Anúncio

Conjuntos numéricos gabarito

Professor Universitário na IFSULDEMINAS em Câmara Municipal de Muzambinho
22 de Jun de 2015
Conjuntos numéricos gabarito
Conjuntos numéricos gabarito
Próximos SlideShares
Numeros inteiros piramide para o slideNumeros inteiros piramide para o slide
Carregando em ... 3
1 de 2
Anúncio

Mais conteúdo relacionado

Apresentações para você(20)

Destaque(20)

Anúncio

Mais de Otávio Sales(20)

Anúncio

Último(20)

Conjuntos numéricos gabarito

  1. CONJUNTOS NUMÉRICOS CN.7.01.A 1) Defina os conjuntos: ℕ = {0,1,2, … , 𝑛, 𝑛 + 1, … } - Conjunto dos Números Naturais ℤ = {… , −3, −2, −1,0,1,2, … } - Conjunto dos Números Racionais ℚ = { 𝑝 𝑞 ; 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0} - Conjunto dos Números Racionais 2) Dado diagrama, coloque nos lugares corretos os números 3) Escreva o nome e defina: ℕ ∗= {𝑥 ∈ ℕ; 𝑥 ≠ 0} Nome: Conjunto dos Números Naturais Não Nulos ℤ ∗= {𝑥 ∈ ℤ; 𝑥 ≠ 0} Nome: Conjunto dos Números Inteiros Não Nulos ℤ+={𝑥 ∈ ℤ; 𝑥 ≥ 0} Nome: Conjunto dos Números Inteiros Não Negativos ℤ−={𝑥 ∈ ℤ; 𝑥 ≤ 0} Nome: Conjunto dos Números Inteiros Não Positivos ℤ+ ∗ ={𝑥 ∈ ℤ; 𝑥 > 0} Nome: Conjunto dos Números Inteiros Positivos ℤ− ∗ ={𝑥 ∈ ℤ; 𝑥 < 0} Nome: Conjunto dos Números Inteiros Negativos CONJUNTOS NUMÉRICOS CN.7.01.B ℚ ∗={𝑥 ∈ ℚ; 𝑥 ≠ 0} Nome: