido por:
          a
    Q=      /a Z e b            Z*            Observe que N Ì Z Ì Q.
          b
3- TIPOS DE FRAÇÃO

A) Fração própria

    É aquela cujo numerador é menor que o denominador
               3 2 1
    Exemplos: , ,
               5 7 4
B) Fração imprópria

    É aquela cujo numerador é maior que o denominador.
                7 3 4 10
    Exemplos: , , ,
                5 2 3 5
    Obs.: Se o numerador é múltiplo do denominador, dizemos que a fração é aparente. Observe que uma fração
       aparente é, na verdade, um número inteiro.

    Exemplos:

4- IGUALDADE DE FRAÇÕES
                           a c
    Definição: Sejam        e  duas frações. Então:
                           b d
    Exemplo:               pois 3 . 10 = 5 . 6
    Como conseqüência dessa definição, pode-se concluir que:
    Ao multiplicar ou dividir os termos de uma fração por um mesmo número (não nulo), encontra-se uma fração
    igual à fração dada.
    Com isso, pode-se simplificar uma fração, ou seja, podemos achar uma fração igual à fração dada, e cujos
    termos sejam primos entre si. Uma tal fração se diz na forma irredutível, e para obtê-la basta dividir os termos
    da fração pelo m.d.c. deles.

    Exemplo:

             8               Matemática - M1
Tecnologia   ITAPECURSOS


5- OPERAÇÕES COM FRAÇÕES
  Recordaremos, sucintamente, as principais operações com frações.

A) Adição e Subtração
  Caso os denominadores sejam iguais, conservamos o denominador e somamos ou subtraímos os numeradores.
  Se os denominadores forem diferentes, nós reduzimos as frações ao menor denominador comum e procedemos
  como no primeiro caso.
  Exemplos:

       a)                                   b)

B) Multiplicação

  Na multiplicação de duas ou mais frações, o produto é encontrado multiplicando-se os numeradores e os
  denominadores. Sempre que possível, devemos utilizar o cancelamento, visto que com isso os cálculos se
  simplificarão.
  Exemplos:

       a)                                   b)

C) Divisão
  Para dividir duas frações, nós repetimos a primeira e a multiplicamos pelo inverso da segunda.
  Exemplos:

       a)                                   b)                             c)

D) Potenciação

       a
  Se     é uma fração e n é um número natural, teremos:
       b




6- FRAÇÃO DECIMAL
  Se o denominador de uma fração é uma potência de 10, ela se diz uma fração decimal. Assim, as frações

                   etc... são frações decimais.

  Uma simples extensão do sistema de numeração decimal nos permite representar uma fração decimal numa
  outra forma, que chamaremos de número decimal.
  Desse modo, teremos:




  De modo geral, para converter uma fração decimal em número decimal, nós:
  - escrevemos o numerador da fração.
  - colocamos a vírgula de modo que o número de casas decimais coincida com a quantidade de zeros do
      denominador.


                                                                  Matemática - M1                9
Tecnologia      ITAPECURSOS


    Já para passarmos um número decimal para fração decimal, nós:
    - eliminamos a vírgula e escrevemos o número obtido no numerador.
    - colocamos no denominador uma potência de 10, com tantos zeros quantas forem as casas decimais.
    Exemplos:




7- OPERAÇÕES COM NÚMEROS DECIMAIS

A) Adição e Subtração

    Coloca-se a vírgula debaixo de vírgula e opera-se como se fossem inteiros.
    Exemplos:
       13,72 + 8,493                            3,48 - 2,374
    Solução:                                    Solução:
             13,72                                 3,480
         + 8,493                                  -2,374
             22,213                                1,106

B) Multiplicação

    Ignoram-se as vírgulas. Ao produto damos um número de casas decimais igual à soma das casas decimais
    dos fatores.
    Exemplos: 2,3 x 0,04
    Solução:
              2,3
              0,04
             0,092

C) Divisão

    Igualamos as casas decimais do dividendo e do divisor e efetuamos a divisão.
    Exemplo: 31,05 : 9                          9,54 : 1,8
    Solução:                                    Solução:
         3105         900                         954   180
         4050         3,45                        540   5,3
         4500                                       0
               0

8- SURGEM AS DÍZIMAS PERIÓDICAS

    Como vimos, toda fração decimal pode ser representada na forma decimal. Frações como   e     não são
    decimais, porém são equivalentes a uma fração decimal. Logo, podem também ser representadas como
    número decimal. Veja:

                     = 0,6             = 0,90


               10             Matemática - M1
Tecnologia   ITAPECURSOS


  Observe que obteremos a mesma representação se             Resumindo:
  fizermos a divisão do numerador pelo denominador.
                                                             - Toda fração decimal ou equivalente a uma fração
  Assim:                                                     decimal é representada por um número decimal
                                                             exato.
            30            5
                                                             - Se uma fração não for equivalente a uma fração
             0            0,6
                                                             decimal, sua representação decimal será uma dízima
  De modo geral, se o denominador da fração,                 periódica.
  fatorado, só contiver os fatores 2 e 5, a fração será
                                                             A fração que “gerou” a dízima periódica será
  equivalente a uma fração decimal, podendo ser
                                                             chamada de fração geratriz.
  representada como número decimal. Já uma fração
                                                             Na dízima periódica, a parte que se repete é
  como           , por exemplo, jamais será equivalente a    chamada de período. Assim, em 0,2525... o período
  uma fração decimal, pois seu denominador contém            é 25. É usual representar essa dízima na forma
  outro fator além do 2 ou 5. Logo, se quisermos                  , onde um traço é colocado sobre o período.
  representar essa fração na forma decimal, teremos
  que admitir que essa fração representa uma divisão.        Se entre o período e a vírgula não existir nenhum
  Obteremos então:                                           outro algarismo, a dízima é simples. Caso exista
                                                             entre o período e a vírgula algum outro algarismo, a
            50            6
                                                             dízima é composta.
             20           0,8333...
                                                             Exemplo:
                 20
                  20                                             0,1616...   dízima simples
                      2                                          3,444...    dízima simples
  Surgem assim as dízimas periódicas.                            0,54242... dízima composta

9 - CÁLCULO DA FRAÇÃO GERATRIZ

A) A Dízima Periódica é Simples

  A geratriz tem como numerador o período e como denominador um número formado por tantos noves quantos
  forem os algarismos do período.
  Exemplo:
  Calcule a fração geratriz das dízimas:
  a) 0,121212...                 b) 1,333...
  Solução:

  a)


  b)

B) A Dízima Periódica é Composta

  A geratriz terá para numerador a parte não periódica, seguida do período menos a parte não periódica, e
  para denominador um número formado de tantos noves quantos são os algarismos do período, seguidos de
  tantos zeros quantos são os algarismos da parte não periódica.
  Exemplo: Ache a fração geratriz das dízimas
       a) 0,5333...                                         b) 0,42666...
  Solução:                                                  Solução:

       a)                                                         b)

                                                                       Matemática - M1                11
Tecnologia     ITAPECURSOS


10 - PRINCIPAIS MÉDIAS
    Chamaremos de média ao valor para o qual devem “tender” os valores de um conjunto numérico. Assim,
    quando dizemos que o salário médio dos empregados da indústria X é R$ 650,00, isto significa que os
    salários reais giram em torno desse valor. É importante observar que a média de um conjunto numérico pode
    sofrer uma influência muito forte de valores ou muito altos ou muito baixos. Por isso, temos vários tipos de
    médias. Veremos as três mais usadas.

A) Média Aritmética Simples

    Definição: Sejam x1, x2, ... , xn, n números. Chama-se média aritmética simples entre eles ao número

    m.a.s. =

    Exemplo: Cinco pessoas, pesando 70 kg, 80 kg, 30 kg, 20 kg e 120 kg estão num elevador. Qual o peso
    médio dessas pessoas?

    Solução:           m.a. =

    Resp.: 64 kg.

B) Média Aritmética Ponderada
    Suponha que você vai fazer um concurso para ingressar no Banco do Brasil, e que para isso, precise fazer
    provas de Português, Conhecimentos Gerais e Técnicas Bancárias. Pode acontecer que à prova de Técnicas
    Bancárias seja dada uma maior relevância. Isso é feito atribuindo-se “pesos” às notas obtidas em cada prova.
    Desse modo temos a seguinte:
    Definição: Sejam x1, x2, ..., xn um conjunto de valores aos quais foram atribuídos os pesos p1, p2, ..., pn
    respectivamente. Então sua média, chamada de média aritmética ponderada é:

    m.a.p. =


    Observe que a média aritmética simples é um caso particular da média ponderada
    (p1 = p2 = ... = pn = 1).

C) Média Geométrica

    Definição: Se x1, x2, ..., xn são números, sua média geométrica é:

    m.g. =
    Exemplo:           Ache a m.g. entre 4 e 9.

    Solução:           m.g. =




             12              Matemática - M1
Tecnologia   ITAPECURSOS




         CONJUNTO DOS NÚMEROS REAIS
1 - A NECESSIDADE DE NOVOS NÚMEROS
  À medida que um conjunto numérico mostrava alguma deficiência, novos conjuntos numéricos iam surgindo. A
  resolução de equações semelhante a x2 = 2 levou ao aparecimento dos números reais, pois pode-se provar que
  não existe nenhum número racional cujo quadrado seja 2. A solução de x2 = 2, que representa-se por
      ou -   , não é então um número racional, ou seja, não pode ser colocada na forma a/b, com a e b inteiros
  e b ≠ 0. Um tal número será chamado daqui para frente de número irracional. Os irracionais podem também ser
  representados na forma decimal. Nesse caso o número terá infinitas casas decimais e não apresentará parte
  periódica. A união dos números racionais e irracionais forma o conjunto dos números reais, simbolizado por R.


2) VALOR ABSOLUTO OU MÓDULO DE UM NÚMERO REAL

  Seja x um número real. Chama-se valor absoluto ou módulo de x ao número representado por |x| e definido por:




  Exemplos:
     a) |5| = 5
     b |-3| = -(3) = 3
     c) |0| = 0

  Se a e b são números reais, temos:

     a) |-a| = |a|

     b) |ab| = |a| . |b|

     c) |a/b| = |a|/|b| para b ≠ 0

     d) |a + b| ≤ |a| + |b| (desigualdade triangular)


3) DESIGUALDADES EM R

  a) Se a > b e c > 0 então a.c > b.c

  b) Se a > b e c < 0 então a.c < b.c

  c) Se a > b e c ∈ R então a + c > b + c

Propriedades do anulamento

  Se a.b = 0 então a = 0 ou b = 0




                                                                   Matemática - M1                13
Tecnologia      ITAPECURSOS


4) POTENCIAÇÃO EM R
    Seja a um número real não nulo e n um número natural. Então:
         a0 = 1
         a1 = a




Propriedades

    a)                                d)                        Atenção:

                                                                   a) (-3)2 = (-3).(-3) = 9
                                                                       -32 = -1.32 = -1.9 = 9
    b)                                e)

                                                                   b)

    c)                                f)


5) RAÍZES
    Definição: Seja a um número real e n um inteiro positivo. Chama-se raiz n-ésima de a, se existir, ao número
    real b, para o qual temos bn = a.
    Em símbolos




    Exemplos:

         a)


         b)


         c)          não existe em

    Observe que:

         - Se a < 0 e n é par, não existe a raiz em    .

         - Se a > 0 e n é par o símbolo    representará a raiz positiva e -   , a raiz negativa.


    Assim:         =3e-       = -3.

         - Se



              14              Matemática - M1
Tecnologia   ITAPECURSOS


 As principais propriedades da radiciação são:

    a)          se n for par.                      d)


    b)                                             e)


    c)                                             f)


 Observação:

    É óbvio que as propriedades anteriores somente são válidas supondo a existência das raízes envolvidas.
    Podemos agora definir potência de expoente racional.
 Definição:

 Se a > 0, m e n são inteiros com n ≠ 0, temos:

 Exemplos:

    a)

    b)

6- RACIONALIZAÇÃO DE DENOMINADORES
 Racionalizar o denominador de uma expressão é achar uma expressão igual à expressão dada, cujo denominador
 não tenha radicais. Vamos nos ocupar com a racionalização de três tipos de expressões:

 1º Tipo: Expressões da forma         .                     3º Tipo: Expressões da forma                ou

    Para racionalizar uma expressão dessa forma,
      multiplicamos os termos da fração por   .
                                                               Nesse caso, multiplicamos os termos da fração
                                                                 pelo conjugado do denominador (expressão
    Exemplo: Racionalize o denominador de               .
                                                                 obtida trocando-se o sinal do 2º termo do
                                                                 denominador).
    Solução:

                                                               Exemplo: Racionalize

                                                               Solução:

 2º Tipo: Expressões da forma

    A racionalização nesse caso é feita multiplicando-
    se os termos da fração por          .


    Exemplo: Racionalize

    Solução:




                                                                   Matemática - M1                 15
Tecnologia   ITAPECURSOS




                                UNIDADES DE MEDIDA
1- O QUE É MEDIR?
    Medir uma grandeza é compará-la com outra da mesma espécie, chamada unidade.
    Desta comparação, resulta um número que é a medida da grandeza considerada nessa unidade.
         Exemplo:
         Suponhamos que um palito de fósforo “coube” exatamente 5 vezes numa caneta. Isso significa que o
         comprimento da caneta na unidade palito de fósforo é 5.
         No que se segue, veremos as unidades usadas para medir as principais grandezas do nosso dia-a-dia.

2- MEDIDAS DE COMPRIMENTO
                                   Múltiplos            Unidade         Sub-múltiplos
                           Km        hm      dam           m         dm     cm        mm

    Para passar de uma unidade para outra, usamos o quadro acima, fazendo a vírgula deslocar-se para a direita
    ou para a esquerda. Por exemplo: para passar de hm para dm, o quadro nos mostra que devemos deslocar a
    vírgula 3 casas para a direita.
    Para passar de cm para m, deslocamos a vírgula 2 casas para a esquerda.
         Exemplos:
         2,35 m = 23,5 dm                0,045 Km = 45 m
         147 cm = 0,147 dam              13,4 Km = 13400 m

3- MEDIDAS DE SUPERFÍCIE
    Unidade: é o metro quadrado (m2)
         Múltiplos                       Submúltiplos

         quilômetro quadrado: Km2        decímetro quadrado: dm2
         hectômetro quadrado: hm2        centímetro quadrado: cm2
         decâmetro quadrado: dam2 milímetro quadrado: mm2

               Km2               hm2        dam2           m2             dm2   cm2        mm2

    - Para passar de uma unidade para outra imediatamente inferior, desloca-se a vírgula duas casas para a
    direita.
    - Para passar de uma unidade para outra imediatamente superior, desloca-se a vírgula duas casas para a
    esquerda.
         Exemplos:
         3, 42 Km2 = 342 hm2             2,1 m2 = 21000 cm2
         7810 mm2 = 78,1 cm2             5000 m2 = 0,5 hm2.

    Medidas Agrárias (medidas de terras)

                                Nome          hectare               are         centiare
                            Símbolo                ha               a              ca

                                 Valor        10000m2             100 m2          1 m2

             16             Matemática - M1
Tecnologia    ITAPECURSOS


4- MEDIDAS DE VOLUME
 Unidade: metro cúbico: m3.
    Múltiplos                     Submúltiplos
    quilômetro cúbico:    Km3     decímetro cúbico: dm3
    hectômetro cúbico: hm3        centímetro cúbico: cm3
    decâmetro cúbico: dam3        milímetro cúbico: mm3

            Km3            hm3        dam3          m3           dm3         cm3            mm3

 As transformações são feitas deslocando-se a vírgula de 3 em 3 casas decimais.
    Exemplos:
    1 dm3 = 1000 cm3 2,45 m3 = 2450 dm3
    2000 m3 = 2 dam3 1470 cm3 = 1,47 dm3
 Medida de Capacidade:
    Unidade: é o litro: L. Temos que 1 L = 1 dm3.
    Múltiplos                     Submúltiplos
    Kilolitro (KL)              decilitro (dL)
    hectolitro (hL)             centilitro (cL)
    decalitro (daL)             mililitro (mL)
 Cada unidade de capacidade é dez vezes maior que a unidade imediatamente inferior.
    Exemplo:
    1 hL = 10 daL
    2 L = 2000 mL
    600 mL = 0, 6 L

5- MEDIDAS DE MASSA
 Unidade: é o quilograma ( Kg )
 O quilograma tem como múltiplo a tonelada, que vale 1000 Kg.
 Os submúltiplos do quilograma usam como base o grama (g) que equivale a um milésimo do quilograma.

    1 g = 0,001 Kg ou 1 Kg = 1000 g

 Os submúltiplos do Kg são:
     hectograma: 1 hg = 100 g
     decagrama: 1 dag = 10 g
     decigrama: 1 dg = 0,1 g
     centigrama: 1 cg = 0,01 g
     miligrama: 1 mg = 0,001 g
 Veja que as transformações entre as unidades vão se reduzir a multiplicações e divisões por potências de 10.
    Observações:
    a) Peso bruto: representa o peso da mercadoria mais o recipiente que a contém.
      Peso líquido: é o peso apenas da mercadoria.
      Tara: representa o peso do recipiente.
    b) Unidade de medida de massa de metais preciosos. É o quilate. Vale 2 decigramas.
      1 quilate = 2 dg.

                                                                  Matemática - M1                17
Tecnologia    ITAPECURSOS




                             CÁLCULO ALGÉBRICO
1 - EXPRESSÃO ALGÉBRICA - VALOR NUMÉRICO
    Uma expressão se diz algébrica ou literal se é formada por números e letras ou somente letras.
    Assim, são algébricas as expressões:

                                                          x2 − 3
                                               2x + 3y;          ; x +1
                                                            2y

    As letras que aparecem nas expressões chamam-se variáveis e representam, geralmente, um número real,
    sendo então chamadas de variável real.
    Se a expressão algébrica não tem variável no denominador, ela se diz inteira. Se tiver variável no denominador,
    ela se diz fracionária.
    O valor obtido ao substituirmos as variáveis de uma expressão algébrica por números dados e efetuarmos os
    cálculos indicados é chamado valor numérico da expressão.

    Exemplo: Ache o valor numérico da expressão                 para x = -3 e y = 5.

         Solução:
         Substituindo x por -3 e y por 5, teremos:

         V.N =              ; V.N =        ; V.N =   ; V.N =

    Chamaremos de domínio de uma expressão algébrica ao conjunto formado pelos números que podem ser
    colocados no lugar das variáveis da expressão.

    Assim, o domínio da expressão              é

                                  pois x = -3 a expressão não representa número real.

    Uma expressão algébrica racional inteira, formada por um único termo, será chamada de monômio e uma
    adição algébrica de monômios será chamada de polinômio.
    Exemplos de monômios:

         a)



         b)


    Obs.: Dois monômios com a mesma parte literal são ditos monômios semelhantes.

         Exemplo:            e          são semelhantes.

    Exemplos de polinômios:
         a)                      é um polinômio de três termos, que chamaremos de trinômio (pois tem 3 termos).
         b) 2a + b é um binômio (polinômio de dois termos).

              18             Matemática - M1
Tecnologia   ITAPECURSOS


2 - PRODUTOS NOTÁVEIS
  Alguns produtos aparecem com muita freqüência e são muito úteis, por isso são chamados de produtos
  notáveis. Veremos os principais.
     a) (x + y)2 = x2 + 2xy + y2                       f) (x - y)3 = x3 - 3x2y + 3xy2 - y3
     b) (x - y)2 = x2 - 2xy + y2                       g) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz
     c) (x +y)(x - y) = x2 - y2                        h) (x + y)(x2 - xy + y2) = x3 + y3
     d) (x + a)(x + b) = x2 + (a + b)x + ab            i) (x - y)(x2 + xy + y2) = x3 - y3
     e) (x + y)3 = x3 + 3x2y + 3xy2 + y3


     Exemplos: Efetue, pelos produtos notáveis:
     a) (3x + 5)2 = (3x)2 + 2 . 3x . 5 + 52 = 9x2 + 30x + 25
     b) (a3 - 4)2 = (a3)2 - 2 . a3 . 4 + 42 = a6 - 8a3 + 16
     c) (3x + 2)(3x - 2) = (3x)2 - 22 = 9x2 - 4
     d) (x + 5)(x - 3) = x2 + (5 - 3)x + 5 . (-3) = x2 + 2x - 15
     (2a - 2)(2a - 3) = (2a)2 + (-2 -3) . 2a + (-2) (-3) = 4a2 - 10a + 6
     e) (x + 2)3 = x3 + 3x2 . 2 + 3 . x . 22 + 23 = x3 + 6x2 + 12x + 8
     f) (2a - 1)3 = (2a)3 - 3 . (2a)2 . 1 + 3 . 2a . 12 - 13.
                  = 8a3 - 12a2 + 6a - 1
     g) (3x + y + 5)2 = (3x)2 + y2 + 52 + 2 . 3x . y + 2 . 3x . 5 + 2 . y . 5
                         = 9x2 + y2 + 25 + 6xy + 30x + 10y
         (a - 2b - 1)2 = a2 + (-2b)2 + (-1)2 + 2 . a . (-2b) + 2 . a . (-1) + 2 . (-2b) . (-1)
                        = a2 + 4b2 + 1 - 4ab - 2a + 4b

3 - FATORAÇÃO
  Fatorar uma expressão algébrica é escrevê-la na forma de um produto. Para isso é útil você se lembrar da
  propriedade distributiva e dos produtos notáveis vistos anteriormente, pois vários casos de fatoração são
  conseqüência desses produtos.
  A dificuldade mais comum, quando se estuda fatoração, está na identificação do caso a ser aplicado à
  expressão dada. No entanto, com atenção às características de cada caso e muito treinamento, isso não será
  problema. Vamos aos casos mais comuns.

3.1 - Fator Comum
  Característica: um ou mais fatores aparecem em todos os termos.
  Como fatorar: coloque esses fatores comuns em evidência, usando a propriedade distributiva.
     Exemplos: Fatore
     a) ax + bx = x . (a + b)
     b) 20x3 y - 8x2 + 12xy2 = 4x . (5x2y - 2x + 3y)
     c) (x + 1) b - (x + 1) c = (x + 1) (b - c)

3.2 - Agrupamento
  Característica: é usado em expressões com no mínimo 4 termos.
  Como fatorar: aplique o caso anterior sucessivas vezes.
  Exemplos: Fatore
     a) x2 + xy + 2x + 2y = (x2 + xy) + (2x + 2y)                     b) a2 + a - ab - b         = (a2 + a) + (-ab - b)
                            = x . (x + y) + 2 (x + y)                                            = a(a + 1) - b(a + 1)
                            = (x + y) (x + 2)                                                    = (a + 1) (a - b)

                                                                            Matemática - M1                     19
Tecnologia    ITAPECURSOS


3.3 - Diferença de Quadrados
    Característica: a expressão dada pode ser reduzida à forma x2 - y2.
    Como fatorar: use o inverso do produto notável.
         (x + y)(x - y) = x2 - y2, e então teremos:
         x2 - y2 = (x + y)(x - y)
    Exemplos: Fatore
         a) 16 - x2 = (4 + x)(4 - x)                           b) (x + 1)2 - y2 = (x + 1 + y)(x + 1 - y)

              4   x                                               x+1       y

3.4 - Trinômio Quadrado Perfeito
    Característica: a expressão dada é um trinômio redutível à forma x2 ± 2xy + y2
    Como fatorar: lembre-se de que x2 ± 2xy + y2 = (x ± y)2
    Importante: para verificar se o trinômio dado é quadrado perfeito, ordene-o. Depois tire a raiz quadrada do
    1º e do 3º termo e multiplique esses resultados. Se o dobro desse produto coincidir com o segundo termo, o
    trinômio é quadrado perfeito. Caso contrário, o trinômio não pode ser fatorado usando esse caso, e sim um
    outro método que aprenderemos ao estudar as equações do 2º grau.
    Exemplos: Fatore
         a) 4x2 + 12xy + 9y2 = (2x + 3y)2                      b) x2 - 6x + 9 = (x - 3)2
                 =                                                        =

             2x → 2 . 2x.3y ← 3y                                  x - 2.x.3 3

3.5 - Trinômio do 2º grau
    Característica: usa-se quando o trinômio dado não for quadrado perfeito
    Como fatorar: emprega-se a fórmula ax2 + bx + c = a(x - x’)(x - x”), onde x’ e x” são as raízes do trinômio dado.
    Exemplo: Fatore: 2x2 + 5x - 3
    Solução:
         Cálculo das raízes                                             Resp.: 2x2 + 5x - 3 = 2(x -        )(x + 3)
         A = 25 + 24 = 49
                                                                                              = (2x - 1)(x + 3)
         x=            ; x’ =     e x” = -3


3.6 - Soma de Cubos
    Característica: a expressão é redutível à forma a3 + b3.
                                                                 Exemplos: Fatore
    Como fatorar: use a fórmula:
                                                                     a) x3 + 8 = x3 + 23 = (x + 2)(x2 - 2x + 4)
         a3 + b3 = (a + b)(a2 - ab + b2)                             b) 27a3 + 1 = (3a)3 + 13 = (3a + 1)(9a2 - 3a + 1)

3.7 - Diferença de Cubos
    Característica: a expressão é redutível à forma a3 - b3.
                                                                  Exemplos: Fatore
    Como fatorar: Use a fórmula
                                                                      a) x3 - 1 = x3 - 13 = (x - 1)(x2 + x + 1)
         a3 - b3 = (a - b)(a2 + ab + b2)
                                                                      b) a6 - 8 = (a2)3 - 23 = (a2 - 2)(a4 + 2a2 + 4)

              20                Matemática - M1
Tecnologia   ITAPECURSOS


4 - FRAÇÕES ALGÉBRICAS
  Assim denominamos as frações que representam o quociente de dois polinômios, sendo o denominador um
  polinômio não nulo.
  No que se segue, as operações só são válidas no domínio da fração algébrica estudada.

4.1 - Simplificação de Frações Algébricas
  Regra:      - Fatore os termos da fração.
              - Cancele os fatores comuns ao numerador e denominador.
  Exemplos: Simplifique:

  a)                                                    b)                              =E


  Solução:                                          Solução:

                                                       E=                      pois (y + x)(y - x) = y2 - x2


                       =                               E=               E =               E =


4.2 - Adição e Subtração de Frações Algébricas
  Regra: - Reduzimos as frações ao mesmo denominador
            - Efetuamos as operações indicadas nos numeradores
            - Simplificamos, se possível.
  Atenção: Para reduzir as frações ao mesmo denominador, você deve fatorar esses denominadores e formar o
  produto com os fatores comuns e não comuns com maior expoente.
  Exemplo: Efetue                                            Solução:

       a)



       b)

       Solução:



                                 =




                                                                   Matemática - M1                21
Tecnologia    ITAPECURSOS


4.3 - Multiplicação de Frações Algébricas
    Regra:      - Fatore os termos das frações envolvidas.
                - Cancele os fatores comuns aos numeradores e denominadores.
                - Efetue os produtos entre os numeradores e os denominadores.
    Exemplos: Efetue:

    a)

    Solução:

         P=


         P=


         b)

         Solução:

         P=           pois (x + 3)(x - 3) = x2 - 9 e x . 5x = 5x2


4.4 - Divisão de Frações Algébricas
    Regra: Repetimos a primeira fração e a multiplicamos pelo inverso da segunda fração.
    Exemplo: Efetue:




         Solução:




              22            Matemática - M1
Tecnologia   ITAPECURSOS




                  MATEMÁTICA COMERCIAL
1- RAZÃO
  Definição
  Sejam a e b números reais, com b ≠ 0. Chama-se razão entre a e b, ao quociente indicado entre eles.

  Notação:

  Observações:
     a) O fato de usarmos a mesma notação das frações para indicar a razão entre a e b, se deve ao fato de
        ambos os conceitos, do ponto de vista operacional, terem comportamento idêntico.

     b) A razão geralmente indica uma comparação. Assim, se num grupo de 10 pessoas, 7 são moças,
        dizemos que as moças estão presentes na razão de 7 para 10.

     c) Se duas grandezas são homogêneas (de mesma espécie), razão entre elas é a razão entre os números
        que exprimem suas medidas numa mesma unidade.
        Se as grandezas não forem homogêneas, a razão entre elas é simplesmente a razão entre suas
        medidas, em unidades convenientes.

     d) Algumas razões recebem nome especial. Por exemplo:

        Porcentagem: é a razão do tipo        . Também se representa pelo símbolo %.

        Assim      = 20%.


        Escala: razão muito usada em mapas e plantas. Quando se diz que um mapa está na escala                ,
        isso significa que cada cm no mapa representa, no real, 1.000.000 cm ou 10 km.

        • Densidade: razão entre a massa e o volume de um corpo.
        • Velocidade: razão entre a distância percorrida por um corpo e o tempo gasto para isso.

     e) Propriedade fundamental das razões

                  (para b ≠ 0 e m ≠ 0)


2- PROPORÇÃO
  Definição: Chama-se proporção à igualdade entre duas razões.

  Notação:         (b ≠ 0, d ≠ 0)

  Observe que uma proporção equivale a uma igualdade de frações, e portanto temos como consequência a

  Propriedade fundamental das proporções:

                             (b ≠ 0, d ≠ 0)




                                                                 Matemática - M1                23
Tecnologia      ITAPECURSOS


    As proporções obedecem, ainda, às seguintes propriedades:


         I)                                       ou

                Obs.: essa propriedade também vale para a subtração

         II)


         III)




    1) Calcule x, y e z se                 e x + y + z = 84

         Solução:
         1º modo: Usando as propriedades das proporções, temos:




         Como x + y + z = 84, vem:

                                   e daí vem x = 35, y = 21 e z = 28


         2º modo: Faça                      . Daí vem:
                x = 5K, y = 3K e z = 4K. Substituindo em x + y + z = 84
                5K + 3K + 4K = 84 → 12K = 84 → K = 7. Logo
                x = 5 . 7: x = 35
                y = 3 . 7; y = 21
                z = 4 . 7; z = 28

3 - PROPORÇÃO DIRETA E INVERSA
    Definição:
    Duas grandezas são diretamente proporcionais se aumentando (ou diminuindo) a primeira, a segunda aumenta
    (ou diminui) na mesma razão.
    Definição:
    Duas grandezas são inversamente proporcionais se aumentando (ou diminuindo) a primeira, a segunda
    diminui (ou aumenta) na mesma razão.
    Exemplo 1: Uma equipe de futebol se hospeda num hotel cinco estrelas. Observe a tabela onde se relaciona
    o número de dias que a equipe ficará hospedada com a despesa do time.

                   Nº de dias                1          2      3          4    5       6
                   Despesa (em dólar)      1000        2000   3000     4000   5000   6000
    Observe que se dobrarmos o número de dias, a despesa dobra, triplicando o número de dias a despesa triplica
    e assim por diante. Dizemos por isso que as grandezas em questão são diretamente proporcionais.

                24            Matemática - M1
Tecnologia   ITAPECURSOS




  Exemplo 2: Um grupo de operários é capaz de construir uma casa em um tempo dado de acordo com a tabela
  a seguir:

                            Nº de operários       10       20       30       40
                            Tempo (dias)          12        6        4        3

  Observe que dobrando o número de operários, o tempo cai à metade, triplicando o número de operários o tempo
  cai à terça parte e assim por diante. Por isso dizemos que essas grandezas são inversamente proporcionais:
     Observações:
     a) No exemplo 1, a razão entre os valores correspondentes das duas grandezas é constante.

                                       =K           K = coeficiente de proporcionalidade

     b) No exemplo 2, o produto dos valores correspondentes das duas grandezas é constante:
       10 x 12 = 20 x 6 = 30 x 4 = 40 x 3 = K             K = coeficiente de proporcionalidade.

     c) De a e b conclui-se que se x e y são variáveis, ou grandezas, temos:

       Se    = K ou x = Ky implica x e y são diretamente proporcionais.


       Se xy = K ou           , x e y são inversamente proporcionais.


       Assim, se               , x é diretamente proporcional a y, r e s e inversamente proporcional a t.

     d) Muito cuidado ao classificar duas grandezas. Não basta, por exemplo, que as duas grandezas aumentem
        (ou diminuam). Isso deve acontecer na mesma razão. Assim, se você gasta 2h para varrer um quarto
        circular de 5m de raio, não é verdade que você gastará 4h para varrer outro quarto circular de 10m de
        raio, pois quando se dobra o raio, a área quadruplica (pois A = pr2).


4- DIVISÃO EM PARTES PROPORCIONAIS

A) Divisão em Partes Diretamente Proporcionais
  Dividir um número N em partes diretamente proporcionais a outros é achar partes de N, diretamente
  proporcionais a esses outros números, e cuja soma seja N.
  Exemplo: Seja dividir o número 220 em partes diretamente proporcionais a 5, 2 e 4.
  Solução:
     Sejam x, y, z as partes procuradas. Então:

                        e      x + y + z = 220

     Resolvendo, utilizando as propriedades das proporções, encontra-se:
        x = 100; y = 40 e z = 80




                                                                     Matemática - M1                25
Tecnologia     ITAPECURSOS


B) Divisão em Partes Inversamente Proporcionais
    Dividir um número N em partes inversamente proporcionais a outros é achar partes de N, diretamente proporcionais
    aos inversos desses números e cuja soma seja N.
    Exemplo: Dividir o número 45 em partes inversamente proporcionais a 3, 4 e 6.
    Solução:
         Sendo x, y e z as partes, teremos


                                 e    x = y + z = 45

         Resolvendo pelas propriedades das proporções acha-se:
             x = 20; y = 15 e z = 10

C) Divisão Proporcional Composta
    Em alguns casos, pode ser necessário dividir um número em partes diretamente proporcionais a dois ou mais
    conjuntos de números ou, ainda, diretamente proporcional a um conjunto de números e inversamente
    proporcional a um outro conjunto. Nesses casos, é só lembrar que:

         - se x é inversamente proporcional a y, é diretamente proporcional a    .

         - se x é diretamente proporcional a y e z, x é diretamente proporcional a y . z.

    Exempo 1:
         Dividir o número 98 em partes diretamente proporcionais a 2 e 3 e também diretamente proporcionais a 1 e 4.
    Solução:
         Sejam x e y as partes procuradas. Temos:
             x é d.p. a 2 e 1 ® x é d.p. a 2 . 1 = 2
             y é d.p. a 3 e 4 ® y é d.p. a 3 . 4 = 12
         Logo:

                        e x + y = 9, que resolvido dá:

             x = 14, e y = 84

    Exemplo 2:
         Dividir o número 410 em partes d.p. a 3, 2 e 5 e i.p. a 4, 2 e 3.
    Solução:
         Sejam x, y e z as partes.

             x é d.p. a 3 e i.p. a 4 ® x é d.p. a

             y é d.p. a 2 e i.p. a 2 ® y é d.p. a

             z é d.p. a 5 e i.p. a 3 ® z é d.p. a

         Portanto:


                             e       x + y + z = 410    que resolvido dá x = 90, y = 120 e z = 200

              26              Matemática - M1
Tecnologia   ITAPECURSOS


5- REGRA DE SOCIEDADE
  Quando usamos a divisão em partes proporcionais, na divisão de lucro (ou prejuízo) de uma sociedade, dizemos
  ter uma regra de sociedade.
  Exemplo 1: Dois sócios montaram uma sorveteria. O primeiro entra com R$ 7.500,00 e o segundo com
  R$ 4.500,00. Ao final de um ano, a firma deu um lucro de R$ 24.000,00. Qual a parte de cada um?
  Solução:
  Quem aplicou um capital maior, deve receber uma parte maior do lucro. Logo trata-se de uma divisão em
  partes diretamente proporcionais, e então:

                       e x + y = 24.000
         .      .
     que resolvido dá: x = 15.000 e y = 9.000

  Exemplo 2: Uma sociedade deu um lucro de R$ 340.000,00. O primeiro sócio entrou com R$ 25.000,00,
  durante 4 meses e o segundo entrou com R$ 35.000,00 durante 2 meses. Quanto deve receber cada um?
  Solução:
  É claro que a divisão deve ser em partes d.p ao capital aplicado e também d.p ao tempo. Logo:

                           e x + y = 340.000

     o que dá x = 200.000 e y = 140.000

6 - REGRA DE TRÊS
  Conceito: A regra de três é uma das aplicações das proporções. Ela vai nos permitir resolver problemas que
  envolvem grandezas diretamente proporcionais ou inversamente proporcionais. Classifica-se em simples ou
  composta.

A) Regra de Três Simples
  É a regra de três que envolve apenas duas grandezas. Caso essas grandezas sejam diretamente proporcionais,
  a regra de três se diz simples e direta. Se as grandezas envolvidas forem inversamente proporcionais, a regra
  de três é simples e inversa.
  A resolução de uma regra de três consiste em calcular, em uma proporção em que três termos são conhecidos,
  o quarto termo. Veja alguns exemplos.
  Exemplo 1: Moendo 100 kg de milho, obtemos 84 kg de fubá. Quantos quilos de milho devo moer para obter
  21 kg de fubá?
  Solução:
  Inicialmente, dê “nomes” às grandezas envolvidas. Em seguida, coloque os valores dados nas respectivas colunas.
  Verifique então se as grandezas são direta ou inversamente proporcionais. Se forem diretamente proporcionais,
  lembre-se de que a razão entre os valores da primeira é igual à razão entre os valores correspondentes da
  segunda. Se as grandezas forem inversamente proporcionais, a razão entre os valores da primeira é igual ao
  inverso da razão entre os valores da segunda grandeza. Depois é só calcular o termo desconhecido.
  Veja
     Milho (kg)     Fubá (kg)
      100               84
        x               21
     Como as grandezas são d.p, temos:

                    e daí vem x = 25 kg                   Resp.: 25 kg


                                                                    Matemática - M1                 27
Tecnologia    ITAPECURSOS


    Exemplo 2:
    Se 36 operários gastam 25 dias para fazer certo serviço, em quantos dias 30 operários, do mesmo gabarito,
    poderão fazer o mesmo serviço?
    Solução:
         Operários            Dias
             36               25
             30                x
    As grandezas são i.p, pois diminuindo o número de operários aumenta o número de dias para terminar a obra.
    Logo:

                            (note a inversão na 2ª razão) e daí, x = 30 dias.

B) Regra de Três Composta
    Assim denominamos a regra de três que envolve mais de duas grandezas. Para resolver uma regra de três
    composta, nós dispomos os valores dados nas respectivas colunas. Em seguida, classificamos as grandezas
    conhecidas em relação à grandeza que contém o valor desconhecido. Após isso, igualamos a razão entre os
    valores da grandeza que contém a variável com o produto das razões das outras grandezas, lembrando que
    se uma grandeza for i.p, devemos inverter a ordem de seus valores. Veja exemplos:
    Exemplo 1:
    Numa fábrica, 10 máquinas trabalhando 20 dias produzem 2.000 peças. Quantas máquinas serão necessárias
    para produzir 1.680 peças em 6 dias?
    Solução:
         Máquinas           Dias          Nº de peças
           10                20              2.000
           x                  6              1.680
                             i.p              d.p
    Classificando as grandezas Dias e Nº de peças em relação à grandeza Máquina, verifica-se que a primeira é
    inversamente proporcional e a segunda é diretamente proporcional. Portanto:

                              e daí x = 28 máquinas

    Observação:
    Ao classificar uma grandeza, considere as demais como constantes.

    Exemplo 2:
    Trabalhando 6 horas por dia durante 10 dias, 10 engenheiros executam projetos de 5 pontes. Quantos engenheiros
    seriam necessários para projetar 8 pontes, trabalhando 8 horas por dia, durante 15 dias?
    Solução:
         horas/dia     dias          nº engenheiros     projetos
            6           10                 10              5
            8           15                  x              8
           i.p          i.p                               d.p


         Logo:                        e daí x = 8

         Resp.: 8 engenheiros

             28               Matemática - M1
Tecnologia   ITAPECURSOS


7- PORCENTAGEM
 Uma razão especial

 Como já vimos, a porcentagem é uma razão da forma       , que também pode ser escrita como a%.

 Assim        = 20%;    = 3% e assim por diante.

 Como a razão exprime uma comparação, na porcentagem essa comparação é feita sempre em relação a um
 grupo de 100. Desse modo, quando dizemos que o salário teve um aumento esse mês de 25%, isso significa
 que para cada R$ 100,00, tivemos um acréscimo de R$ 25,00.

8- COMPARANDO NÚMEROS ATRAVÉS DA PORCENTAGEM
 Suponha que o preço de uma mercadoria sofreu um acréscimo de R$ 80,00. Esse aumento é grande ou
 pequeno? Para responder a essa pergunta, é preciso que saibamos qual o preço da mercadoria para
 compará-lo com o aumento dado. Isso pode ser feito de uma maneira muito simples. Basta efetuar a divisão
 entre esses números. Se, além disso, exprimirmos o resultado obtido como uma razão de conseqüente 100,
 obteremos a porcentagem do aumento, que indica em 100, qual foi o aumento dado. Suponhamos, por
 exemplo, que o preço original da mercadoria fosse R$ 200,00. Então a porcentagem do aumento seria:




 Ou seja, o aumento é de 40%, significando isso que para cada 100 reais no preço, houve um aumento de 40
 reais.
 Esse exemplo mostra que toda porcentagem pode ser colocada na forma de número decimal e vice-versa.
 Veja alguns exemplos:

    a)

    b)

    c)

    d)




 1) Comprei um objeto por R$ 20,00 e o revendi por R$ 25,00. Qual a minha porcentagem de lucro?
    Solução:
    1º modo:
    Observe que o meu lucro foi de 5,00. Logo:

         20      100           e daí,

          5       x

    2º modo:




                                                               Matemática - M1                29
Tecnologia     ITAPECURSOS




    2) Uma mistura foi feita com 12 litros de água e 8 litros de álcool. Determine a porcentagem de álcool na
    mistura.
         Solução:
             Só usaremos o 2º modo




    3) A média de reprovação em concursos públicos é de 82%. Quantas pessoas serão aprovadas num concurso
    com 6.500 inscritos?
         Solução:
             Se 82% são reprovados, então 100 - 82 = 18% são aprovados.
         1º modo:

             6500       100           ;

               x        18

         2º modo:
             18% = 0,18. Logo, 18% de 6500 é 0,18 . 6500 = 1170

    4) Meu salário é hoje de R$ 810,00. Se eu tiver um aumento de 32%, qual será meu novo salário?
         Solução:
             O salário novo será 100% do salário antigo mais 32% do salário antigo, ou seja 132% do salário antigo.

             Logo: (lembre-se 132% =        = 1,32).

             salário novo = 1,32 . 810,00 = 1,069,20
             Resp.: R$ 1.069,20

    5) Em um certo país, as taxas de inflação em um trimestre foram: 1º mês = 10%, 2º mês = 15% e 3º mês = 17%.
    Qual foi a inflação nesse país no trimestre em questão?
         Solução:
             Seja x o preço de uma mercadoria qualquer nesse país. Após o primeiro mês, o novo preço dessa
             mercadoria deveria ser, caso sofresse correção automática da inflação, de 1,10 . x. Após o 2º
             mês, 1,15 . (1,10 x). E após o 3º mês, 1,17 . 1,15 . (1,10 x) ou seja, 1,48 x. Logo, a inflação é de 48%
             no trimestre.

    6) Uma certa mercadoria custa R$ 350,00. Se eu pagar essa mercadoria à vista, obtenho um desconto de
    12%. Por quanto ela me sairá à vista?
         Solução:
             Se tenho 12% de desconto, pagarei (100 - 12), 88% do preço.
             Logo, o preço à vista será 0,88 . 350,00 = 308,00.
             Resp.: R$ 308,00




              30              Matemática - M1
Tecnologia   ITAPECURSOS


  7) Por quanto devo vender um objeto que comprei          8) Calcule o preço de venda de uma mercadoria que
  por R$ 4.000,00, se quero ganhar 20% sobre o preço       comprei por R$ 8.000,00, tendo perdido 25% do preço
  de venda?                                                de venda.
     Solução:                                                  Solução:
       Considerando que o preço de venda é 100%, é               Sendo o preço de venda 100%, o preço de
       fácil ver que o preço da compra equivale então            compra representará nesse caso 125%.
       a 80%.                                                    Então:
       Logo:                                                     8000      125
       4.000 - 80                                                     x    100     x = 6400
            x - 100 , o que dá x = 5000                          Outro modo:
       Outro modo:                                               preço compra = (1 + 0,25) . preço venda.
     preço compra = (1 - 0,20) . preço venda.                    Logo:

       Logo: preço venda =        = 5000                         preço venda =          = 6400


9- JUROS
 Suponha que você empreste a alguém R$ 1000,00. Ao fazer essa transação, você combina com essa pessoa:
     a) o prazo após o qual esse valor deverá ser devolvido a você.
     b) um valor, que você acha justo, essa pessoa deverá pagar-lhe findo o prazo do empréstimo, como uma
     “remuneração” pelo seu dinheiro que ficou disponível nas mãos dessa pessoa.

  Esse acréscimo ao capital emprestado é que chamamos de juro. O juro é calculado sempre após um determinado
  período e combinado no ato da transação. Para simplificar o cálculo, é comum expressá-lo através de uma
  taxa, a taxa de juros. Assim, por exemplo, numa certa transação podemos combinar uma taxa de 5% ao mês.
  Isso significa que para cada R$ 100,00, o tomador deve pagar, após o período de um mês, R$ 5,00.
  O juro é simples se tiver taxa fixa e for calculado sempre sobre a quantia inicial. Por exemplo, se você
  emprestar R$ 100,00, a 5% ao mês, receberá ao fim do 1º mês R$ 5,00 de juro. Ao fim do 2º mês, mais
  R$ 5,00 de juro e assim por diante.
  Normalmente, o que ocorre é o juro ser acrescido ao capital, após o 2º mês a taxa de juro incide sobre esse
  montante e assim por diante. Nesse caso, temos o juro composto.

10- CÁLCULO DO JURO SIMPLES




11- CÁLCULO DO JURO COMPOSTO
      M = C . (1 + i)t

     M ® montante (capital + juros)
     C ® capital
     i ® taxa (deve ser expressa na forma decimal)
     t ® tempo
     Obs.: i e t devem estar na mesma unidade
     Obs.: Normalmente alguns problemas de juros compostos podem ser resolvidos usando porcentagem.

                                                                      Matemática - M1                31
Tecnologia   ITAPECURSOS




                                                   FUNÇÃO
1 – RELAÇÃO BINÁRIA
      Sejam A e B dois conjuntos não vazios. Chama-se produto cartesiano de A por B ao conjunto A x B tal que:

                                                  A x B = {(x,y) : x ∈ A e y ∈ B}

      Obs.: Se A ou B for vazio, A x B = ∅


      Assim, se A = {1,3,5} e B = {2,4,6} então:
      A x B = {(1,2), (1,4), (1,6), (3,2), (3,4), (3,6), (5,2), (5,4), (5,6)}
      Um subconjunto qualquer de A x B é chamado de relação binária de A em B. Logo, os subconjuntos de A x
      B, a seguir, são relações de A em B.
      R1 = {(1,2), (3,4), (5,2)}
      R2 = {(3,2), (5,4)}
      R3 = {(1,2), (3,4), (3,6), (5,2)}




2 – FUNÇÃO: UMA RELAÇÃO ESPECIAL

Definição
      Sejam, A e B dois conjuntos. Uma relação f de A em B é função se para todo x ∈ A, existe um único
      y ∈ B, tal que (x, y) ∈ f.
      De acordo com essa definição, das três relações dadas no item anterior, somente R1 é função. R2 não é
      função, pois o número 1 de A não aparece como abscissa de R2, ou seja, 1 não corresponde com nenhum
      elemento de B.
      Já R3,não é função porque 3 aparece duas vezes como abscissa dos pares de R3, ou seja, 3 corresponde
      mais de uma vez.
      Uma relação pode também ser representada através de um diagrama. Veja os exemplos:
      a)                   A              B

                           1.             .4

                           2.             .5

                           3.             .6


      É função, pois todo x ∈ A tem um único y ∈ B, tal que (x, y) pertence à relação.




             32                 Matemática - M1
Tecnologia   ITAPECURSOS


  b)                  A                       B

                      1.                      .4

                      2.                      .5

                      3.                      .6


  Não é função, pois para 2 ∈ A, não existe y ∈ B, tal que (2, y) pertença à relação.


  c)                 A                   B

                     1.                  .4

                     2.                  .5

                     3.                  .6


  Não é função, pois para 2 ∈ A, existem dois valores y ∈ B, tal que (2, y) pertence à relação.




3 – NOTAÇÃO PARA AS FUNÇÕES

  Dada uma função f, se (x, y) ∈ f, diremos que y é a imagem de x pela função, ou y é o valor de f em x, e
  indicaremos isso por: y = f(x)
  Veja um exemplo:
  Seja A = {-1, 0, 1} e f uma relação de A em A dada por f = {(-1, 0), (0, -1), (1, 1)}. Então:
       f (-1) = 0, lê-se f de menos um é igual a zero.
       f (0) = -1
       f (1) = 1
  Para indicar que uma relação f de A em B é uma função, usamos a notação:
       f: A → B

         x → y = f (x)
  Os conjuntos A e B entre os quais se define uma função podem ser de qualquer natureza. Porém, geral-
  mente A e B serão subconjuntos de R. Quando isso acontece, dizemos que f é uma função real de variável
  real. Para essas funções é comum dar-se apenas a fórmula que relaciona os elementos ou simplesmente
  condições às quais a função obedece.



4 – FUNÇÕES DADAS POR FÓRMULAS

  Exemplo 1: Seja f: R → R definida por f (x) = 2x – 1. Calcule:
  a) f (3)                 c) f (x –1)
  b) f ( ½ )

                                                                     Matemática - M1                 33
Tecnologia    ITAPECURSOS


Solução:
      a) Para calcular f (3) basta substituir, na fórmula de f, a variável x pelo número 3 e efetuar as operações.
         Assim: f (3) = 2 . 3 – 1     ;   f (3) = 6 – 1 = 5

      b) f ( ½ ) =

         Obs.: Se f ( a ) = 0, dizemos que a é raiz da função

         Logo,    é raiz de f ( x ) = 2x – 1, pois f ( ½ ) = 0

      c) f (x – 1) = 2 . (x – 1 ) – 1 ; f ( x – 1 ) = 2x – 2 – 1
         f ( x – 1 ) = 2x – 3


      Exemplo 2: Seja a função f definida por

      Calcule f ( 0 ) – 3 f ( 2 )

Solução:
      Como 0 < 1,                f(0)=2.0+1=1
      Como 2 > 1,                f ( 2 ) = 22 – 1 = 3
      Logo f ( 0 ) – 3 . f( 2 ) = 1 – 3 . 3 = – 8


5 – DOMÍNIO E IMAGEM DE UMA FUNÇÃO

      Seja f uma função de A em B. Chamaremos de domínio de f ao conjunto dos x ∈ A, para os quais existe
      y ∈ B com (x,y) ∈ f. Representaremos o Domínio de uma função f por D(f).

      Por imagem da função f entendemos o conjunto dos y ∈ B para os quais existe x ∈ A, tal que (x,y) ∈ f.
      Representaremos a imagem da função f por Im(f).
      No caso da função ser dada por uma fórmula, o domínio de f é o conjunto dos x ∈ R para os quais f(x) é real.
      Para calcular o domínio de algumas funções, é bom lembrar que:

      a) Se y =      , então D ≠ 0.

      b) Se y =        com n par, então A ≥ 0
      c) Se y =        com ímpar, A é real.


6 – GRÁFICO DE UMA FUNÇÃO
      Pela definição dada, uma função é um conjunto de pares ordenados. Como a cada para ordenado está
      associado um ponto do plano, a representação dos pares ordenados da função, no plano cartesiano, cons-
      titui o gráfico da função.
      Se for dado o gráfico de uma relação, para verificarmos se a relação é função, usamos o “teste da vertical”.
      Esse teste consiste em imaginarmos retas verticais traçadas no plano do gráfico. Se pelo menos uma
      dessas retas cortar o gráfico em mais de um ponto, ele não representa função.




             34                 Matemática - M1
Tecnologia   ITAPECURSOS


    Assim, por exemplo, para os gráficos a seguir teremos:
    I)


                                       Não representa função, pois a reta tracejada, indicada na figura, corta o
                                       gráfico em dois pontos, o que equivale a dizer que existe um x que
                                       corresponde com dois y.




    II)




                                                    Representa uma função, pois qualquer reta vertical inter-
                                                    cepta o gráfico no máximo em um ponto.




1) Determine o domínio e a imagem da função cujo gráfico está representado a seguir:


Solução:
    Cada ponto do gráfico tem uma abscissa e uma
    ordenada. O domínio é formado pelas abscissas
    dos pontos do gráfico e a imagem pelas ordena-
    das. Basta então imaginarmos as “projeções” do
    gráfico sobre os eixos dos x, para o domínio, e
    dos y, para a imagem. Concluiremos que:
    D = {x ∈ R : – 2 < x ≤ 3}

    Im = {y ∈ R : – 4 < x ≤ 2}


    2) Sejam f e g funções cujos gráficos são dados a seguir


    a) para que valores de x, f(x) = g(x)?
    b) para que valores de x, f(x) > g(x)?
    c) para que valores de x, f(x) < g(x)?




                                                                    Matemática - M1                35
Tecnologia      ITAPECURSOS


Solução:
         a) Graficamente, f(x) = g(x) nos pontos comuns aos gráficos de f e g, ou seja, nas interseções dos gráficos
         de f e g. Então a resposta é, x = –1 ou x = 2.
         b) f(x) > g(x) nos pontos onde o gráfico de f está acima do gráfico de g. Pelos gráficos, a resposta é:
         x < –1 ou x > 2.
         c) Para que f(x) < g(x), o gráfico de f deve estar abaixo do gráfico de g. Portanto, -1 < x < 2.


3) Estude o sinal da função f, cujo gráfico é dado a seguir:




Solução:
         Estudar o sinal de uma função é dizer:
             – para que valores de x, f(x) = 0, ou seja, quais as raízes da função.
             – para que valores de x, f(x) > 0
             – para que valores de x, f(x) < 0


         ora, f(x) = 0 quando o gráfico de f corta o eixo x, ou seja, em x = –1, x = 0, x = 2.
         Para que f(x) > 0, o gráfico de f deve estar acima do eixo dos x, e isso acontece se: –1 < x < 0 ou x > 2.
         Finalmente, f(x) < 0 quando o gráfico de f está abaixo do eixo x, ou seja, para x < –1 ou 0 < x < 2.
Resumindo:
         f(x) > 0 se –1 < x < 0 ou x > 2
         f(x) = 0 se x = –1 ou x = 0 ou x = 2
         f(x) < 0 se x < –1 ou 0 < x < 2



7- FUNÇÃO COMPOSTA

      Definição: Sejam as funções f: A → B e g : B → C.

      Chama–se composta de g e f a função gof : A → C
      tal que (gof) (x) = g(f (x))
      Exemplo: Veja o diagrama.
      De acordo com ele, temos:
      (gof)(1) = 9
      (gof)(2) = 10
      (gof)(3) = 11
      Observe que para fazermos a composta entre g e f, x deve estar no domínio de f e f(x) deve estar no domínio
      de g. Além disso, de um modo geral, gof ≠ fog. No nosso exemplo, observe que nem existe fog, pois g(x) ∈
      C e C é diferente do domínio de f.


               36              Matemática - M1
Tecnologia   ITAPECURSOS




1) Sejam as funções reais f e g definidas por f(x) = 2x – 3 e g(x) = x2 + 1. Calcule:
    a) (gof)(1)                   c) (gof)(x)
    b) f(g(2))                    d) f(g(x))


Solução:

      a)


      b)


      c) símbolo (gof)(x) = g(f(x)) e aqui se pede para substituir, na função g, o x por f(x).


Portanto:
      g(f(x)) = [f(x)]2 + 1 = (2x – 3)2 + 1 = 4x2 – 12x + 10
      d) f(g(x)) = 2g(x) – 3 = 2(x2 + 1) – 3 = 2x2 – 1


2) Se f(x) = 2x – 1 e g(x) = 3x + K, ache K para que (fog)(x) = (gof)(x).
Solução:
      f(g(x)) = 2g(x) – 1 = 2(3x + K) – 1 = 6x + 2K – 1
      g(f(x)) = 3f(x) + K = 3(2x – 1) + K = 6x – 3 + K
      Como fog = gof, teremos: 6x + 2K – 1 = 6x – 3 + K e daí, K = –2.

3) Sejam as funções f(x) =        e g(x) = 2x + 3.

      a) Determine o domínio de f e o de g.
      b) Determine o domínio de fog e gof.


Solução:
      a) D(f) = {x ∈ R: x ≠ 2}
        D(g) = R
      b) Domínio de fog.
      Como já dissemos, o domínio de fog é formado pelos elementos do domínio de g para os quais g(x) está no
      domínio de f. Logo:
      x ∈ D(g) → x ∈ R

      g(x) ∈ D(f) → 2x + 3 ≠ 2 ; x ≠ – ½

      Então, D(fog) = {x ∈ R: x ≠ – ½ }




                                                                        Matemática - M1                  37
Tecnologia     ITAPECURSOS


      Domínio de gof
      x ∈ D(f) → x ≠ 2

      f(x) ∈ D(g) → f(x) ∈ R

      Logo D(gof) = {x ∈ R: x ≠ 2}


4) Se f(x) = 3x – 2 e f(g(x)) = x + 1, determine g(x):
Solução:

      f(g(x)) = x + 1 ;      3g(x) – 2 = x + 1 ;   g(x) =


      Resp: g(x) =


8 – FUNÇÃO INVERSA

8.1- INTRODUÇÃO
      Observe as funções, cujos diagramas estão representados a seguir.




                                (I)                         (II)                      (III)


      Em todos eles, temos funções de A em B. Se pensarmos nas relações de B em A, ou seja, nas relações
      inversas que eles determinam, verificamos que:
      – no caso do diagrama I, a relação inversa não determina uma função, pois o elemento 5 ∈ B, tem duas
      imagens, 2 e 3.
      – para o diagrama II, a relação inversa também não determina uma função, pois o elemento 7 ∈ B, não tem
      imagem.
      – já no caso do diagrama III, a relação inversa determina uma função, pois todo elemento de B tem uma
      única imagem em A.
      Veremos, a partir de agora, as condições para uma função ser inversa.




8.2- DEFININDO TIPOS DE FUNÇÃO
Definição 1:


             Uma função f é injetora se para todo x1 e x2 do seu domínio, com x1 ≠ x2, tivermos f(x1) ≠ f(x2)




              38                Matemática - M1
Tecnologia   ITAPECURSOS


    De acordo com essa definição, uma função injetora faz elementos diferentes do domínio terem imagens
    diferentes.
    Se a função for dada pelo seu gráfico, para ver se ela é injetora usa–se o “teste da horizontal” que consiste em
    traçar retas horizontais no plano do gráfico. Se pelo menos uma reta horizontal cortar o gráfico em mais de um
    ponto, a função não é injetora.
Definição 2:

                                    Uma função f: A → B é sobrejetora se Im(f) = B
Definição 3:

                     Uma função que é simultaneamente injetora e sobrejetora se diz bijetora.
    Se você estudar agora os diagramas I, II e III anteriores, verá que a condição para uma função ter inversa é que
    ela seja uma função bijetora.

8.3- A FUNÇÃO INVERSA
Definição:
    Seja f: A → B uma função bijetora. Chama–se inversa de f e representa–se por f–1 à função f–1: B → A tal que,
    f(x) = y ↔ f–1 (y) = x

    Observações:
    a) D(f) = Im(f–1) e Im(f) = D(f–1)
    b) O gráfico de f–1 é simétrico ao gráfico de f em relação à bissetriz do 1º e 3º quadrantes.

    No caso da função ser dada por uma fórmula, considerando um domínio onde ela seja bijetora, a inversa é
    encontrada do seguinte modo:
    1º) na fórmula y = f(x), trocamos y por x e x por y.
    2º) Calculamos o y.
    Exemplo: Ache a inversa de y = 2x – 3
Solução:
    y = 2x – 3

    x = 2y – 3 ; x + 3 = 2y ; y =

    Resp: f–1(x) =


9 – PARIDADE DE UMA FUNÇÃO
Definição:

                        Uma função f é par se para todo x de seu domínio temos f(–x) = f(x).
    Graficamente, isso significa que se a função é par seu gráfico é simétrico em relação ao eixo y.
Definição:

                      Uma função f é ímpar se para todo x de seu domínio temos f(–x) = –f(x).

    Isso significa que o gráfico de uma função ímpar é simétrico em relação à origem.



                                                                       Matemática - M1                39
Tecnologia   ITAPECURSOS


10 – FUNÇÃO CRESCENTE E FUNÇÃO DECRESCENTE
Definição:

        Uma função f é crescente num intervalo I se para todo x1 e x2 de I com x1 < x2 tivermos f(x1) < f(x2).




Definição:

      Uma função I é decrescente num intervalo I, se para todo x1, x2 de I, com x1 < x2 tivermos f(x1) > f(x2).




11 – MÁXIMO E MÍNIMO
      Veja o gráfico a seguir:




      Fica claro que f(b) é o maior valor que a função assume e f(c) é o menor valor. Diremos que:
      – b é o ponto de máximo da função e f(b) é o máximo de f.
      – c é o ponto de mínimo e f(c) é o mínimo da função.
      Além disso, para um pequeno intervalo contendo a, f(a) é o mínimo, e para um pequeno intervalo contendo d,
      f(d) é o máximo de f nesse intervalo. Nesses casos, diremos que:
      – a é ponto de mínimo local, e f(a) é mínimo local.
      – d é ponto de máximo local e f(d) é máximo local.
Resumindo:
     Definição: Se f(x) ≤ f(x0 ) para todo x do domínio de f, dizemos que x0 é ponto de máximo e f(x0) é o máximo
              da função.
     Definição: Se f(x) ≥ f(x0) para todo x do domínio de f, dizemos que x0 é ponto de mínimo e f(x0) é o mínimo
              da função.

             40            Matemática - M1
Tecnologia   ITAPECURSOS



                          FUNÇÃO DO 1º GRAU
1- FUNÇÃO CONSTANTE

  Seja f: R → R a função definida por f(x) = C, onde C é um número real qualquer. Chamaremos a uma tal
  função de função constante. Observe que para todo x ∈ R, f(x) = C. É fácil ver que o gráfico de uma função
  constante, f(x) = C, é uma reta horizontal passando pelo ponto (0,C).
  Exemplos:
  a) f(x) = 2                                           b) f(x) = –1




2- FUNÇÃO DO 1º GRAU

  Sejam a e b números reais, com a ≠ 0. Chamamos de função do 1º grau, ou função afim, à função f: R →
  R, definida por f(x) = ax + b.
  Ao número a denominaremos coeficiente angular e ao número b, coeficiente linear.
  Exemplos:
  a) f(x) = x
    Nesse caso, a = 1 e b = 0. Essa função é chamada também de função identidade.

  b) f(x) = 2x
    Aqui, a = 2 e b = 0. Se f(x) = ax, com a ≠ 0, dizemos que f é uma função linear.

  c) f(x) = –x + 3
    Agora a = –1 e b = 3. É o caso geral de uma função afim.



3- GRÁFICO DA FUNÇÃO DO 1º GRAU
  Quando estudarmos a geometria analítica, provaremos que o gráfico de uma função do 1º grau é uma reta,
  portanto para obtê-lo podemos escolher dois valores arbitrários para x e calcular o y correspondente. De-
  pois é só colocá-los no plano cartesiano e uni-los por uma reta. Veja:
  Esboce os gráficos:
  a)       y = 2x –1
            x        y
            0        -1
            1        1



                                                                  Matemática - M1                   41
Tecnologia   ITAPECURSOS


      b)       y=-x+2
               x       y
               0       2
               1       1



4- O SIGNIFICADO DOS COEFICIENTES

4.1- O COEFICIENTE LINEAR
      Seja f(x) = ax + b. Para achar a interseção do gráfico de f com o eixo y, observe que basta calcular f(0). Como
      f(0) = b, então o coeficiente linear é a ordenada do ponto de interseção entre a reta e o eixo y. Veja:




4.2- O COEFICIENTE ANGULAR
      Seja f(x) = ax + b, e x1 e x2 dois números, tal que x1 < x2. Temos que f(x2) = ax2 + b e f(x1) = ax1 + b.
      Logo f(x2) – f(x1) = ax2 – ax1, e daí vem que:




      Como x2 – x1 é positivo, temos que:
      a) Se a > 0, f(x2) – f(x1) > 0 ou f(x2) > f(x1) e então a função é crescente.
      b) Se a < 0, f(x2) – f(x1) < 0 ou f(x2) < f(x1) e nesse caso f é decrescente.


5- A RAIZ DA FUNÇÃO DO 1º GRAU
      Como já vimos, raiz de uma função é o valor de x para o qual f(x) = 0. No caso da função afim, para achar a raiz

      é só resolver a equação ax + b = 0 e encontraremos x = –


      Graficamente, x = –     é a abscissa do ponto de interseção do gráfico com o eixo x.


6- IMAGEM DA FUNÇÃO AFIM

      Seja f(x) = ax + b, uma função afim, e K ∈ R. Se fizermos x =           então f (    )=a.(        ) + b, ou seja,

      f(      ) = K. Logo, qualquer que seja K ∈ R, existe x tal que f(x) = K e então a imagem de f: R → R, tal que
      f(x) = ax + b é R. Em outras palavras, a função afim é sobrejetora em R. Mostre você que f é injetora.



             42             Matemática - M1
Tecnologia    ITAPECURSOS


7- ESTUDO DO SINAL DA FUNÇÃO DO 1º GRAU
   1ª hipótese: a > 0




   2ª hipótese: a < 0




   Em qualquer dos casos temos:
   a) à direita da raiz, a função tem o mesmo sinal de a.
   b) à esquerda da raiz, a função tem o sinal contrário ao de a.
   Em resumo:


                          sinal contrário de a                  mesmo sinal de a
                                                     raiz
   Seja discutir o sinal das funções a seguir:


   a) y = 1 – 2x                                               b) y = (x + 1)(2 – x)
                                                            Solução:
Solução:
                                                               Raízes: x + 1 = 0 : x = –1
   Cálculo da raiz: 1 – 2x = 0; x =
                                                                            2–x=0:x=2
   Diagrama do sinal                                           Diagrama do sinal

                    +++     ---                                            -1          2
                                                                    ––          ++           ++         x+1
                                                                    ++          ++           ––         2-x
   Resp:
                                                                    ––          ++           ––         (x + 1) (2 - x)
   y > 0 se x < ½
                                                                           -1          2
   y = 0 se x = ½
                                                               Obs.: As raízes são colocadas em ordem
   y < 0 se x > ½
                                                               crescente.
                                                               Resp:
                                                               y > 0; se –1 < x < 2
                                                               y = 0; se x = –1 ou x =2
                                                               y < 0; se x < –1 ou x > 2




                                                                         Matemática - M1                43
Tecnologia   ITAPECURSOS


8- INEQUAÇÕES ENVOLVENDO FUNÇÕES DO 1º GRAU
      Resolva as inequações a seguir:
      a) (x + 1)4 ≤ 0
Solução:
      Essa inequação equivale a:
      (x + 1)4 < 0, que dá S1 = ∅
                 ou
             4
      (x + 1) = 0, que dá S2 = {–1}
      Como S = S1 ∪ S2, temos: S = {–1}


      b) (2x + 1)5 ≥ 0
Solução:
      Se uma potência tem expoente ímpar, o sinal do resultado coincide com o sinal da base. Logo:

      (2x + 1)5 ≥ 0 ; 2x + 1 ≥ 0 ; x ≥ –       e então: S = {x ∈ R: x ≥ – }



      c) 2x – 1 < –x + 1 < x + 2
Solução:


      A inequação dada equivale a:


      A solução S é achada fazendo–se a interseção das soluções das inequações anteriores. Logo:

      2x –1 < –x + 1 → x <


      –x + 1 < x + 2 → x > –

      Cálculo de S




                                 2
      S = {x ∈ R: –        <x<     }
                                 3




             44              Matemática - M1
Tecnologia   ITAPECURSOS


   d) (2x + 1) (3 – x) > 0
Solução:                                                  -1/2         3
   Usamos o quadro de sinais.                   ---          +++           +++           2x + 1
                                                +++          +++           ---           3-x
   S = {x ∈ R: –     < x < 3}
                                                ---          +++           ---           P
                                                          -1/2         3

   e) (x + 1)3 . (3 – x)4 ≤ 0
Solução:
   Ao discutir os sinais das funções, lembre–se de que:
   – Se o expoente é ímpar, a potência tem o sinal da base, ou seja, se o expoente é ímpar, esqueça–o
   – Se o expoente é par, o resultado é sempre maior ou igual a zero.
   Teremos, então:
                                                       -1              3
                                                                                                  3
                                                ---          +++           +++       (x + 1)
   Se {x ∈ R: x ≤ – 1 ou x = 3}                                                                 4
                                                +++          +++           +++       (3 - x)
                                                ---          +++           +++       P
                                                       -1              3
   f)

Solução:
                                                                       2
                                                ---          +++           +++       2x - 1
   S = {x ∈ R: x ≤      ou x > 2}
                                                ---              ---       +++       x-2
                                                +++              ---       +++       Q

                                                                       2
   Atenção:
   No caso das inequações quocientes, não inclua na solução os valores que anulam o denominador.



   g)

Solução:

                                                       -1              0
                                                ++               ---       --        -x - 1
                                                --               ---       ++        2x
                                                --           +++           --        Q
   S = {x ∈ R : –1 ≤ x < 0}                            -1              0




                                                                       Matemática - M1                45
Tecnologia    ITAPECURSOS




                                 FUNÇÃO DO 2º GRAU
1- DEFINIÇÃO
      Chamamos de função do 2º grau ou função quadrática à função f : R → R definida por f(x) = ax2 + bx + c,
      com a ≠ 0.
      Exemplos:
      a) f(x) = 3x2 – 2x + 5 ; a = 3, b = –2 ; c = 5; b) f(x) = x2 + 3 ; a = 1, b = 0 ; c = 3; c) f(x) = –x2 + 2x ; a = –1, b = 2, c = 0

2- GRÁFICO
      No momento, o único modo de esboçar o gráfico da função quadrática é através de uma tabela. No entanto,
      algumas propriedades que veremos nos permitirão esboçar tal gráfico de modo muito mais fácil. No estudo
      da geometria analítica, provaremos que o gráfico da função quadrática é uma curva denominada parábola,
      que pode ter as seguintes formas:




      No primeiro caso, dizemos que a parábola tem a concavidade para cima. Isso acontece sempre que a > 0.
      No segundo caso, dizemos que a concavidade da parábola é para baixo, e para isso a < 0.

3- INTERSEÇÃO COM OS EIXOS
3.1- INTERSEÇÃO COM O EIXO Y
      Como já sabemos, para determinar o ponto de interseção entre o gráfico de y = f(x) e o eixo y, basta calcular
      f(0). No caso da função quadrática, f(0) = C. Logo, a interseção da parábola com o eixo y é o ponto (0, C).

3.2- INTERSEÇÃO COM O EIXO X
      A interseção do gráfico de uma função y = f(x) com o eixo x é chamada de raiz da função e é
      encontrada resolvendo-se a equação f(x) = 0. No caso da função do 2º grau, isso se reduz a resolver
      a equação ax2 + bx + c = 0, que é uma equação do 2º grau, a qual estudaremos a seguir.

4- EQUAÇÃO DO 2º GRAU
      É toda equação redutível à forma ax2 + bx + c = 0, com a ≠ 0.
      Para achar suas raízes, usa-se a fórmula de Báskhara:

      x=              onde ∆ = b2 – 4ac é chamado de delta ou discriminante.

      Observe que se:
                                                                      Demonstra–se ainda que se x1 e x2 são as raízes das
      • ∆ > 0, a equação terá 2 raízes reais distintas.               equações ax2 + bx + c = 0, então

      • ∆ = 0, a equação terá 2 raízes reais iguais.
                                                                                                Essas relações são conhecidas
      • ∆ < 0, a equação não terá raízes reais.                                                 como relações de Girard para a
                                                                             .                  equação do 2º grau.


             46                Matemática - M1
Tecnologia   ITAPECURSOS


5- A IMAGEM DA FUNÇÃO QUADRÁTICA
   Achar a imagem de f(x) = ax2 + bx + c é procurar para que valores de y existe x tal que ax2 + bx + c = y
   ou ax2 + bx + c – y = 0 para que essa equação tenha solução ∆ ≥ 0. Logo:

   b2 – 4 . a . (c – y) ≥ 0

   b2 – 4ac + 4ay ≥ 0
       {
   ∆ + 4ay ≥ 0 ou 4ay ≥ – ∆


   Temos então duas hipóteses:
   1ª hipótese: a > 0

   Nesse caso 4a > 0 e então y ≥ –

   Portanto, para a > 0, os valores de y para os quais existe x tal que ax2 + bx + c = y são aqueles para os quais

   y≥–       ou seja:


   a > 0, Im(f) = {y ∈ R: y ≥ –   }



   2ª hipótese: a < 0

   Nesse caso, 4a < 0 e então y ≤ –       , logo a < 0, Im(f) = {y ∈ R: y ≤ –    }

   Exemplo:
   Determine a imagem da função f(x) = 2x2 – 3x + 1
Solução:
   ∆=9–4.2.1=1
             1
   –    =–     . Logo, como a > 0
             8

   Im(f) = {y ∈ R: y ≥ – }




                                                                     Matemática - M1                 47
Tecnologia   ITAPECURSOS


6- VÉRTICE, MÁXIMO E MÍNIMO
      Analisemos com mais detalhe a situação descrita no item anterior. Para fixar idéias, seja f(x) = ax2 + bx + c,
      com a > 0. Então, o gráfico de f é uma parábola, com a concavidade para cima, tal que

      Im(f) = {y ∈ R: y ≥ –     }
      Vemos então que a função apresentará um mínimo igual

      a yv = –

      Ao ponto de ordenada Yv = –       chamamos de vértice. Para
      achar sua abscissa, basta resolver a equação
                                                                           –
         2
      ax + bx + c = –      . Resolvendo–a, você achará xv = –

      Resumindo, para a > 0:

      . Im(f) = {y ∈ R: y ≥ –       }


      . A função tem um mínimo igual a yv = –


      . O ponto V (vértice) tem coordenadas iguais a (    .–     )


      De modo semelhante teríamos, para a < 0:

      . Im(f) = {y ∈ R: y ≤ –       }

      . A função tem máximo igual a yv = –

      . As coordenadas do vértice são (–      ,–   )




7- O GRÁFICO DA FUNÇÃO QUADRÁTICA
      Para esboçar o gráfico da função quadrática f(x) = ax2 + bx + c, siga o seguinte roteiro:
      a) Verifique a concavidade da parábola.
         a > 0 ; concavidade para cima.
         a < 0 ; concavidade para baixo.

      b) Ache a interseção com o eixo y: (0, C)

      c) Calcule as raízes da função.

      d) Determine o vértice.

      e) Esboce o gráfico.




             48               Matemática - M1
Tecnologia   ITAPECURSOS


8- ESTUDO DO SINAL DA FUNÇÃO QUADRÁTICA
  Vamos deduzir as regras de discussão através do estudo gráfico. É lógico que isso não é uma demonstração,
  mas é um modo simples de “ver” o estudo de sinal.
  1ª hipótese: ∆ > 0
  Nesse caso, a função tem duas raízes reais distintas e isso significa que seu gráfico corta o eixo x em dois
  pontos diferentes. Teremos:

                              a>0                                        a<0




  Observe que em ambos os casos, vale a regra
                                       m/a             c/a        m/a
  onde:                                          x1          x2
  • m/a significa que a função toma valores com o mesmo sinal de a.
  • c/a significa que f assume valores com sinal contrário ao sinal de a.
  2ª hipótese: ∆ = 0
  Nesse caso, a função tem duas raízes reais e iguais. Então, seu gráfico tangencia o eixo x, e podemos ter
  os seguintes casos:
                                  a>0                                   a<0




  Conclui-se, daí, a regra:
                                 m/a             m/a
                                       x1 = x2

  3ª hipótese: ∆ < 0
  Agora temos uma função que não admite raízes reais. Seu gráfico então não tem nenhum ponto em comum
  com o eixo x.
                              a>0                                       a<0




  Vale a regra:
                                                       m/a

                                                                   Matemática - M1                49
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1
Ap matemática m1

Mais conteúdo relacionado

Mais procurados

Resolução EsSA 2013-14
Resolução EsSA 2013-14Resolução EsSA 2013-14
Resolução EsSA 2013-14
thieresaulas
 
Exercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grauExercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grau
André Luís Nogueira
 
Matemática
MatemáticaMatemática
Matemática
chavalnoticias
 
Mat - Banco de 101 questões
Mat - Banco de 101 questõesMat - Banco de 101 questões
Mat - Banco de 101 questões
supertrabalhos4
 
Resolução da prova do colégio naval de 2007
Resolução da prova do colégio naval de 2007Resolução da prova do colégio naval de 2007
Resolução da prova do colégio naval de 2007
2marrow
 
Apostila 2 ano matematica
Apostila 2 ano matematicaApostila 2 ano matematica
Apostila 2 ano matematica
Silverio Ribeiro
 
Questões treinamento
Questões treinamentoQuestões treinamento
Questões treinamento
Antony Franc
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
2marrow
 
Mat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol iMat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol i
trigono_metrico
 
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
Cleidvaldo Oliveira
 
Comentario exatas
Comentario exatasComentario exatas
Comentario exatas
Marcus Paulo
 
Mat exercicios resolvidos
Mat exercicios resolvidosMat exercicios resolvidos
Mat exercicios resolvidos
comentada
 
Prova resolvida e comentada Professor de Matemática do RN / 2015
Prova resolvida e comentada Professor de Matemática do RN / 2015Prova resolvida e comentada Professor de Matemática do RN / 2015
Prova resolvida e comentada Professor de Matemática do RN / 2015
Medeiros de Lima Manoel
 
Aritmética Elementar
Aritmética ElementarAritmética Elementar
Aritmética Elementar
Everton Moraes
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
J M
 
Exercicios resolvidos matematica
Exercicios resolvidos matematicaExercicios resolvidos matematica
Exercicios resolvidos matematica
zeramento contabil
 
7ª SéRie MatemáTica 1º Semestre
7ª SéRie   MatemáTica   1º Semestre7ª SéRie   MatemáTica   1º Semestre
7ª SéRie MatemáTica 1º Semestre
PROFESSOR FABRÍCIO
 
Matematica suple
Matematica supleMatematica suple
Matematica suple
Allan Almeida de Araújo
 
6ª SéRie MatemáTica 1º Semestre
6ª SéRie   MatemáTica   1º Semestre6ª SéRie   MatemáTica   1º Semestre
6ª SéRie MatemáTica 1º Semestre
PROFESSOR FABRÍCIO
 
Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011
thieresaulas
 

Mais procurados (20)

Resolução EsSA 2013-14
Resolução EsSA 2013-14Resolução EsSA 2013-14
Resolução EsSA 2013-14
 
Exercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grauExercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grau
 
Matemática
MatemáticaMatemática
Matemática
 
Mat - Banco de 101 questões
Mat - Banco de 101 questõesMat - Banco de 101 questões
Mat - Banco de 101 questões
 
Resolução da prova do colégio naval de 2007
Resolução da prova do colégio naval de 2007Resolução da prova do colégio naval de 2007
Resolução da prova do colégio naval de 2007
 
Apostila 2 ano matematica
Apostila 2 ano matematicaApostila 2 ano matematica
Apostila 2 ano matematica
 
Questões treinamento
Questões treinamentoQuestões treinamento
Questões treinamento
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
 
Mat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol iMat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol i
 
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
 
Comentario exatas
Comentario exatasComentario exatas
Comentario exatas
 
Mat exercicios resolvidos
Mat exercicios resolvidosMat exercicios resolvidos
Mat exercicios resolvidos
 
Prova resolvida e comentada Professor de Matemática do RN / 2015
Prova resolvida e comentada Professor de Matemática do RN / 2015Prova resolvida e comentada Professor de Matemática do RN / 2015
Prova resolvida e comentada Professor de Matemática do RN / 2015
 
Aritmética Elementar
Aritmética ElementarAritmética Elementar
Aritmética Elementar
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
 
Exercicios resolvidos matematica
Exercicios resolvidos matematicaExercicios resolvidos matematica
Exercicios resolvidos matematica
 
7ª SéRie MatemáTica 1º Semestre
7ª SéRie   MatemáTica   1º Semestre7ª SéRie   MatemáTica   1º Semestre
7ª SéRie MatemáTica 1º Semestre
 
Matematica suple
Matematica supleMatematica suple
Matematica suple
 
6ª SéRie MatemáTica 1º Semestre
6ª SéRie   MatemáTica   1º Semestre6ª SéRie   MatemáTica   1º Semestre
6ª SéRie MatemáTica 1º Semestre
 
Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011
 

Destaque

Ap matemática m3
Ap matemática m3Ap matemática m3
Ap matemática m3
trigono_metrico
 
Ap matemática m2
Ap matemática m2Ap matemática m2
Ap matemática m2
trigono_metrico
 
Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidos
trigono_metrico
 
Pro cefet fasciculo 03 resolução comentada
Pro cefet fasciculo 03 resolução comentadaPro cefet fasciculo 03 resolução comentada
Pro cefet fasciculo 03 resolução comentada
trigono_metrico
 
Geometria Analítica - Exercícios
Geometria Analítica - ExercíciosGeometria Analítica - Exercícios
Geometria Analítica - Exercícios
Everton Moraes
 
Matematica questões resolvidas i
Matematica questões resolvidas iMatematica questões resolvidas i
Matematica questões resolvidas i
con_seguir
 
Mat sequencias e progressoes 005
Mat sequencias e progressoes  005Mat sequencias e progressoes  005
Mat sequencias e progressoes 005
trigono_metrico
 
Mat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) iiMat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) ii
trigono_metrico
 
Ap fisica modulo 30 exercicios
Ap fisica modulo 30 exerciciosAp fisica modulo 30 exercicios
Ap fisica modulo 30 exercicios
comentada
 
Mat progressao aritmetica ( pa ) iii
Mat progressao aritmetica ( pa ) iiiMat progressao aritmetica ( pa ) iii
Mat progressao aritmetica ( pa ) iii
trigono_metrico
 
Mat 140 questoes resolvidas vol ii
Mat 140 questoes resolvidas vol iiMat 140 questoes resolvidas vol ii
Mat 140 questoes resolvidas vol ii
trigono_metrico
 
Pro cefet fasciculo 04 resolução comentada
Pro cefet fasciculo 04 resolução comentadaPro cefet fasciculo 04 resolução comentada
Pro cefet fasciculo 04 resolução comentada
trigono_metrico
 
Exercícios complementares de matemática aplicada para 1 ap 2016 1
Exercícios complementares de matemática aplicada para 1 ap 2016 1Exercícios complementares de matemática aplicada para 1 ap 2016 1
Exercícios complementares de matemática aplicada para 1 ap 2016 1
Felipe Serpa
 
7216809 testes-anpad-jun-e-set-20041
7216809 testes-anpad-jun-e-set-200417216809 testes-anpad-jun-e-set-20041
7216809 testes-anpad-jun-e-set-20041
Andre Somar
 
Lista de exercícios de Matemática Vestibular
Lista de exercícios de Matemática VestibularLista de exercícios de Matemática Vestibular
Lista de exercícios de Matemática Vestibular
Joyce Furlan
 
Exercicios e problemas conjuntos final
Exercicios e problemas conjuntos finalExercicios e problemas conjuntos final
Exercicios e problemas conjuntos final
karuusso
 
Caderno de atividades terceirão ftd 04
Caderno de atividades terceirão ftd   04Caderno de atividades terceirão ftd   04
Caderno de atividades terceirão ftd 04
Oswaldo Stanziola
 
Raciocínio lógico
Raciocínio lógicoRaciocínio lógico
Raciocínio lógico
VanRabelo
 
Mat exercicios resolvidos e comentados 005
Mat exercicios resolvidos e comentados  005Mat exercicios resolvidos e comentados  005
Mat exercicios resolvidos e comentados 005
trigono_metrico
 
Conjuntos numéricos gabarito
Conjuntos numéricos gabaritoConjuntos numéricos gabarito
Conjuntos numéricos gabarito
Otávio Sales
 

Destaque (20)

Ap matemática m3
Ap matemática m3Ap matemática m3
Ap matemática m3
 
Ap matemática m2
Ap matemática m2Ap matemática m2
Ap matemática m2
 
Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidos
 
Pro cefet fasciculo 03 resolução comentada
Pro cefet fasciculo 03 resolução comentadaPro cefet fasciculo 03 resolução comentada
Pro cefet fasciculo 03 resolução comentada
 
Geometria Analítica - Exercícios
Geometria Analítica - ExercíciosGeometria Analítica - Exercícios
Geometria Analítica - Exercícios
 
Matematica questões resolvidas i
Matematica questões resolvidas iMatematica questões resolvidas i
Matematica questões resolvidas i
 
Mat sequencias e progressoes 005
Mat sequencias e progressoes  005Mat sequencias e progressoes  005
Mat sequencias e progressoes 005
 
Mat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) iiMat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) ii
 
Ap fisica modulo 30 exercicios
Ap fisica modulo 30 exerciciosAp fisica modulo 30 exercicios
Ap fisica modulo 30 exercicios
 
Mat progressao aritmetica ( pa ) iii
Mat progressao aritmetica ( pa ) iiiMat progressao aritmetica ( pa ) iii
Mat progressao aritmetica ( pa ) iii
 
Mat 140 questoes resolvidas vol ii
Mat 140 questoes resolvidas vol iiMat 140 questoes resolvidas vol ii
Mat 140 questoes resolvidas vol ii
 
Pro cefet fasciculo 04 resolução comentada
Pro cefet fasciculo 04 resolução comentadaPro cefet fasciculo 04 resolução comentada
Pro cefet fasciculo 04 resolução comentada
 
Exercícios complementares de matemática aplicada para 1 ap 2016 1
Exercícios complementares de matemática aplicada para 1 ap 2016 1Exercícios complementares de matemática aplicada para 1 ap 2016 1
Exercícios complementares de matemática aplicada para 1 ap 2016 1
 
7216809 testes-anpad-jun-e-set-20041
7216809 testes-anpad-jun-e-set-200417216809 testes-anpad-jun-e-set-20041
7216809 testes-anpad-jun-e-set-20041
 
Lista de exercícios de Matemática Vestibular
Lista de exercícios de Matemática VestibularLista de exercícios de Matemática Vestibular
Lista de exercícios de Matemática Vestibular
 
Exercicios e problemas conjuntos final
Exercicios e problemas conjuntos finalExercicios e problemas conjuntos final
Exercicios e problemas conjuntos final
 
Caderno de atividades terceirão ftd 04
Caderno de atividades terceirão ftd   04Caderno de atividades terceirão ftd   04
Caderno de atividades terceirão ftd 04
 
Raciocínio lógico
Raciocínio lógicoRaciocínio lógico
Raciocínio lógico
 
Mat exercicios resolvidos e comentados 005
Mat exercicios resolvidos e comentados  005Mat exercicios resolvidos e comentados  005
Mat exercicios resolvidos e comentados 005
 
Conjuntos numéricos gabarito
Conjuntos numéricos gabaritoConjuntos numéricos gabarito
Conjuntos numéricos gabarito
 

Semelhante a Ap matemática m1

Matemática - Módulo 01
Matemática -  Módulo 01Matemática -  Módulo 01
Matemática - Módulo 01
Everton Moraes
 
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdfisoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
LourencianneCardoso
 
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
Elaine Chica
 
Conjuntos numéricos, mdc e mmc
Conjuntos numéricos, mdc e mmcConjuntos numéricos, mdc e mmc
Conjuntos numéricos, mdc e mmc
Romulo Garcia
 
Mat numeros primos
Mat numeros primosMat numeros primos
Mat numeros primos
trigono_metria
 
Unprotected apostila-matematica
Unprotected apostila-matematicaUnprotected apostila-matematica
Unprotected apostila-matematica
J M
 
Mat numeros racionais
Mat numeros racionaisMat numeros racionais
Mat numeros racionais
trigono_metria
 
MATEMÁTICA - Slides -6º ano.pdf completo
MATEMÁTICA - Slides -6º ano.pdf completoMATEMÁTICA - Slides -6º ano.pdf completo
MATEMÁTICA - Slides -6º ano.pdf completo
zezinhaa6
 
Matematica vol3
Matematica vol3Matematica vol3
Matematica vol3
Blaunier Matheus
 
Cálculo Numérico
Cálculo NuméricoCálculo Numérico
Cálculo Numérico
Sandro Lima
 
Matematica3ef
Matematica3efMatematica3ef
Matematica3ef
educaedil
 
Ceesvo (ensino fundamental) apostila 3
Ceesvo (ensino fundamental)   apostila 3Ceesvo (ensino fundamental)   apostila 3
Ceesvo (ensino fundamental) apostila 3
Nome Sobrenome
 
Matemática básica
Matemática básicaMatemática básica
Binarios
BinariosBinarios
Binarios
BinariosBinarios
Matemática
MatemáticaMatemática
Matemática
José Trigo
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimais
Erasmo lopes
 
Matemática 2012 quarta manhã 22 08 12
Matemática  2012 quarta manhã  22 08 12Matemática  2012 quarta manhã  22 08 12
Matemática 2012 quarta manhã 22 08 12
Alexandre Magno Cavalcante
 
Apostila matemática
Apostila matemáticaApostila matemática
Apostila matemática
Thulio Cesar
 
Matemática
MatemáticaMatemática

Semelhante a Ap matemática m1 (20)

Matemática - Módulo 01
Matemática -  Módulo 01Matemática -  Módulo 01
Matemática - Módulo 01
 
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdfisoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
 
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
3 av mat._2013_demo-p&b-sad-sed-adm.(nm)
 
Conjuntos numéricos, mdc e mmc
Conjuntos numéricos, mdc e mmcConjuntos numéricos, mdc e mmc
Conjuntos numéricos, mdc e mmc
 
Mat numeros primos
Mat numeros primosMat numeros primos
Mat numeros primos
 
Unprotected apostila-matematica
Unprotected apostila-matematicaUnprotected apostila-matematica
Unprotected apostila-matematica
 
Mat numeros racionais
Mat numeros racionaisMat numeros racionais
Mat numeros racionais
 
MATEMÁTICA - Slides -6º ano.pdf completo
MATEMÁTICA - Slides -6º ano.pdf completoMATEMÁTICA - Slides -6º ano.pdf completo
MATEMÁTICA - Slides -6º ano.pdf completo
 
Matematica vol3
Matematica vol3Matematica vol3
Matematica vol3
 
Cálculo Numérico
Cálculo NuméricoCálculo Numérico
Cálculo Numérico
 
Matematica3ef
Matematica3efMatematica3ef
Matematica3ef
 
Ceesvo (ensino fundamental) apostila 3
Ceesvo (ensino fundamental)   apostila 3Ceesvo (ensino fundamental)   apostila 3
Ceesvo (ensino fundamental) apostila 3
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Binarios
BinariosBinarios
Binarios
 
Binarios
BinariosBinarios
Binarios
 
Matemática
MatemáticaMatemática
Matemática
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimais
 
Matemática 2012 quarta manhã 22 08 12
Matemática  2012 quarta manhã  22 08 12Matemática  2012 quarta manhã  22 08 12
Matemática 2012 quarta manhã 22 08 12
 
Apostila matemática
Apostila matemáticaApostila matemática
Apostila matemática
 
Matemática
MatemáticaMatemática
Matemática
 

Mais de trigono_metrico

Ap geometria resolvidos
Ap geometria resolvidosAp geometria resolvidos
Ap geometria resolvidos
trigono_metrico
 
Dfato vestibular fasciculo 3
Dfato vestibular fasciculo  3Dfato vestibular fasciculo  3
Dfato vestibular fasciculo 3
trigono_metrico
 
Apostila 3 funções
Apostila 3 funçõesApostila 3 funções
Apostila 3 funções
trigono_metrico
 
Ap geometria analitica resolvidos
Ap geometria analitica resolvidosAp geometria analitica resolvidos
Ap geometria analitica resolvidos
trigono_metrico
 
Dfato vestibular fasciculo 5
Dfato vestibular fasciculo  5Dfato vestibular fasciculo  5
Dfato vestibular fasciculo 5
trigono_metrico
 
Apostila 1 calculo i
Apostila 1 calculo iApostila 1 calculo i
Apostila 1 calculo i
trigono_metrico
 
Ap trigonometria numeros complexo
Ap trigonometria numeros complexoAp trigonometria numeros complexo
Ap trigonometria numeros complexo
trigono_metrico
 
Apostila 3 calculo i integrais
Apostila 3 calculo i integraisApostila 3 calculo i integrais
Apostila 3 calculo i integrais
trigono_metrico
 
Dfato vestibular fasciculo 2
Dfato vestibular fasciculo  2Dfato vestibular fasciculo  2
Dfato vestibular fasciculo 2
trigono_metrico
 
Apostila trigonometria
Apostila trigonometriaApostila trigonometria
Apostila trigonometria
trigono_metrico
 
Dfato vestibular fasciculo 4
Dfato vestibular fasciculo  4Dfato vestibular fasciculo  4
Dfato vestibular fasciculo 4
trigono_metrico
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basica
trigono_metrico
 
Apostila 2 calculo i derivadas
Apostila 2 calculo i derivadasApostila 2 calculo i derivadas
Apostila 2 calculo i derivadas
trigono_metrico
 
Mat exercicios resolvidos 011
Mat exercicios resolvidos  011Mat exercicios resolvidos  011
Mat exercicios resolvidos 011
trigono_metrico
 
Apostila 1 ec
Apostila 1 ecApostila 1 ec
Apostila 1 ec
trigono_metrico
 
Mat exercicios resolvidos 010
Mat exercicios resolvidos  010Mat exercicios resolvidos  010
Mat exercicios resolvidos 010
trigono_metrico
 
Dfato vestibular fasciculo 1
Dfato vestibular fasciculo  1Dfato vestibular fasciculo  1
Dfato vestibular fasciculo 1
trigono_metrico
 
Mat logaritmos 004
Mat logaritmos  004Mat logaritmos  004
Mat logaritmos 004
trigono_metrico
 
Mat funcoes 002
Mat funcoes  002Mat funcoes  002
Mat funcoes 002
trigono_metrico
 
Mat exercicios gabarito semelhança de triângulos e teorema de tales
Mat exercicios gabarito semelhança de triângulos e teorema de talesMat exercicios gabarito semelhança de triângulos e teorema de tales
Mat exercicios gabarito semelhança de triângulos e teorema de tales
trigono_metrico
 

Mais de trigono_metrico (20)

Ap geometria resolvidos
Ap geometria resolvidosAp geometria resolvidos
Ap geometria resolvidos
 
Dfato vestibular fasciculo 3
Dfato vestibular fasciculo  3Dfato vestibular fasciculo  3
Dfato vestibular fasciculo 3
 
Apostila 3 funções
Apostila 3 funçõesApostila 3 funções
Apostila 3 funções
 
Ap geometria analitica resolvidos
Ap geometria analitica resolvidosAp geometria analitica resolvidos
Ap geometria analitica resolvidos
 
Dfato vestibular fasciculo 5
Dfato vestibular fasciculo  5Dfato vestibular fasciculo  5
Dfato vestibular fasciculo 5
 
Apostila 1 calculo i
Apostila 1 calculo iApostila 1 calculo i
Apostila 1 calculo i
 
Ap trigonometria numeros complexo
Ap trigonometria numeros complexoAp trigonometria numeros complexo
Ap trigonometria numeros complexo
 
Apostila 3 calculo i integrais
Apostila 3 calculo i integraisApostila 3 calculo i integrais
Apostila 3 calculo i integrais
 
Dfato vestibular fasciculo 2
Dfato vestibular fasciculo  2Dfato vestibular fasciculo  2
Dfato vestibular fasciculo 2
 
Apostila trigonometria
Apostila trigonometriaApostila trigonometria
Apostila trigonometria
 
Dfato vestibular fasciculo 4
Dfato vestibular fasciculo  4Dfato vestibular fasciculo  4
Dfato vestibular fasciculo 4
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basica
 
Apostila 2 calculo i derivadas
Apostila 2 calculo i derivadasApostila 2 calculo i derivadas
Apostila 2 calculo i derivadas
 
Mat exercicios resolvidos 011
Mat exercicios resolvidos  011Mat exercicios resolvidos  011
Mat exercicios resolvidos 011
 
Apostila 1 ec
Apostila 1 ecApostila 1 ec
Apostila 1 ec
 
Mat exercicios resolvidos 010
Mat exercicios resolvidos  010Mat exercicios resolvidos  010
Mat exercicios resolvidos 010
 
Dfato vestibular fasciculo 1
Dfato vestibular fasciculo  1Dfato vestibular fasciculo  1
Dfato vestibular fasciculo 1
 
Mat logaritmos 004
Mat logaritmos  004Mat logaritmos  004
Mat logaritmos 004
 
Mat funcoes 002
Mat funcoes  002Mat funcoes  002
Mat funcoes 002
 
Mat exercicios gabarito semelhança de triângulos e teorema de tales
Mat exercicios gabarito semelhança de triângulos e teorema de talesMat exercicios gabarito semelhança de triângulos e teorema de tales
Mat exercicios gabarito semelhança de triângulos e teorema de tales
 

Último

A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
Falcão Brasil
 
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdfPortfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Falcão Brasil
 
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdfEscola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
Falcão Brasil
 
Escola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdfEscola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdf
Falcão Brasil
 
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdfAviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Falcão Brasil
 
Plano Estratégico Institucional do Centro Gestor e Operacional do Sistema de ...
Plano Estratégico Institucional do Centro Gestor e Operacional do Sistema de ...Plano Estratégico Institucional do Centro Gestor e Operacional do Sistema de ...
Plano Estratégico Institucional do Centro Gestor e Operacional do Sistema de ...
Falcão Brasil
 
Introdução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdfIntrodução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdf
valdeci17
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
Marcelo Botura
 
A Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdfA Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdf
Falcão Brasil
 
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdfPortfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Falcão Brasil
 
Que Pena Amor! Eugénio de Sá - Soneto.ppsx
Que Pena Amor! Eugénio de Sá - Soneto.ppsxQue Pena Amor! Eugénio de Sá - Soneto.ppsx
Que Pena Amor! Eugénio de Sá - Soneto.ppsx
Luzia Gabriele
 
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptxSlides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
LuizHenriquedeAlmeid6
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
portaladministradores
 
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Falcão Brasil
 
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptxSlides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
LuizHenriquedeAlmeid6
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
Mary Alvarenga
 
Plano Diretor da Tecnologia da Informação PDTIC 2020 a 2023.pdf
Plano Diretor da Tecnologia da Informação PDTIC 2020 a 2023.pdfPlano Diretor da Tecnologia da Informação PDTIC 2020 a 2023.pdf
Plano Diretor da Tecnologia da Informação PDTIC 2020 a 2023.pdf
Falcão Brasil
 
Organograma do Ministério da Defesa (MD).pdf
Organograma do Ministério da Defesa (MD).pdfOrganograma do Ministério da Defesa (MD).pdf
Organograma do Ministério da Defesa (MD).pdf
Falcão Brasil
 
P0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdfP0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdf
Ceiça Martins Vital
 

Último (20)

TALENTOS DA NOSSA ESCOLA .
TALENTOS DA NOSSA ESCOLA                .TALENTOS DA NOSSA ESCOLA                .
TALENTOS DA NOSSA ESCOLA .
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
 
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdfPortfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
 
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdfEscola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
 
Escola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdfEscola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdf
 
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdfAviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
 
Plano Estratégico Institucional do Centro Gestor e Operacional do Sistema de ...
Plano Estratégico Institucional do Centro Gestor e Operacional do Sistema de ...Plano Estratégico Institucional do Centro Gestor e Operacional do Sistema de ...
Plano Estratégico Institucional do Centro Gestor e Operacional do Sistema de ...
 
Introdução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdfIntrodução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdf
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
 
A Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdfA Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdf
 
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdfPortfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdf
 
Que Pena Amor! Eugénio de Sá - Soneto.ppsx
Que Pena Amor! Eugénio de Sá - Soneto.ppsxQue Pena Amor! Eugénio de Sá - Soneto.ppsx
Que Pena Amor! Eugénio de Sá - Soneto.ppsx
 
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptxSlides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
 
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
 
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptxSlides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
 
Plano Diretor da Tecnologia da Informação PDTIC 2020 a 2023.pdf
Plano Diretor da Tecnologia da Informação PDTIC 2020 a 2023.pdfPlano Diretor da Tecnologia da Informação PDTIC 2020 a 2023.pdf
Plano Diretor da Tecnologia da Informação PDTIC 2020 a 2023.pdf
 
Organograma do Ministério da Defesa (MD).pdf
Organograma do Ministério da Defesa (MD).pdfOrganograma do Ministério da Defesa (MD).pdf
Organograma do Ministério da Defesa (MD).pdf
 
P0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdfP0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdf
 

Ap matemática m1

  • 1. Matemática Matemática I Aritmética em N .......................................................3 Conjunto dos Números Racionais ...........................8 Conjunto dos Números Reais ................................13 Unidades de Medida .............................................16 Cálculo Algébrico ...................................................18 Matemática Comercial ..........................................23 Função...................................................................32 Função do 1º grau .................................................41 Função do 2º grau .................................................46 Função Modular .....................................................51 Matemática II no Código Penal, Artigo 184, parágrafo 1 e 2, com empréstimo, troca ou manutenção em depósito sem autorização do detentor dos direitos autorais é crime previsto A reprodução por qualquer meio, inteira ou em parte, venda, exposição à venda, aluguel, aquisição, ocultamento, multa e pena de reclusão de 01 a 04 anos. Geometria Plana Ângulo ...................................................................56 Polígonos ..............................................................61 Triângulo ................................................................63 Quadriláteros.........................................................67 Circunferência e Círculo ........................................70 Teorema de Thales ...............................................74 Semelhança de Triângulos ....................................75 Relações Métricas no Triângulo Retângulo ...........78 Relações Métricas num Triângulo Qualquer ..........80 Relações Métricas na Circunferência ....................82 Área das Figuras Planas .......................................84 JOSÉ AUGUSTO DE MELO
  • 3. Tecnologia ITAPECURSOS ARITMÉTICA EM N 1- SISTEMA DE NUMERAÇÃO Desde o momento em que o homem necessitou mais útil de todas. Usando dez símbolos, hoje contar quantos elementos uma certa coleção possuía, representados por 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 e ele se preocupou em registrar de algum modo essa algumas regras, inventaram um modo prático e contagem. eficiente de representar os números, que usamos até hoje. Inicialmente usou pedras, cordas, até mesmo pedaços de madeira para fazer esses registros. Os símbolos 0, 1, 2, ..., 9 são chamados algarismos. Chamamos de sistema de numeração a todo conjunto Com o passar do tempo, percebeu que o uso de de símbolos e regras que nos possibilita escrever símbolos tornava essa tarefa mais fácil. qualquer número. A quantidade de símbolos usados Foram os Hindus os criadores da representação no sistema determina a base do sistema. 2- SISTEMA DE NUMERAÇÃO DECIMAL Como o nome diz, é o sistema de base 10. Utiliza os Desse modo, no número 352, o algarismo 2 vale 2 algarismos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. unidades, pois não está escrito à esquerda de nenhum outro, o algarismo 5 vale 50 unidades e o 3 Baseia-se na propriedade a seguir: vale 300 unidades. Como o valor do algarismo “Se um algarismo está escrito à esquerda de outro, depende da posição que ele ocupa no numeral, seu valor é 10 vezes mais que esse outro.” dizemos que esse é um sistema posicional. 3- SISTEMAS DE NUMERAÇÃO EM OUTRAS BASES A base de um sistema de numeração não precisa seu valor é 2 vezes mais que esse outro.” ser necessariamente 10. O fato de usarmos o sistema decimal é uma “fatalidade” anatômica: temos Portanto, no sistema binário, no número (111)2, o 10 dedos nas mãos. Mas nada impede de usarmos primeiro 1 representa 1 unidade, o segundo 1 x 2 outras bases. ou seja 2 unidades e o terceiro 1 representa 1 x 2 x 2 = 4 unidades, representando portanto no Assim, por exemplo, no sistema binário, ou seja, de sistema decimal o valor 7. base 2, usaríamos apenas os algarismos 0 e 1, e a De um modo geral, se b é a base do sistema e pqr propriedade: representa um número desse sistema, temos: ”Se um algarismo está escrito à esquerda de outro, (pqr)b = r + q . b + p . b2 4- MUDANÇA DE BASE 4.1- Passar um número da base 10, para uma base qualquer Regra: Para escrever um número que está no sistema decimal, num outro sistema de base b, efetuamos sucessivas divisões do número dado e dos quocientes obtidos por b, até que se encontre um quociente menor que b. Exemplos: a) Escreva o número 13 na base 2. b) Escreva o número 75 na base 6. Solução: Solução: 13 2 75 6 1 6 2 3 12 6 0 3 2 0 2 1 1 Resp.: 13 = (1101)2 Resp.: 75 = (203)6 Observe que: - Para formar o número, usamos os restos e o último quociente obtido. - A leitura é feita da direita para a esquerda. Matemática - M1 3
  • 4. Tecnologia ITAPECURSOS 4.2- Passar um número do sistema de base b, para o sistema decimal Regra: Basta decompor o número dado em seus valores relativos. Exemplos: a) Passe para a base 10, o número (1011)2. b) Escreva na base 10 o número (314)5. Solução: Solução: (1011)2 = 1 + 1 . 2 + 0 . 22 + 1 . 23 = 1 + 2 + 0 + 8 = 11 (314)5 = 4 + 1 . 5 + 3 . 52 = 4 + 5 + 75 = 84 5- DIVISÃO EUCLIDEANA Sejam a e b números naturais com b ¹ 0. Então, existe um único par de números naturais (q, r) tal que: a) a = b . q + r b) r < b Representamos a divisão por: a b r q O número a chama-se dividendo, b é o divisor, q o quociente e r é o resto. Se r = 0, dizemos que a divisão é exata e teremos a = b . q. Nesse caso, diz-se também que a é múltiplo de b, ou a é divisível por b ou ainda b é divisor de a. 6- NÚMEROS PRIMOS E COMPOSTOS Definição 1: Um número natural n é primo, se ele tiver apenas dois divisores. Definição 2: Um número natural n é composto, se n ¹ 0 e possuir mais de dois divisores. Observe que de acordo com essa definição, os números 0 e 1 não são primos nem compostos. Os números primos formam a sucessão 2, 3, 5, 7, 11, 13, 17, 19, 23,... que o matemático Euclides, que viveu no século III A.C., provou ter infinitos elementos. 7- TEOREMA FUNDAMENTAL DA ARITMÉTICA Todo número composto é igual a um produto de números primos. Quando escrevemos um número composto como um produto de números primos, nós dizemos que o número dado foi decomposto em seus fatores primos ou, ainda, que o número foi fatorado. Exemplo: Decompor em fatores primos os números 72, 540 e 1800. Solução: Regra: Coloque à direita do traço vertical o menor número primo que divide o número dado. Continue procedendo do mesmo modo com os quocientes obtidos, até encontrar o quociente 1. Veja: 72 2 36 2 18 2 9 3 3 3 1 Logo: 72 = 23 x 32 4 Matemática - M1
  • 5. Tecnologia ITAPECURSOS Quando um número termina em zeros, podemos cancelá-los e substituí-los pelo produto 2n x 5n, onde n é a quantidade de zeros cortados. Observe: 540 2.5 54 2 27 3 9 3 Resp.: 540 = 22 . 33 . 5 3 3 1 1800 22 . 52 18 2 9 3 3 3 1 Resp.: 1800 = 23 . 32 . 52 8- COMO ACHAR OS DIVISORES DE UM NÚMERO Regra: a) Decomponha o número em seus fatores primos. b) Coloque à direita e acima do primeiro fator primo o número 1. c) Multiplique os fatores primos obtidos por todos os números à direita e acima deles (valores repetidos não precisam ser colocados). Exemplo.: Ache os divisores do número 72. Solução: 1 72 2 2 36 2 4 18 2 8 9 3 3, 6, 12, 24 3 3 9, 18, 36, 72 1 9- QUANTIDADE DE DIVISORES DE UM NÚMERO Regra: Solução: a) Decomponha o número dado em fatores primos. 60 2 b) Acrescente uma unidade aos expoentes. 30 2 c) Multiplique as somas obtidas em b. 15 3 Exemplo.: Determine quantos divisores tem o número 60. 5 5 1 Resp.: 12 divisores. 360 = 22 . 3 . 5. Logo o nº de divisores de 60 é n = (2 + 1) . (1 + 1) . (1 + 1) = 12 Matemática - M1 5
  • 6. Tecnologia ITAPECURSOS 10- REGRA GERAL DE DIVISIBILIDADE Sejam a e b dois números, decompostos em seus fatores primos. O número a será divisível por b se ele contiver todos os fatores primos de b, com expoentes maiores ou iguais. Exemplo.: a) O número 23 . 32 . 7 é divisível por 3 . 7. b) O número 34 . 52 . 7 é divisível por 32 . 52 c) O número 25 . 32 . 5 não é divisível por 23 . 35. d) O número 32 . 5 . 73 não é divisível por 2 . 3 . 72. 11- MÁXIMO DIVISOR COMUM Definição Se a e b são dois números naturais, tal que um deles pelo menos é diferente de zero, chama-se maior divisor comum de a e b, e representa-se por m.d.c. (a, b), ao maior número que divide simultaneamente a e b. Exemplo.: Se D(n) representa o conjunto dos divisores do número n, teremos: D(8) = {1, 2, 4, 8} D(12) = {1, 2, 3, 4, 6, 12} Daí temos que: D(8) D(12) = {1, 2, 4}, e então m.d.c. (8, 12) = 4. É importante observar que: a) Se um dos números é divisível pelo outro, o menor deles será o m.d.c. Exemplo: 36 é divisível por 12; então m.d.c. (36, 12) = 12. b) Pode acontecer do m.d.c. (a, b) = 1. Nesse caso dizemos que a e b são primos entre si. Exemplo: m.d.c. (4, 9) = 1, logo 4 e 9 são primos entre si. c) Os divisores comuns a dois números são divisores do seu m.d.c. Exemplo: O m.d.c. (54, 72) = 18. Logo os divisores comuns a 54 e 72, são os divisores de 18 ou seja, 1, 2, 3, 6, 9 e 18. 12- CÁLCULO DO M.D.C. PELA DECOMPOSIÇÃO EM FATORES PRIMOS Regra: a) Fatore os números. b) Forme o produto com os fatores comuns aos números, tomados com o menor expoente. Exemplo: Calcule o m.d.c. (72, 90). Solução: Fatorando os números, teremos: 72 = 23 . 32 90 = 2 . 32 . 5 Logo: m.d.c. (72, 90) = 2 . 32 = 18 13- CÁLCULO DO M.D.C. PELO ALGORITMO DE EUCLIDES Daremos um exemplo. Seu professor explicará como o cálculo é feito. Seja calcular m.d.c. (228, 180). Solução: 1 3 1 3 228 180 48 36 12 48 36 12 0 Resp.: m.d.c. (228, 180) = 12 6 Matemática - M1
  • 7. Tecnologia ITAPECURSOS 14- MÍNIMO MÚLTIPLO COMUM Definição Sejam a e b dois números naturais não nulos. Chama-se mínimo múltiplo comum de a e b e representa-se por m.m.c. (a, b), ao menor dos múltiplos, não nulos, comuns aos números a e b. Exemplo: Se M(n) representa o conjunto dos múltiplos do número natural n, então: M(4) = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...} M(6) = {0, 6, 12, 18, 24, 30, 36, 42 ...} M(4) M(6) = {0, 12, 24, 36,...} Portanto m.m.c. (a, b) = 12 Observe que: a) Se um dos números for divisível pelo outro, o maior deles será o m.m.c. Exemplo: 18 é divisível por 6. Logo m.m.c. (18, 6) = 18 b) Se dois números são primos entre si, o m.m.c. entre eles é igual ao seu produto. Exemplo: 4 e 9 são primos entre si; então m.m.c. (4, 9) = 36 c) m.m.c. (ap, bp) = p. m.m.c. (a, b) d) m.d.c. (a, b) x m.m.c.(a, b) = a.b Exemplo: m.d.c. (4, 6) = 2 e m.m.c. (4, 6) = 12 Observe que m.d.c. (4, 6) x m.m.c. (4, 6) = 4.6 e) Os múltiplos comuns a dois números a e b, são múltiplos do seu m.m.c. Exemplo: Como vimos, m.m.c. (4, 6) = 12. Logo os múltiplos comuns a 4 e 6 são os múltiplos de 12 ou 12, 24, 36, 48, ... (múltiplos positivos) 15- CÁLCULO DO M.M.C. PELA DECOMPOSIÇÃO EM FATORES PRIMOS Regra: a) Fatore os números. b) Forme o produto com os fatores comuns e não comuns aos números, tomados com o maior expoente. Exemplo: Calcule o m.m.c. (12, 15) Solução: Fatorando os números, obtemos: 12 = 22. 3 15 = 3 . 5 Logo, aplicando a regra, achamos: m.m.c. (12, 15) = 22. 3 . 5 = 60 16- CÁLCULO DO M.M.C. PELA DECOMPOSIÇÃO SIMULTÂNEA Veja o exemplo: m.m.c. (9, 12, 15). Solução: 9, 12, 15 2 9, 6, 15 2 9, 3, 15 3 3, 1, 5 3 1, 1, 5 5 1, 1, 1 Resp.: m.m.c. (9, 12, 15) = 22 . 32. 5 = 180 Matemática - M1 7
  • 8. Tecnologia ITAPECURSOS CONJUNTO DOS NÚMEROS RACIONAIS 1- O QUE É UMA FRAÇÃO? a Definição: Chama-se fração todo número representado pelo símbolo , onde a e b são números inteiros, b com b ≠ 0. 3 10 5 7 Exemplos: ; ; ; etc. 4 2 5 3 a Geralmente, a fração representa partes de um inteiro. Na representação , o número a é chamado de b numerador da fração e b é o denominador. O denominador indica em quantas partes o inteiro foi dividido, e o numerador, quantas dessas partes foram tomadas. 2- O CONJUNTO DOS NÚMEROS RACIONAIS Seja Z = {..., -2, -1, 0, 1, 2, ...} o conjunto dos números inteiros. Chama-se conjunto dos números racionais, e representa-se por Q, o conjunto definido por: a Q= /a Z e b Z* Observe que N Ì Z Ì Q. b 3- TIPOS DE FRAÇÃO A) Fração própria É aquela cujo numerador é menor que o denominador 3 2 1 Exemplos: , , 5 7 4 B) Fração imprópria É aquela cujo numerador é maior que o denominador. 7 3 4 10 Exemplos: , , , 5 2 3 5 Obs.: Se o numerador é múltiplo do denominador, dizemos que a fração é aparente. Observe que uma fração aparente é, na verdade, um número inteiro. Exemplos: 4- IGUALDADE DE FRAÇÕES a c Definição: Sejam e duas frações. Então: b d Exemplo: pois 3 . 10 = 5 . 6 Como conseqüência dessa definição, pode-se concluir que: Ao multiplicar ou dividir os termos de uma fração por um mesmo número (não nulo), encontra-se uma fração igual à fração dada. Com isso, pode-se simplificar uma fração, ou seja, podemos achar uma fração igual à fração dada, e cujos termos sejam primos entre si. Uma tal fração se diz na forma irredutível, e para obtê-la basta dividir os termos da fração pelo m.d.c. deles. Exemplo: 8 Matemática - M1
  • 9. Tecnologia ITAPECURSOS 5- OPERAÇÕES COM FRAÇÕES Recordaremos, sucintamente, as principais operações com frações. A) Adição e Subtração Caso os denominadores sejam iguais, conservamos o denominador e somamos ou subtraímos os numeradores. Se os denominadores forem diferentes, nós reduzimos as frações ao menor denominador comum e procedemos como no primeiro caso. Exemplos: a) b) B) Multiplicação Na multiplicação de duas ou mais frações, o produto é encontrado multiplicando-se os numeradores e os denominadores. Sempre que possível, devemos utilizar o cancelamento, visto que com isso os cálculos se simplificarão. Exemplos: a) b) C) Divisão Para dividir duas frações, nós repetimos a primeira e a multiplicamos pelo inverso da segunda. Exemplos: a) b) c) D) Potenciação a Se é uma fração e n é um número natural, teremos: b 6- FRAÇÃO DECIMAL Se o denominador de uma fração é uma potência de 10, ela se diz uma fração decimal. Assim, as frações etc... são frações decimais. Uma simples extensão do sistema de numeração decimal nos permite representar uma fração decimal numa outra forma, que chamaremos de número decimal. Desse modo, teremos: De modo geral, para converter uma fração decimal em número decimal, nós: - escrevemos o numerador da fração. - colocamos a vírgula de modo que o número de casas decimais coincida com a quantidade de zeros do denominador. Matemática - M1 9
  • 10. Tecnologia ITAPECURSOS Já para passarmos um número decimal para fração decimal, nós: - eliminamos a vírgula e escrevemos o número obtido no numerador. - colocamos no denominador uma potência de 10, com tantos zeros quantas forem as casas decimais. Exemplos: 7- OPERAÇÕES COM NÚMEROS DECIMAIS A) Adição e Subtração Coloca-se a vírgula debaixo de vírgula e opera-se como se fossem inteiros. Exemplos: 13,72 + 8,493 3,48 - 2,374 Solução: Solução: 13,72 3,480 + 8,493 -2,374 22,213 1,106 B) Multiplicação Ignoram-se as vírgulas. Ao produto damos um número de casas decimais igual à soma das casas decimais dos fatores. Exemplos: 2,3 x 0,04 Solução: 2,3 0,04 0,092 C) Divisão Igualamos as casas decimais do dividendo e do divisor e efetuamos a divisão. Exemplo: 31,05 : 9 9,54 : 1,8 Solução: Solução: 3105 900 954 180 4050 3,45 540 5,3 4500 0 0 8- SURGEM AS DÍZIMAS PERIÓDICAS Como vimos, toda fração decimal pode ser representada na forma decimal. Frações como e não são decimais, porém são equivalentes a uma fração decimal. Logo, podem também ser representadas como número decimal. Veja: = 0,6 = 0,90 10 Matemática - M1
  • 11. Tecnologia ITAPECURSOS Observe que obteremos a mesma representação se Resumindo: fizermos a divisão do numerador pelo denominador. - Toda fração decimal ou equivalente a uma fração Assim: decimal é representada por um número decimal exato. 30 5 - Se uma fração não for equivalente a uma fração 0 0,6 decimal, sua representação decimal será uma dízima De modo geral, se o denominador da fração, periódica. fatorado, só contiver os fatores 2 e 5, a fração será A fração que “gerou” a dízima periódica será equivalente a uma fração decimal, podendo ser chamada de fração geratriz. representada como número decimal. Já uma fração Na dízima periódica, a parte que se repete é como , por exemplo, jamais será equivalente a chamada de período. Assim, em 0,2525... o período uma fração decimal, pois seu denominador contém é 25. É usual representar essa dízima na forma outro fator além do 2 ou 5. Logo, se quisermos , onde um traço é colocado sobre o período. representar essa fração na forma decimal, teremos que admitir que essa fração representa uma divisão. Se entre o período e a vírgula não existir nenhum Obteremos então: outro algarismo, a dízima é simples. Caso exista entre o período e a vírgula algum outro algarismo, a 50 6 dízima é composta. 20 0,8333... Exemplo: 20 20 0,1616... dízima simples 2 3,444... dízima simples Surgem assim as dízimas periódicas. 0,54242... dízima composta 9 - CÁLCULO DA FRAÇÃO GERATRIZ A) A Dízima Periódica é Simples A geratriz tem como numerador o período e como denominador um número formado por tantos noves quantos forem os algarismos do período. Exemplo: Calcule a fração geratriz das dízimas: a) 0,121212... b) 1,333... Solução: a) b) B) A Dízima Periódica é Composta A geratriz terá para numerador a parte não periódica, seguida do período menos a parte não periódica, e para denominador um número formado de tantos noves quantos são os algarismos do período, seguidos de tantos zeros quantos são os algarismos da parte não periódica. Exemplo: Ache a fração geratriz das dízimas a) 0,5333... b) 0,42666... Solução: Solução: a) b) Matemática - M1 11
  • 12. Tecnologia ITAPECURSOS 10 - PRINCIPAIS MÉDIAS Chamaremos de média ao valor para o qual devem “tender” os valores de um conjunto numérico. Assim, quando dizemos que o salário médio dos empregados da indústria X é R$ 650,00, isto significa que os salários reais giram em torno desse valor. É importante observar que a média de um conjunto numérico pode sofrer uma influência muito forte de valores ou muito altos ou muito baixos. Por isso, temos vários tipos de médias. Veremos as três mais usadas. A) Média Aritmética Simples Definição: Sejam x1, x2, ... , xn, n números. Chama-se média aritmética simples entre eles ao número m.a.s. = Exemplo: Cinco pessoas, pesando 70 kg, 80 kg, 30 kg, 20 kg e 120 kg estão num elevador. Qual o peso médio dessas pessoas? Solução: m.a. = Resp.: 64 kg. B) Média Aritmética Ponderada Suponha que você vai fazer um concurso para ingressar no Banco do Brasil, e que para isso, precise fazer provas de Português, Conhecimentos Gerais e Técnicas Bancárias. Pode acontecer que à prova de Técnicas Bancárias seja dada uma maior relevância. Isso é feito atribuindo-se “pesos” às notas obtidas em cada prova. Desse modo temos a seguinte: Definição: Sejam x1, x2, ..., xn um conjunto de valores aos quais foram atribuídos os pesos p1, p2, ..., pn respectivamente. Então sua média, chamada de média aritmética ponderada é: m.a.p. = Observe que a média aritmética simples é um caso particular da média ponderada (p1 = p2 = ... = pn = 1). C) Média Geométrica Definição: Se x1, x2, ..., xn são números, sua média geométrica é: m.g. = Exemplo: Ache a m.g. entre 4 e 9. Solução: m.g. = 12 Matemática - M1
  • 13. Tecnologia ITAPECURSOS CONJUNTO DOS NÚMEROS REAIS 1 - A NECESSIDADE DE NOVOS NÚMEROS À medida que um conjunto numérico mostrava alguma deficiência, novos conjuntos numéricos iam surgindo. A resolução de equações semelhante a x2 = 2 levou ao aparecimento dos números reais, pois pode-se provar que não existe nenhum número racional cujo quadrado seja 2. A solução de x2 = 2, que representa-se por ou - , não é então um número racional, ou seja, não pode ser colocada na forma a/b, com a e b inteiros e b ≠ 0. Um tal número será chamado daqui para frente de número irracional. Os irracionais podem também ser representados na forma decimal. Nesse caso o número terá infinitas casas decimais e não apresentará parte periódica. A união dos números racionais e irracionais forma o conjunto dos números reais, simbolizado por R. 2) VALOR ABSOLUTO OU MÓDULO DE UM NÚMERO REAL Seja x um número real. Chama-se valor absoluto ou módulo de x ao número representado por |x| e definido por: Exemplos: a) |5| = 5 b |-3| = -(3) = 3 c) |0| = 0 Se a e b são números reais, temos: a) |-a| = |a| b) |ab| = |a| . |b| c) |a/b| = |a|/|b| para b ≠ 0 d) |a + b| ≤ |a| + |b| (desigualdade triangular) 3) DESIGUALDADES EM R a) Se a > b e c > 0 então a.c > b.c b) Se a > b e c < 0 então a.c < b.c c) Se a > b e c ∈ R então a + c > b + c Propriedades do anulamento Se a.b = 0 então a = 0 ou b = 0 Matemática - M1 13
  • 14. Tecnologia ITAPECURSOS 4) POTENCIAÇÃO EM R Seja a um número real não nulo e n um número natural. Então: a0 = 1 a1 = a Propriedades a) d) Atenção: a) (-3)2 = (-3).(-3) = 9 -32 = -1.32 = -1.9 = 9 b) e) b) c) f) 5) RAÍZES Definição: Seja a um número real e n um inteiro positivo. Chama-se raiz n-ésima de a, se existir, ao número real b, para o qual temos bn = a. Em símbolos Exemplos: a) b) c) não existe em Observe que: - Se a < 0 e n é par, não existe a raiz em . - Se a > 0 e n é par o símbolo representará a raiz positiva e - , a raiz negativa. Assim: =3e- = -3. - Se 14 Matemática - M1
  • 15. Tecnologia ITAPECURSOS As principais propriedades da radiciação são: a) se n for par. d) b) e) c) f) Observação: É óbvio que as propriedades anteriores somente são válidas supondo a existência das raízes envolvidas. Podemos agora definir potência de expoente racional. Definição: Se a > 0, m e n são inteiros com n ≠ 0, temos: Exemplos: a) b) 6- RACIONALIZAÇÃO DE DENOMINADORES Racionalizar o denominador de uma expressão é achar uma expressão igual à expressão dada, cujo denominador não tenha radicais. Vamos nos ocupar com a racionalização de três tipos de expressões: 1º Tipo: Expressões da forma . 3º Tipo: Expressões da forma ou Para racionalizar uma expressão dessa forma, multiplicamos os termos da fração por . Nesse caso, multiplicamos os termos da fração pelo conjugado do denominador (expressão Exemplo: Racionalize o denominador de . obtida trocando-se o sinal do 2º termo do denominador). Solução: Exemplo: Racionalize Solução: 2º Tipo: Expressões da forma A racionalização nesse caso é feita multiplicando- se os termos da fração por . Exemplo: Racionalize Solução: Matemática - M1 15
  • 16. Tecnologia ITAPECURSOS UNIDADES DE MEDIDA 1- O QUE É MEDIR? Medir uma grandeza é compará-la com outra da mesma espécie, chamada unidade. Desta comparação, resulta um número que é a medida da grandeza considerada nessa unidade. Exemplo: Suponhamos que um palito de fósforo “coube” exatamente 5 vezes numa caneta. Isso significa que o comprimento da caneta na unidade palito de fósforo é 5. No que se segue, veremos as unidades usadas para medir as principais grandezas do nosso dia-a-dia. 2- MEDIDAS DE COMPRIMENTO Múltiplos Unidade Sub-múltiplos Km hm dam m dm cm mm Para passar de uma unidade para outra, usamos o quadro acima, fazendo a vírgula deslocar-se para a direita ou para a esquerda. Por exemplo: para passar de hm para dm, o quadro nos mostra que devemos deslocar a vírgula 3 casas para a direita. Para passar de cm para m, deslocamos a vírgula 2 casas para a esquerda. Exemplos: 2,35 m = 23,5 dm 0,045 Km = 45 m 147 cm = 0,147 dam 13,4 Km = 13400 m 3- MEDIDAS DE SUPERFÍCIE Unidade: é o metro quadrado (m2) Múltiplos Submúltiplos quilômetro quadrado: Km2 decímetro quadrado: dm2 hectômetro quadrado: hm2 centímetro quadrado: cm2 decâmetro quadrado: dam2 milímetro quadrado: mm2 Km2 hm2 dam2 m2 dm2 cm2 mm2 - Para passar de uma unidade para outra imediatamente inferior, desloca-se a vírgula duas casas para a direita. - Para passar de uma unidade para outra imediatamente superior, desloca-se a vírgula duas casas para a esquerda. Exemplos: 3, 42 Km2 = 342 hm2 2,1 m2 = 21000 cm2 7810 mm2 = 78,1 cm2 5000 m2 = 0,5 hm2. Medidas Agrárias (medidas de terras) Nome hectare are centiare Símbolo ha a ca Valor 10000m2 100 m2 1 m2 16 Matemática - M1
  • 17. Tecnologia ITAPECURSOS 4- MEDIDAS DE VOLUME Unidade: metro cúbico: m3. Múltiplos Submúltiplos quilômetro cúbico: Km3 decímetro cúbico: dm3 hectômetro cúbico: hm3 centímetro cúbico: cm3 decâmetro cúbico: dam3 milímetro cúbico: mm3 Km3 hm3 dam3 m3 dm3 cm3 mm3 As transformações são feitas deslocando-se a vírgula de 3 em 3 casas decimais. Exemplos: 1 dm3 = 1000 cm3 2,45 m3 = 2450 dm3 2000 m3 = 2 dam3 1470 cm3 = 1,47 dm3 Medida de Capacidade: Unidade: é o litro: L. Temos que 1 L = 1 dm3. Múltiplos Submúltiplos Kilolitro (KL) decilitro (dL) hectolitro (hL) centilitro (cL) decalitro (daL) mililitro (mL) Cada unidade de capacidade é dez vezes maior que a unidade imediatamente inferior. Exemplo: 1 hL = 10 daL 2 L = 2000 mL 600 mL = 0, 6 L 5- MEDIDAS DE MASSA Unidade: é o quilograma ( Kg ) O quilograma tem como múltiplo a tonelada, que vale 1000 Kg. Os submúltiplos do quilograma usam como base o grama (g) que equivale a um milésimo do quilograma. 1 g = 0,001 Kg ou 1 Kg = 1000 g Os submúltiplos do Kg são: hectograma: 1 hg = 100 g decagrama: 1 dag = 10 g decigrama: 1 dg = 0,1 g centigrama: 1 cg = 0,01 g miligrama: 1 mg = 0,001 g Veja que as transformações entre as unidades vão se reduzir a multiplicações e divisões por potências de 10. Observações: a) Peso bruto: representa o peso da mercadoria mais o recipiente que a contém. Peso líquido: é o peso apenas da mercadoria. Tara: representa o peso do recipiente. b) Unidade de medida de massa de metais preciosos. É o quilate. Vale 2 decigramas. 1 quilate = 2 dg. Matemática - M1 17
  • 18. Tecnologia ITAPECURSOS CÁLCULO ALGÉBRICO 1 - EXPRESSÃO ALGÉBRICA - VALOR NUMÉRICO Uma expressão se diz algébrica ou literal se é formada por números e letras ou somente letras. Assim, são algébricas as expressões: x2 − 3 2x + 3y; ; x +1 2y As letras que aparecem nas expressões chamam-se variáveis e representam, geralmente, um número real, sendo então chamadas de variável real. Se a expressão algébrica não tem variável no denominador, ela se diz inteira. Se tiver variável no denominador, ela se diz fracionária. O valor obtido ao substituirmos as variáveis de uma expressão algébrica por números dados e efetuarmos os cálculos indicados é chamado valor numérico da expressão. Exemplo: Ache o valor numérico da expressão para x = -3 e y = 5. Solução: Substituindo x por -3 e y por 5, teremos: V.N = ; V.N = ; V.N = ; V.N = Chamaremos de domínio de uma expressão algébrica ao conjunto formado pelos números que podem ser colocados no lugar das variáveis da expressão. Assim, o domínio da expressão é pois x = -3 a expressão não representa número real. Uma expressão algébrica racional inteira, formada por um único termo, será chamada de monômio e uma adição algébrica de monômios será chamada de polinômio. Exemplos de monômios: a) b) Obs.: Dois monômios com a mesma parte literal são ditos monômios semelhantes. Exemplo: e são semelhantes. Exemplos de polinômios: a) é um polinômio de três termos, que chamaremos de trinômio (pois tem 3 termos). b) 2a + b é um binômio (polinômio de dois termos). 18 Matemática - M1
  • 19. Tecnologia ITAPECURSOS 2 - PRODUTOS NOTÁVEIS Alguns produtos aparecem com muita freqüência e são muito úteis, por isso são chamados de produtos notáveis. Veremos os principais. a) (x + y)2 = x2 + 2xy + y2 f) (x - y)3 = x3 - 3x2y + 3xy2 - y3 b) (x - y)2 = x2 - 2xy + y2 g) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz c) (x +y)(x - y) = x2 - y2 h) (x + y)(x2 - xy + y2) = x3 + y3 d) (x + a)(x + b) = x2 + (a + b)x + ab i) (x - y)(x2 + xy + y2) = x3 - y3 e) (x + y)3 = x3 + 3x2y + 3xy2 + y3 Exemplos: Efetue, pelos produtos notáveis: a) (3x + 5)2 = (3x)2 + 2 . 3x . 5 + 52 = 9x2 + 30x + 25 b) (a3 - 4)2 = (a3)2 - 2 . a3 . 4 + 42 = a6 - 8a3 + 16 c) (3x + 2)(3x - 2) = (3x)2 - 22 = 9x2 - 4 d) (x + 5)(x - 3) = x2 + (5 - 3)x + 5 . (-3) = x2 + 2x - 15 (2a - 2)(2a - 3) = (2a)2 + (-2 -3) . 2a + (-2) (-3) = 4a2 - 10a + 6 e) (x + 2)3 = x3 + 3x2 . 2 + 3 . x . 22 + 23 = x3 + 6x2 + 12x + 8 f) (2a - 1)3 = (2a)3 - 3 . (2a)2 . 1 + 3 . 2a . 12 - 13. = 8a3 - 12a2 + 6a - 1 g) (3x + y + 5)2 = (3x)2 + y2 + 52 + 2 . 3x . y + 2 . 3x . 5 + 2 . y . 5 = 9x2 + y2 + 25 + 6xy + 30x + 10y (a - 2b - 1)2 = a2 + (-2b)2 + (-1)2 + 2 . a . (-2b) + 2 . a . (-1) + 2 . (-2b) . (-1) = a2 + 4b2 + 1 - 4ab - 2a + 4b 3 - FATORAÇÃO Fatorar uma expressão algébrica é escrevê-la na forma de um produto. Para isso é útil você se lembrar da propriedade distributiva e dos produtos notáveis vistos anteriormente, pois vários casos de fatoração são conseqüência desses produtos. A dificuldade mais comum, quando se estuda fatoração, está na identificação do caso a ser aplicado à expressão dada. No entanto, com atenção às características de cada caso e muito treinamento, isso não será problema. Vamos aos casos mais comuns. 3.1 - Fator Comum Característica: um ou mais fatores aparecem em todos os termos. Como fatorar: coloque esses fatores comuns em evidência, usando a propriedade distributiva. Exemplos: Fatore a) ax + bx = x . (a + b) b) 20x3 y - 8x2 + 12xy2 = 4x . (5x2y - 2x + 3y) c) (x + 1) b - (x + 1) c = (x + 1) (b - c) 3.2 - Agrupamento Característica: é usado em expressões com no mínimo 4 termos. Como fatorar: aplique o caso anterior sucessivas vezes. Exemplos: Fatore a) x2 + xy + 2x + 2y = (x2 + xy) + (2x + 2y) b) a2 + a - ab - b = (a2 + a) + (-ab - b) = x . (x + y) + 2 (x + y) = a(a + 1) - b(a + 1) = (x + y) (x + 2) = (a + 1) (a - b) Matemática - M1 19
  • 20. Tecnologia ITAPECURSOS 3.3 - Diferença de Quadrados Característica: a expressão dada pode ser reduzida à forma x2 - y2. Como fatorar: use o inverso do produto notável. (x + y)(x - y) = x2 - y2, e então teremos: x2 - y2 = (x + y)(x - y) Exemplos: Fatore a) 16 - x2 = (4 + x)(4 - x) b) (x + 1)2 - y2 = (x + 1 + y)(x + 1 - y) 4 x x+1 y 3.4 - Trinômio Quadrado Perfeito Característica: a expressão dada é um trinômio redutível à forma x2 ± 2xy + y2 Como fatorar: lembre-se de que x2 ± 2xy + y2 = (x ± y)2 Importante: para verificar se o trinômio dado é quadrado perfeito, ordene-o. Depois tire a raiz quadrada do 1º e do 3º termo e multiplique esses resultados. Se o dobro desse produto coincidir com o segundo termo, o trinômio é quadrado perfeito. Caso contrário, o trinômio não pode ser fatorado usando esse caso, e sim um outro método que aprenderemos ao estudar as equações do 2º grau. Exemplos: Fatore a) 4x2 + 12xy + 9y2 = (2x + 3y)2 b) x2 - 6x + 9 = (x - 3)2 = = 2x → 2 . 2x.3y ← 3y x - 2.x.3 3 3.5 - Trinômio do 2º grau Característica: usa-se quando o trinômio dado não for quadrado perfeito Como fatorar: emprega-se a fórmula ax2 + bx + c = a(x - x’)(x - x”), onde x’ e x” são as raízes do trinômio dado. Exemplo: Fatore: 2x2 + 5x - 3 Solução: Cálculo das raízes Resp.: 2x2 + 5x - 3 = 2(x - )(x + 3) A = 25 + 24 = 49 = (2x - 1)(x + 3) x= ; x’ = e x” = -3 3.6 - Soma de Cubos Característica: a expressão é redutível à forma a3 + b3. Exemplos: Fatore Como fatorar: use a fórmula: a) x3 + 8 = x3 + 23 = (x + 2)(x2 - 2x + 4) a3 + b3 = (a + b)(a2 - ab + b2) b) 27a3 + 1 = (3a)3 + 13 = (3a + 1)(9a2 - 3a + 1) 3.7 - Diferença de Cubos Característica: a expressão é redutível à forma a3 - b3. Exemplos: Fatore Como fatorar: Use a fórmula a) x3 - 1 = x3 - 13 = (x - 1)(x2 + x + 1) a3 - b3 = (a - b)(a2 + ab + b2) b) a6 - 8 = (a2)3 - 23 = (a2 - 2)(a4 + 2a2 + 4) 20 Matemática - M1
  • 21. Tecnologia ITAPECURSOS 4 - FRAÇÕES ALGÉBRICAS Assim denominamos as frações que representam o quociente de dois polinômios, sendo o denominador um polinômio não nulo. No que se segue, as operações só são válidas no domínio da fração algébrica estudada. 4.1 - Simplificação de Frações Algébricas Regra: - Fatore os termos da fração. - Cancele os fatores comuns ao numerador e denominador. Exemplos: Simplifique: a) b) =E Solução: Solução: E= pois (y + x)(y - x) = y2 - x2 = E= E = E = 4.2 - Adição e Subtração de Frações Algébricas Regra: - Reduzimos as frações ao mesmo denominador - Efetuamos as operações indicadas nos numeradores - Simplificamos, se possível. Atenção: Para reduzir as frações ao mesmo denominador, você deve fatorar esses denominadores e formar o produto com os fatores comuns e não comuns com maior expoente. Exemplo: Efetue Solução: a) b) Solução: = Matemática - M1 21
  • 22. Tecnologia ITAPECURSOS 4.3 - Multiplicação de Frações Algébricas Regra: - Fatore os termos das frações envolvidas. - Cancele os fatores comuns aos numeradores e denominadores. - Efetue os produtos entre os numeradores e os denominadores. Exemplos: Efetue: a) Solução: P= P= b) Solução: P= pois (x + 3)(x - 3) = x2 - 9 e x . 5x = 5x2 4.4 - Divisão de Frações Algébricas Regra: Repetimos a primeira fração e a multiplicamos pelo inverso da segunda fração. Exemplo: Efetue: Solução: 22 Matemática - M1
  • 23. Tecnologia ITAPECURSOS MATEMÁTICA COMERCIAL 1- RAZÃO Definição Sejam a e b números reais, com b ≠ 0. Chama-se razão entre a e b, ao quociente indicado entre eles. Notação: Observações: a) O fato de usarmos a mesma notação das frações para indicar a razão entre a e b, se deve ao fato de ambos os conceitos, do ponto de vista operacional, terem comportamento idêntico. b) A razão geralmente indica uma comparação. Assim, se num grupo de 10 pessoas, 7 são moças, dizemos que as moças estão presentes na razão de 7 para 10. c) Se duas grandezas são homogêneas (de mesma espécie), razão entre elas é a razão entre os números que exprimem suas medidas numa mesma unidade. Se as grandezas não forem homogêneas, a razão entre elas é simplesmente a razão entre suas medidas, em unidades convenientes. d) Algumas razões recebem nome especial. Por exemplo: Porcentagem: é a razão do tipo . Também se representa pelo símbolo %. Assim = 20%. Escala: razão muito usada em mapas e plantas. Quando se diz que um mapa está na escala , isso significa que cada cm no mapa representa, no real, 1.000.000 cm ou 10 km. • Densidade: razão entre a massa e o volume de um corpo. • Velocidade: razão entre a distância percorrida por um corpo e o tempo gasto para isso. e) Propriedade fundamental das razões (para b ≠ 0 e m ≠ 0) 2- PROPORÇÃO Definição: Chama-se proporção à igualdade entre duas razões. Notação: (b ≠ 0, d ≠ 0) Observe que uma proporção equivale a uma igualdade de frações, e portanto temos como consequência a Propriedade fundamental das proporções: (b ≠ 0, d ≠ 0) Matemática - M1 23
  • 24. Tecnologia ITAPECURSOS As proporções obedecem, ainda, às seguintes propriedades: I) ou Obs.: essa propriedade também vale para a subtração II) III) 1) Calcule x, y e z se e x + y + z = 84 Solução: 1º modo: Usando as propriedades das proporções, temos: Como x + y + z = 84, vem: e daí vem x = 35, y = 21 e z = 28 2º modo: Faça . Daí vem: x = 5K, y = 3K e z = 4K. Substituindo em x + y + z = 84 5K + 3K + 4K = 84 → 12K = 84 → K = 7. Logo x = 5 . 7: x = 35 y = 3 . 7; y = 21 z = 4 . 7; z = 28 3 - PROPORÇÃO DIRETA E INVERSA Definição: Duas grandezas são diretamente proporcionais se aumentando (ou diminuindo) a primeira, a segunda aumenta (ou diminui) na mesma razão. Definição: Duas grandezas são inversamente proporcionais se aumentando (ou diminuindo) a primeira, a segunda diminui (ou aumenta) na mesma razão. Exemplo 1: Uma equipe de futebol se hospeda num hotel cinco estrelas. Observe a tabela onde se relaciona o número de dias que a equipe ficará hospedada com a despesa do time. Nº de dias 1 2 3 4 5 6 Despesa (em dólar) 1000 2000 3000 4000 5000 6000 Observe que se dobrarmos o número de dias, a despesa dobra, triplicando o número de dias a despesa triplica e assim por diante. Dizemos por isso que as grandezas em questão são diretamente proporcionais. 24 Matemática - M1
  • 25. Tecnologia ITAPECURSOS Exemplo 2: Um grupo de operários é capaz de construir uma casa em um tempo dado de acordo com a tabela a seguir: Nº de operários 10 20 30 40 Tempo (dias) 12 6 4 3 Observe que dobrando o número de operários, o tempo cai à metade, triplicando o número de operários o tempo cai à terça parte e assim por diante. Por isso dizemos que essas grandezas são inversamente proporcionais: Observações: a) No exemplo 1, a razão entre os valores correspondentes das duas grandezas é constante. =K K = coeficiente de proporcionalidade b) No exemplo 2, o produto dos valores correspondentes das duas grandezas é constante: 10 x 12 = 20 x 6 = 30 x 4 = 40 x 3 = K K = coeficiente de proporcionalidade. c) De a e b conclui-se que se x e y são variáveis, ou grandezas, temos: Se = K ou x = Ky implica x e y são diretamente proporcionais. Se xy = K ou , x e y são inversamente proporcionais. Assim, se , x é diretamente proporcional a y, r e s e inversamente proporcional a t. d) Muito cuidado ao classificar duas grandezas. Não basta, por exemplo, que as duas grandezas aumentem (ou diminuam). Isso deve acontecer na mesma razão. Assim, se você gasta 2h para varrer um quarto circular de 5m de raio, não é verdade que você gastará 4h para varrer outro quarto circular de 10m de raio, pois quando se dobra o raio, a área quadruplica (pois A = pr2). 4- DIVISÃO EM PARTES PROPORCIONAIS A) Divisão em Partes Diretamente Proporcionais Dividir um número N em partes diretamente proporcionais a outros é achar partes de N, diretamente proporcionais a esses outros números, e cuja soma seja N. Exemplo: Seja dividir o número 220 em partes diretamente proporcionais a 5, 2 e 4. Solução: Sejam x, y, z as partes procuradas. Então: e x + y + z = 220 Resolvendo, utilizando as propriedades das proporções, encontra-se: x = 100; y = 40 e z = 80 Matemática - M1 25
  • 26. Tecnologia ITAPECURSOS B) Divisão em Partes Inversamente Proporcionais Dividir um número N em partes inversamente proporcionais a outros é achar partes de N, diretamente proporcionais aos inversos desses números e cuja soma seja N. Exemplo: Dividir o número 45 em partes inversamente proporcionais a 3, 4 e 6. Solução: Sendo x, y e z as partes, teremos e x = y + z = 45 Resolvendo pelas propriedades das proporções acha-se: x = 20; y = 15 e z = 10 C) Divisão Proporcional Composta Em alguns casos, pode ser necessário dividir um número em partes diretamente proporcionais a dois ou mais conjuntos de números ou, ainda, diretamente proporcional a um conjunto de números e inversamente proporcional a um outro conjunto. Nesses casos, é só lembrar que: - se x é inversamente proporcional a y, é diretamente proporcional a . - se x é diretamente proporcional a y e z, x é diretamente proporcional a y . z. Exempo 1: Dividir o número 98 em partes diretamente proporcionais a 2 e 3 e também diretamente proporcionais a 1 e 4. Solução: Sejam x e y as partes procuradas. Temos: x é d.p. a 2 e 1 ® x é d.p. a 2 . 1 = 2 y é d.p. a 3 e 4 ® y é d.p. a 3 . 4 = 12 Logo: e x + y = 9, que resolvido dá: x = 14, e y = 84 Exemplo 2: Dividir o número 410 em partes d.p. a 3, 2 e 5 e i.p. a 4, 2 e 3. Solução: Sejam x, y e z as partes. x é d.p. a 3 e i.p. a 4 ® x é d.p. a y é d.p. a 2 e i.p. a 2 ® y é d.p. a z é d.p. a 5 e i.p. a 3 ® z é d.p. a Portanto: e x + y + z = 410 que resolvido dá x = 90, y = 120 e z = 200 26 Matemática - M1
  • 27. Tecnologia ITAPECURSOS 5- REGRA DE SOCIEDADE Quando usamos a divisão em partes proporcionais, na divisão de lucro (ou prejuízo) de uma sociedade, dizemos ter uma regra de sociedade. Exemplo 1: Dois sócios montaram uma sorveteria. O primeiro entra com R$ 7.500,00 e o segundo com R$ 4.500,00. Ao final de um ano, a firma deu um lucro de R$ 24.000,00. Qual a parte de cada um? Solução: Quem aplicou um capital maior, deve receber uma parte maior do lucro. Logo trata-se de uma divisão em partes diretamente proporcionais, e então: e x + y = 24.000 . . que resolvido dá: x = 15.000 e y = 9.000 Exemplo 2: Uma sociedade deu um lucro de R$ 340.000,00. O primeiro sócio entrou com R$ 25.000,00, durante 4 meses e o segundo entrou com R$ 35.000,00 durante 2 meses. Quanto deve receber cada um? Solução: É claro que a divisão deve ser em partes d.p ao capital aplicado e também d.p ao tempo. Logo: e x + y = 340.000 o que dá x = 200.000 e y = 140.000 6 - REGRA DE TRÊS Conceito: A regra de três é uma das aplicações das proporções. Ela vai nos permitir resolver problemas que envolvem grandezas diretamente proporcionais ou inversamente proporcionais. Classifica-se em simples ou composta. A) Regra de Três Simples É a regra de três que envolve apenas duas grandezas. Caso essas grandezas sejam diretamente proporcionais, a regra de três se diz simples e direta. Se as grandezas envolvidas forem inversamente proporcionais, a regra de três é simples e inversa. A resolução de uma regra de três consiste em calcular, em uma proporção em que três termos são conhecidos, o quarto termo. Veja alguns exemplos. Exemplo 1: Moendo 100 kg de milho, obtemos 84 kg de fubá. Quantos quilos de milho devo moer para obter 21 kg de fubá? Solução: Inicialmente, dê “nomes” às grandezas envolvidas. Em seguida, coloque os valores dados nas respectivas colunas. Verifique então se as grandezas são direta ou inversamente proporcionais. Se forem diretamente proporcionais, lembre-se de que a razão entre os valores da primeira é igual à razão entre os valores correspondentes da segunda. Se as grandezas forem inversamente proporcionais, a razão entre os valores da primeira é igual ao inverso da razão entre os valores da segunda grandeza. Depois é só calcular o termo desconhecido. Veja Milho (kg) Fubá (kg) 100 84 x 21 Como as grandezas são d.p, temos: e daí vem x = 25 kg Resp.: 25 kg Matemática - M1 27
  • 28. Tecnologia ITAPECURSOS Exemplo 2: Se 36 operários gastam 25 dias para fazer certo serviço, em quantos dias 30 operários, do mesmo gabarito, poderão fazer o mesmo serviço? Solução: Operários Dias 36 25 30 x As grandezas são i.p, pois diminuindo o número de operários aumenta o número de dias para terminar a obra. Logo: (note a inversão na 2ª razão) e daí, x = 30 dias. B) Regra de Três Composta Assim denominamos a regra de três que envolve mais de duas grandezas. Para resolver uma regra de três composta, nós dispomos os valores dados nas respectivas colunas. Em seguida, classificamos as grandezas conhecidas em relação à grandeza que contém o valor desconhecido. Após isso, igualamos a razão entre os valores da grandeza que contém a variável com o produto das razões das outras grandezas, lembrando que se uma grandeza for i.p, devemos inverter a ordem de seus valores. Veja exemplos: Exemplo 1: Numa fábrica, 10 máquinas trabalhando 20 dias produzem 2.000 peças. Quantas máquinas serão necessárias para produzir 1.680 peças em 6 dias? Solução: Máquinas Dias Nº de peças 10 20 2.000 x 6 1.680 i.p d.p Classificando as grandezas Dias e Nº de peças em relação à grandeza Máquina, verifica-se que a primeira é inversamente proporcional e a segunda é diretamente proporcional. Portanto: e daí x = 28 máquinas Observação: Ao classificar uma grandeza, considere as demais como constantes. Exemplo 2: Trabalhando 6 horas por dia durante 10 dias, 10 engenheiros executam projetos de 5 pontes. Quantos engenheiros seriam necessários para projetar 8 pontes, trabalhando 8 horas por dia, durante 15 dias? Solução: horas/dia dias nº engenheiros projetos 6 10 10 5 8 15 x 8 i.p i.p d.p Logo: e daí x = 8 Resp.: 8 engenheiros 28 Matemática - M1
  • 29. Tecnologia ITAPECURSOS 7- PORCENTAGEM Uma razão especial Como já vimos, a porcentagem é uma razão da forma , que também pode ser escrita como a%. Assim = 20%; = 3% e assim por diante. Como a razão exprime uma comparação, na porcentagem essa comparação é feita sempre em relação a um grupo de 100. Desse modo, quando dizemos que o salário teve um aumento esse mês de 25%, isso significa que para cada R$ 100,00, tivemos um acréscimo de R$ 25,00. 8- COMPARANDO NÚMEROS ATRAVÉS DA PORCENTAGEM Suponha que o preço de uma mercadoria sofreu um acréscimo de R$ 80,00. Esse aumento é grande ou pequeno? Para responder a essa pergunta, é preciso que saibamos qual o preço da mercadoria para compará-lo com o aumento dado. Isso pode ser feito de uma maneira muito simples. Basta efetuar a divisão entre esses números. Se, além disso, exprimirmos o resultado obtido como uma razão de conseqüente 100, obteremos a porcentagem do aumento, que indica em 100, qual foi o aumento dado. Suponhamos, por exemplo, que o preço original da mercadoria fosse R$ 200,00. Então a porcentagem do aumento seria: Ou seja, o aumento é de 40%, significando isso que para cada 100 reais no preço, houve um aumento de 40 reais. Esse exemplo mostra que toda porcentagem pode ser colocada na forma de número decimal e vice-versa. Veja alguns exemplos: a) b) c) d) 1) Comprei um objeto por R$ 20,00 e o revendi por R$ 25,00. Qual a minha porcentagem de lucro? Solução: 1º modo: Observe que o meu lucro foi de 5,00. Logo: 20 100 e daí, 5 x 2º modo: Matemática - M1 29
  • 30. Tecnologia ITAPECURSOS 2) Uma mistura foi feita com 12 litros de água e 8 litros de álcool. Determine a porcentagem de álcool na mistura. Solução: Só usaremos o 2º modo 3) A média de reprovação em concursos públicos é de 82%. Quantas pessoas serão aprovadas num concurso com 6.500 inscritos? Solução: Se 82% são reprovados, então 100 - 82 = 18% são aprovados. 1º modo: 6500 100 ; x 18 2º modo: 18% = 0,18. Logo, 18% de 6500 é 0,18 . 6500 = 1170 4) Meu salário é hoje de R$ 810,00. Se eu tiver um aumento de 32%, qual será meu novo salário? Solução: O salário novo será 100% do salário antigo mais 32% do salário antigo, ou seja 132% do salário antigo. Logo: (lembre-se 132% = = 1,32). salário novo = 1,32 . 810,00 = 1,069,20 Resp.: R$ 1.069,20 5) Em um certo país, as taxas de inflação em um trimestre foram: 1º mês = 10%, 2º mês = 15% e 3º mês = 17%. Qual foi a inflação nesse país no trimestre em questão? Solução: Seja x o preço de uma mercadoria qualquer nesse país. Após o primeiro mês, o novo preço dessa mercadoria deveria ser, caso sofresse correção automática da inflação, de 1,10 . x. Após o 2º mês, 1,15 . (1,10 x). E após o 3º mês, 1,17 . 1,15 . (1,10 x) ou seja, 1,48 x. Logo, a inflação é de 48% no trimestre. 6) Uma certa mercadoria custa R$ 350,00. Se eu pagar essa mercadoria à vista, obtenho um desconto de 12%. Por quanto ela me sairá à vista? Solução: Se tenho 12% de desconto, pagarei (100 - 12), 88% do preço. Logo, o preço à vista será 0,88 . 350,00 = 308,00. Resp.: R$ 308,00 30 Matemática - M1
  • 31. Tecnologia ITAPECURSOS 7) Por quanto devo vender um objeto que comprei 8) Calcule o preço de venda de uma mercadoria que por R$ 4.000,00, se quero ganhar 20% sobre o preço comprei por R$ 8.000,00, tendo perdido 25% do preço de venda? de venda. Solução: Solução: Considerando que o preço de venda é 100%, é Sendo o preço de venda 100%, o preço de fácil ver que o preço da compra equivale então compra representará nesse caso 125%. a 80%. Então: Logo: 8000 125 4.000 - 80 x 100 x = 6400 x - 100 , o que dá x = 5000 Outro modo: Outro modo: preço compra = (1 + 0,25) . preço venda. preço compra = (1 - 0,20) . preço venda. Logo: Logo: preço venda = = 5000 preço venda = = 6400 9- JUROS Suponha que você empreste a alguém R$ 1000,00. Ao fazer essa transação, você combina com essa pessoa: a) o prazo após o qual esse valor deverá ser devolvido a você. b) um valor, que você acha justo, essa pessoa deverá pagar-lhe findo o prazo do empréstimo, como uma “remuneração” pelo seu dinheiro que ficou disponível nas mãos dessa pessoa. Esse acréscimo ao capital emprestado é que chamamos de juro. O juro é calculado sempre após um determinado período e combinado no ato da transação. Para simplificar o cálculo, é comum expressá-lo através de uma taxa, a taxa de juros. Assim, por exemplo, numa certa transação podemos combinar uma taxa de 5% ao mês. Isso significa que para cada R$ 100,00, o tomador deve pagar, após o período de um mês, R$ 5,00. O juro é simples se tiver taxa fixa e for calculado sempre sobre a quantia inicial. Por exemplo, se você emprestar R$ 100,00, a 5% ao mês, receberá ao fim do 1º mês R$ 5,00 de juro. Ao fim do 2º mês, mais R$ 5,00 de juro e assim por diante. Normalmente, o que ocorre é o juro ser acrescido ao capital, após o 2º mês a taxa de juro incide sobre esse montante e assim por diante. Nesse caso, temos o juro composto. 10- CÁLCULO DO JURO SIMPLES 11- CÁLCULO DO JURO COMPOSTO M = C . (1 + i)t M ® montante (capital + juros) C ® capital i ® taxa (deve ser expressa na forma decimal) t ® tempo Obs.: i e t devem estar na mesma unidade Obs.: Normalmente alguns problemas de juros compostos podem ser resolvidos usando porcentagem. Matemática - M1 31
  • 32. Tecnologia ITAPECURSOS FUNÇÃO 1 – RELAÇÃO BINÁRIA Sejam A e B dois conjuntos não vazios. Chama-se produto cartesiano de A por B ao conjunto A x B tal que: A x B = {(x,y) : x ∈ A e y ∈ B} Obs.: Se A ou B for vazio, A x B = ∅ Assim, se A = {1,3,5} e B = {2,4,6} então: A x B = {(1,2), (1,4), (1,6), (3,2), (3,4), (3,6), (5,2), (5,4), (5,6)} Um subconjunto qualquer de A x B é chamado de relação binária de A em B. Logo, os subconjuntos de A x B, a seguir, são relações de A em B. R1 = {(1,2), (3,4), (5,2)} R2 = {(3,2), (5,4)} R3 = {(1,2), (3,4), (3,6), (5,2)} 2 – FUNÇÃO: UMA RELAÇÃO ESPECIAL Definição Sejam, A e B dois conjuntos. Uma relação f de A em B é função se para todo x ∈ A, existe um único y ∈ B, tal que (x, y) ∈ f. De acordo com essa definição, das três relações dadas no item anterior, somente R1 é função. R2 não é função, pois o número 1 de A não aparece como abscissa de R2, ou seja, 1 não corresponde com nenhum elemento de B. Já R3,não é função porque 3 aparece duas vezes como abscissa dos pares de R3, ou seja, 3 corresponde mais de uma vez. Uma relação pode também ser representada através de um diagrama. Veja os exemplos: a) A B 1. .4 2. .5 3. .6 É função, pois todo x ∈ A tem um único y ∈ B, tal que (x, y) pertence à relação. 32 Matemática - M1
  • 33. Tecnologia ITAPECURSOS b) A B 1. .4 2. .5 3. .6 Não é função, pois para 2 ∈ A, não existe y ∈ B, tal que (2, y) pertença à relação. c) A B 1. .4 2. .5 3. .6 Não é função, pois para 2 ∈ A, existem dois valores y ∈ B, tal que (2, y) pertence à relação. 3 – NOTAÇÃO PARA AS FUNÇÕES Dada uma função f, se (x, y) ∈ f, diremos que y é a imagem de x pela função, ou y é o valor de f em x, e indicaremos isso por: y = f(x) Veja um exemplo: Seja A = {-1, 0, 1} e f uma relação de A em A dada por f = {(-1, 0), (0, -1), (1, 1)}. Então: f (-1) = 0, lê-se f de menos um é igual a zero. f (0) = -1 f (1) = 1 Para indicar que uma relação f de A em B é uma função, usamos a notação: f: A → B x → y = f (x) Os conjuntos A e B entre os quais se define uma função podem ser de qualquer natureza. Porém, geral- mente A e B serão subconjuntos de R. Quando isso acontece, dizemos que f é uma função real de variável real. Para essas funções é comum dar-se apenas a fórmula que relaciona os elementos ou simplesmente condições às quais a função obedece. 4 – FUNÇÕES DADAS POR FÓRMULAS Exemplo 1: Seja f: R → R definida por f (x) = 2x – 1. Calcule: a) f (3) c) f (x –1) b) f ( ½ ) Matemática - M1 33
  • 34. Tecnologia ITAPECURSOS Solução: a) Para calcular f (3) basta substituir, na fórmula de f, a variável x pelo número 3 e efetuar as operações. Assim: f (3) = 2 . 3 – 1 ; f (3) = 6 – 1 = 5 b) f ( ½ ) = Obs.: Se f ( a ) = 0, dizemos que a é raiz da função Logo, é raiz de f ( x ) = 2x – 1, pois f ( ½ ) = 0 c) f (x – 1) = 2 . (x – 1 ) – 1 ; f ( x – 1 ) = 2x – 2 – 1 f ( x – 1 ) = 2x – 3 Exemplo 2: Seja a função f definida por Calcule f ( 0 ) – 3 f ( 2 ) Solução: Como 0 < 1, f(0)=2.0+1=1 Como 2 > 1, f ( 2 ) = 22 – 1 = 3 Logo f ( 0 ) – 3 . f( 2 ) = 1 – 3 . 3 = – 8 5 – DOMÍNIO E IMAGEM DE UMA FUNÇÃO Seja f uma função de A em B. Chamaremos de domínio de f ao conjunto dos x ∈ A, para os quais existe y ∈ B com (x,y) ∈ f. Representaremos o Domínio de uma função f por D(f). Por imagem da função f entendemos o conjunto dos y ∈ B para os quais existe x ∈ A, tal que (x,y) ∈ f. Representaremos a imagem da função f por Im(f). No caso da função ser dada por uma fórmula, o domínio de f é o conjunto dos x ∈ R para os quais f(x) é real. Para calcular o domínio de algumas funções, é bom lembrar que: a) Se y = , então D ≠ 0. b) Se y = com n par, então A ≥ 0 c) Se y = com ímpar, A é real. 6 – GRÁFICO DE UMA FUNÇÃO Pela definição dada, uma função é um conjunto de pares ordenados. Como a cada para ordenado está associado um ponto do plano, a representação dos pares ordenados da função, no plano cartesiano, cons- titui o gráfico da função. Se for dado o gráfico de uma relação, para verificarmos se a relação é função, usamos o “teste da vertical”. Esse teste consiste em imaginarmos retas verticais traçadas no plano do gráfico. Se pelo menos uma dessas retas cortar o gráfico em mais de um ponto, ele não representa função. 34 Matemática - M1
  • 35. Tecnologia ITAPECURSOS Assim, por exemplo, para os gráficos a seguir teremos: I) Não representa função, pois a reta tracejada, indicada na figura, corta o gráfico em dois pontos, o que equivale a dizer que existe um x que corresponde com dois y. II) Representa uma função, pois qualquer reta vertical inter- cepta o gráfico no máximo em um ponto. 1) Determine o domínio e a imagem da função cujo gráfico está representado a seguir: Solução: Cada ponto do gráfico tem uma abscissa e uma ordenada. O domínio é formado pelas abscissas dos pontos do gráfico e a imagem pelas ordena- das. Basta então imaginarmos as “projeções” do gráfico sobre os eixos dos x, para o domínio, e dos y, para a imagem. Concluiremos que: D = {x ∈ R : – 2 < x ≤ 3} Im = {y ∈ R : – 4 < x ≤ 2} 2) Sejam f e g funções cujos gráficos são dados a seguir a) para que valores de x, f(x) = g(x)? b) para que valores de x, f(x) > g(x)? c) para que valores de x, f(x) < g(x)? Matemática - M1 35
  • 36. Tecnologia ITAPECURSOS Solução: a) Graficamente, f(x) = g(x) nos pontos comuns aos gráficos de f e g, ou seja, nas interseções dos gráficos de f e g. Então a resposta é, x = –1 ou x = 2. b) f(x) > g(x) nos pontos onde o gráfico de f está acima do gráfico de g. Pelos gráficos, a resposta é: x < –1 ou x > 2. c) Para que f(x) < g(x), o gráfico de f deve estar abaixo do gráfico de g. Portanto, -1 < x < 2. 3) Estude o sinal da função f, cujo gráfico é dado a seguir: Solução: Estudar o sinal de uma função é dizer: – para que valores de x, f(x) = 0, ou seja, quais as raízes da função. – para que valores de x, f(x) > 0 – para que valores de x, f(x) < 0 ora, f(x) = 0 quando o gráfico de f corta o eixo x, ou seja, em x = –1, x = 0, x = 2. Para que f(x) > 0, o gráfico de f deve estar acima do eixo dos x, e isso acontece se: –1 < x < 0 ou x > 2. Finalmente, f(x) < 0 quando o gráfico de f está abaixo do eixo x, ou seja, para x < –1 ou 0 < x < 2. Resumindo: f(x) > 0 se –1 < x < 0 ou x > 2 f(x) = 0 se x = –1 ou x = 0 ou x = 2 f(x) < 0 se x < –1 ou 0 < x < 2 7- FUNÇÃO COMPOSTA Definição: Sejam as funções f: A → B e g : B → C. Chama–se composta de g e f a função gof : A → C tal que (gof) (x) = g(f (x)) Exemplo: Veja o diagrama. De acordo com ele, temos: (gof)(1) = 9 (gof)(2) = 10 (gof)(3) = 11 Observe que para fazermos a composta entre g e f, x deve estar no domínio de f e f(x) deve estar no domínio de g. Além disso, de um modo geral, gof ≠ fog. No nosso exemplo, observe que nem existe fog, pois g(x) ∈ C e C é diferente do domínio de f. 36 Matemática - M1
  • 37. Tecnologia ITAPECURSOS 1) Sejam as funções reais f e g definidas por f(x) = 2x – 3 e g(x) = x2 + 1. Calcule: a) (gof)(1) c) (gof)(x) b) f(g(2)) d) f(g(x)) Solução: a) b) c) símbolo (gof)(x) = g(f(x)) e aqui se pede para substituir, na função g, o x por f(x). Portanto: g(f(x)) = [f(x)]2 + 1 = (2x – 3)2 + 1 = 4x2 – 12x + 10 d) f(g(x)) = 2g(x) – 3 = 2(x2 + 1) – 3 = 2x2 – 1 2) Se f(x) = 2x – 1 e g(x) = 3x + K, ache K para que (fog)(x) = (gof)(x). Solução: f(g(x)) = 2g(x) – 1 = 2(3x + K) – 1 = 6x + 2K – 1 g(f(x)) = 3f(x) + K = 3(2x – 1) + K = 6x – 3 + K Como fog = gof, teremos: 6x + 2K – 1 = 6x – 3 + K e daí, K = –2. 3) Sejam as funções f(x) = e g(x) = 2x + 3. a) Determine o domínio de f e o de g. b) Determine o domínio de fog e gof. Solução: a) D(f) = {x ∈ R: x ≠ 2} D(g) = R b) Domínio de fog. Como já dissemos, o domínio de fog é formado pelos elementos do domínio de g para os quais g(x) está no domínio de f. Logo: x ∈ D(g) → x ∈ R g(x) ∈ D(f) → 2x + 3 ≠ 2 ; x ≠ – ½ Então, D(fog) = {x ∈ R: x ≠ – ½ } Matemática - M1 37
  • 38. Tecnologia ITAPECURSOS Domínio de gof x ∈ D(f) → x ≠ 2 f(x) ∈ D(g) → f(x) ∈ R Logo D(gof) = {x ∈ R: x ≠ 2} 4) Se f(x) = 3x – 2 e f(g(x)) = x + 1, determine g(x): Solução: f(g(x)) = x + 1 ; 3g(x) – 2 = x + 1 ; g(x) = Resp: g(x) = 8 – FUNÇÃO INVERSA 8.1- INTRODUÇÃO Observe as funções, cujos diagramas estão representados a seguir. (I) (II) (III) Em todos eles, temos funções de A em B. Se pensarmos nas relações de B em A, ou seja, nas relações inversas que eles determinam, verificamos que: – no caso do diagrama I, a relação inversa não determina uma função, pois o elemento 5 ∈ B, tem duas imagens, 2 e 3. – para o diagrama II, a relação inversa também não determina uma função, pois o elemento 7 ∈ B, não tem imagem. – já no caso do diagrama III, a relação inversa determina uma função, pois todo elemento de B tem uma única imagem em A. Veremos, a partir de agora, as condições para uma função ser inversa. 8.2- DEFININDO TIPOS DE FUNÇÃO Definição 1: Uma função f é injetora se para todo x1 e x2 do seu domínio, com x1 ≠ x2, tivermos f(x1) ≠ f(x2) 38 Matemática - M1
  • 39. Tecnologia ITAPECURSOS De acordo com essa definição, uma função injetora faz elementos diferentes do domínio terem imagens diferentes. Se a função for dada pelo seu gráfico, para ver se ela é injetora usa–se o “teste da horizontal” que consiste em traçar retas horizontais no plano do gráfico. Se pelo menos uma reta horizontal cortar o gráfico em mais de um ponto, a função não é injetora. Definição 2: Uma função f: A → B é sobrejetora se Im(f) = B Definição 3: Uma função que é simultaneamente injetora e sobrejetora se diz bijetora. Se você estudar agora os diagramas I, II e III anteriores, verá que a condição para uma função ter inversa é que ela seja uma função bijetora. 8.3- A FUNÇÃO INVERSA Definição: Seja f: A → B uma função bijetora. Chama–se inversa de f e representa–se por f–1 à função f–1: B → A tal que, f(x) = y ↔ f–1 (y) = x Observações: a) D(f) = Im(f–1) e Im(f) = D(f–1) b) O gráfico de f–1 é simétrico ao gráfico de f em relação à bissetriz do 1º e 3º quadrantes. No caso da função ser dada por uma fórmula, considerando um domínio onde ela seja bijetora, a inversa é encontrada do seguinte modo: 1º) na fórmula y = f(x), trocamos y por x e x por y. 2º) Calculamos o y. Exemplo: Ache a inversa de y = 2x – 3 Solução: y = 2x – 3 x = 2y – 3 ; x + 3 = 2y ; y = Resp: f–1(x) = 9 – PARIDADE DE UMA FUNÇÃO Definição: Uma função f é par se para todo x de seu domínio temos f(–x) = f(x). Graficamente, isso significa que se a função é par seu gráfico é simétrico em relação ao eixo y. Definição: Uma função f é ímpar se para todo x de seu domínio temos f(–x) = –f(x). Isso significa que o gráfico de uma função ímpar é simétrico em relação à origem. Matemática - M1 39
  • 40. Tecnologia ITAPECURSOS 10 – FUNÇÃO CRESCENTE E FUNÇÃO DECRESCENTE Definição: Uma função f é crescente num intervalo I se para todo x1 e x2 de I com x1 < x2 tivermos f(x1) < f(x2). Definição: Uma função I é decrescente num intervalo I, se para todo x1, x2 de I, com x1 < x2 tivermos f(x1) > f(x2). 11 – MÁXIMO E MÍNIMO Veja o gráfico a seguir: Fica claro que f(b) é o maior valor que a função assume e f(c) é o menor valor. Diremos que: – b é o ponto de máximo da função e f(b) é o máximo de f. – c é o ponto de mínimo e f(c) é o mínimo da função. Além disso, para um pequeno intervalo contendo a, f(a) é o mínimo, e para um pequeno intervalo contendo d, f(d) é o máximo de f nesse intervalo. Nesses casos, diremos que: – a é ponto de mínimo local, e f(a) é mínimo local. – d é ponto de máximo local e f(d) é máximo local. Resumindo: Definição: Se f(x) ≤ f(x0 ) para todo x do domínio de f, dizemos que x0 é ponto de máximo e f(x0) é o máximo da função. Definição: Se f(x) ≥ f(x0) para todo x do domínio de f, dizemos que x0 é ponto de mínimo e f(x0) é o mínimo da função. 40 Matemática - M1
  • 41. Tecnologia ITAPECURSOS FUNÇÃO DO 1º GRAU 1- FUNÇÃO CONSTANTE Seja f: R → R a função definida por f(x) = C, onde C é um número real qualquer. Chamaremos a uma tal função de função constante. Observe que para todo x ∈ R, f(x) = C. É fácil ver que o gráfico de uma função constante, f(x) = C, é uma reta horizontal passando pelo ponto (0,C). Exemplos: a) f(x) = 2 b) f(x) = –1 2- FUNÇÃO DO 1º GRAU Sejam a e b números reais, com a ≠ 0. Chamamos de função do 1º grau, ou função afim, à função f: R → R, definida por f(x) = ax + b. Ao número a denominaremos coeficiente angular e ao número b, coeficiente linear. Exemplos: a) f(x) = x Nesse caso, a = 1 e b = 0. Essa função é chamada também de função identidade. b) f(x) = 2x Aqui, a = 2 e b = 0. Se f(x) = ax, com a ≠ 0, dizemos que f é uma função linear. c) f(x) = –x + 3 Agora a = –1 e b = 3. É o caso geral de uma função afim. 3- GRÁFICO DA FUNÇÃO DO 1º GRAU Quando estudarmos a geometria analítica, provaremos que o gráfico de uma função do 1º grau é uma reta, portanto para obtê-lo podemos escolher dois valores arbitrários para x e calcular o y correspondente. De- pois é só colocá-los no plano cartesiano e uni-los por uma reta. Veja: Esboce os gráficos: a) y = 2x –1 x y 0 -1 1 1 Matemática - M1 41
  • 42. Tecnologia ITAPECURSOS b) y=-x+2 x y 0 2 1 1 4- O SIGNIFICADO DOS COEFICIENTES 4.1- O COEFICIENTE LINEAR Seja f(x) = ax + b. Para achar a interseção do gráfico de f com o eixo y, observe que basta calcular f(0). Como f(0) = b, então o coeficiente linear é a ordenada do ponto de interseção entre a reta e o eixo y. Veja: 4.2- O COEFICIENTE ANGULAR Seja f(x) = ax + b, e x1 e x2 dois números, tal que x1 < x2. Temos que f(x2) = ax2 + b e f(x1) = ax1 + b. Logo f(x2) – f(x1) = ax2 – ax1, e daí vem que: Como x2 – x1 é positivo, temos que: a) Se a > 0, f(x2) – f(x1) > 0 ou f(x2) > f(x1) e então a função é crescente. b) Se a < 0, f(x2) – f(x1) < 0 ou f(x2) < f(x1) e nesse caso f é decrescente. 5- A RAIZ DA FUNÇÃO DO 1º GRAU Como já vimos, raiz de uma função é o valor de x para o qual f(x) = 0. No caso da função afim, para achar a raiz é só resolver a equação ax + b = 0 e encontraremos x = – Graficamente, x = – é a abscissa do ponto de interseção do gráfico com o eixo x. 6- IMAGEM DA FUNÇÃO AFIM Seja f(x) = ax + b, uma função afim, e K ∈ R. Se fizermos x = então f ( )=a.( ) + b, ou seja, f( ) = K. Logo, qualquer que seja K ∈ R, existe x tal que f(x) = K e então a imagem de f: R → R, tal que f(x) = ax + b é R. Em outras palavras, a função afim é sobrejetora em R. Mostre você que f é injetora. 42 Matemática - M1
  • 43. Tecnologia ITAPECURSOS 7- ESTUDO DO SINAL DA FUNÇÃO DO 1º GRAU 1ª hipótese: a > 0 2ª hipótese: a < 0 Em qualquer dos casos temos: a) à direita da raiz, a função tem o mesmo sinal de a. b) à esquerda da raiz, a função tem o sinal contrário ao de a. Em resumo: sinal contrário de a mesmo sinal de a raiz Seja discutir o sinal das funções a seguir: a) y = 1 – 2x b) y = (x + 1)(2 – x) Solução: Solução: Raízes: x + 1 = 0 : x = –1 Cálculo da raiz: 1 – 2x = 0; x = 2–x=0:x=2 Diagrama do sinal Diagrama do sinal +++ --- -1 2 –– ++ ++ x+1 ++ ++ –– 2-x Resp: –– ++ –– (x + 1) (2 - x) y > 0 se x < ½ -1 2 y = 0 se x = ½ Obs.: As raízes são colocadas em ordem y < 0 se x > ½ crescente. Resp: y > 0; se –1 < x < 2 y = 0; se x = –1 ou x =2 y < 0; se x < –1 ou x > 2 Matemática - M1 43
  • 44. Tecnologia ITAPECURSOS 8- INEQUAÇÕES ENVOLVENDO FUNÇÕES DO 1º GRAU Resolva as inequações a seguir: a) (x + 1)4 ≤ 0 Solução: Essa inequação equivale a: (x + 1)4 < 0, que dá S1 = ∅ ou 4 (x + 1) = 0, que dá S2 = {–1} Como S = S1 ∪ S2, temos: S = {–1} b) (2x + 1)5 ≥ 0 Solução: Se uma potência tem expoente ímpar, o sinal do resultado coincide com o sinal da base. Logo: (2x + 1)5 ≥ 0 ; 2x + 1 ≥ 0 ; x ≥ – e então: S = {x ∈ R: x ≥ – } c) 2x – 1 < –x + 1 < x + 2 Solução: A inequação dada equivale a: A solução S é achada fazendo–se a interseção das soluções das inequações anteriores. Logo: 2x –1 < –x + 1 → x < –x + 1 < x + 2 → x > – Cálculo de S 2 S = {x ∈ R: – <x< } 3 44 Matemática - M1
  • 45. Tecnologia ITAPECURSOS d) (2x + 1) (3 – x) > 0 Solução: -1/2 3 Usamos o quadro de sinais. --- +++ +++ 2x + 1 +++ +++ --- 3-x S = {x ∈ R: – < x < 3} --- +++ --- P -1/2 3 e) (x + 1)3 . (3 – x)4 ≤ 0 Solução: Ao discutir os sinais das funções, lembre–se de que: – Se o expoente é ímpar, a potência tem o sinal da base, ou seja, se o expoente é ímpar, esqueça–o – Se o expoente é par, o resultado é sempre maior ou igual a zero. Teremos, então: -1 3 3 --- +++ +++ (x + 1) Se {x ∈ R: x ≤ – 1 ou x = 3} 4 +++ +++ +++ (3 - x) --- +++ +++ P -1 3 f) Solução: 2 --- +++ +++ 2x - 1 S = {x ∈ R: x ≤ ou x > 2} --- --- +++ x-2 +++ --- +++ Q 2 Atenção: No caso das inequações quocientes, não inclua na solução os valores que anulam o denominador. g) Solução: -1 0 ++ --- -- -x - 1 -- --- ++ 2x -- +++ -- Q S = {x ∈ R : –1 ≤ x < 0} -1 0 Matemática - M1 45
  • 46. Tecnologia ITAPECURSOS FUNÇÃO DO 2º GRAU 1- DEFINIÇÃO Chamamos de função do 2º grau ou função quadrática à função f : R → R definida por f(x) = ax2 + bx + c, com a ≠ 0. Exemplos: a) f(x) = 3x2 – 2x + 5 ; a = 3, b = –2 ; c = 5; b) f(x) = x2 + 3 ; a = 1, b = 0 ; c = 3; c) f(x) = –x2 + 2x ; a = –1, b = 2, c = 0 2- GRÁFICO No momento, o único modo de esboçar o gráfico da função quadrática é através de uma tabela. No entanto, algumas propriedades que veremos nos permitirão esboçar tal gráfico de modo muito mais fácil. No estudo da geometria analítica, provaremos que o gráfico da função quadrática é uma curva denominada parábola, que pode ter as seguintes formas: No primeiro caso, dizemos que a parábola tem a concavidade para cima. Isso acontece sempre que a > 0. No segundo caso, dizemos que a concavidade da parábola é para baixo, e para isso a < 0. 3- INTERSEÇÃO COM OS EIXOS 3.1- INTERSEÇÃO COM O EIXO Y Como já sabemos, para determinar o ponto de interseção entre o gráfico de y = f(x) e o eixo y, basta calcular f(0). No caso da função quadrática, f(0) = C. Logo, a interseção da parábola com o eixo y é o ponto (0, C). 3.2- INTERSEÇÃO COM O EIXO X A interseção do gráfico de uma função y = f(x) com o eixo x é chamada de raiz da função e é encontrada resolvendo-se a equação f(x) = 0. No caso da função do 2º grau, isso se reduz a resolver a equação ax2 + bx + c = 0, que é uma equação do 2º grau, a qual estudaremos a seguir. 4- EQUAÇÃO DO 2º GRAU É toda equação redutível à forma ax2 + bx + c = 0, com a ≠ 0. Para achar suas raízes, usa-se a fórmula de Báskhara: x= onde ∆ = b2 – 4ac é chamado de delta ou discriminante. Observe que se: Demonstra–se ainda que se x1 e x2 são as raízes das • ∆ > 0, a equação terá 2 raízes reais distintas. equações ax2 + bx + c = 0, então • ∆ = 0, a equação terá 2 raízes reais iguais. Essas relações são conhecidas • ∆ < 0, a equação não terá raízes reais. como relações de Girard para a . equação do 2º grau. 46 Matemática - M1
  • 47. Tecnologia ITAPECURSOS 5- A IMAGEM DA FUNÇÃO QUADRÁTICA Achar a imagem de f(x) = ax2 + bx + c é procurar para que valores de y existe x tal que ax2 + bx + c = y ou ax2 + bx + c – y = 0 para que essa equação tenha solução ∆ ≥ 0. Logo: b2 – 4 . a . (c – y) ≥ 0 b2 – 4ac + 4ay ≥ 0 { ∆ + 4ay ≥ 0 ou 4ay ≥ – ∆ Temos então duas hipóteses: 1ª hipótese: a > 0 Nesse caso 4a > 0 e então y ≥ – Portanto, para a > 0, os valores de y para os quais existe x tal que ax2 + bx + c = y são aqueles para os quais y≥– ou seja: a > 0, Im(f) = {y ∈ R: y ≥ – } 2ª hipótese: a < 0 Nesse caso, 4a < 0 e então y ≤ – , logo a < 0, Im(f) = {y ∈ R: y ≤ – } Exemplo: Determine a imagem da função f(x) = 2x2 – 3x + 1 Solução: ∆=9–4.2.1=1 1 – =– . Logo, como a > 0 8 Im(f) = {y ∈ R: y ≥ – } Matemática - M1 47
  • 48. Tecnologia ITAPECURSOS 6- VÉRTICE, MÁXIMO E MÍNIMO Analisemos com mais detalhe a situação descrita no item anterior. Para fixar idéias, seja f(x) = ax2 + bx + c, com a > 0. Então, o gráfico de f é uma parábola, com a concavidade para cima, tal que Im(f) = {y ∈ R: y ≥ – } Vemos então que a função apresentará um mínimo igual a yv = – Ao ponto de ordenada Yv = – chamamos de vértice. Para achar sua abscissa, basta resolver a equação – 2 ax + bx + c = – . Resolvendo–a, você achará xv = – Resumindo, para a > 0: . Im(f) = {y ∈ R: y ≥ – } . A função tem um mínimo igual a yv = – . O ponto V (vértice) tem coordenadas iguais a ( .– ) De modo semelhante teríamos, para a < 0: . Im(f) = {y ∈ R: y ≤ – } . A função tem máximo igual a yv = – . As coordenadas do vértice são (– ,– ) 7- O GRÁFICO DA FUNÇÃO QUADRÁTICA Para esboçar o gráfico da função quadrática f(x) = ax2 + bx + c, siga o seguinte roteiro: a) Verifique a concavidade da parábola. a > 0 ; concavidade para cima. a < 0 ; concavidade para baixo. b) Ache a interseção com o eixo y: (0, C) c) Calcule as raízes da função. d) Determine o vértice. e) Esboce o gráfico. 48 Matemática - M1
  • 49. Tecnologia ITAPECURSOS 8- ESTUDO DO SINAL DA FUNÇÃO QUADRÁTICA Vamos deduzir as regras de discussão através do estudo gráfico. É lógico que isso não é uma demonstração, mas é um modo simples de “ver” o estudo de sinal. 1ª hipótese: ∆ > 0 Nesse caso, a função tem duas raízes reais distintas e isso significa que seu gráfico corta o eixo x em dois pontos diferentes. Teremos: a>0 a<0 Observe que em ambos os casos, vale a regra m/a c/a m/a onde: x1 x2 • m/a significa que a função toma valores com o mesmo sinal de a. • c/a significa que f assume valores com sinal contrário ao sinal de a. 2ª hipótese: ∆ = 0 Nesse caso, a função tem duas raízes reais e iguais. Então, seu gráfico tangencia o eixo x, e podemos ter os seguintes casos: a>0 a<0 Conclui-se, daí, a regra: m/a m/a x1 = x2 3ª hipótese: ∆ < 0 Agora temos uma função que não admite raízes reais. Seu gráfico então não tem nenhum ponto em comum com o eixo x. a>0 a<0 Vale a regra: m/a Matemática - M1 49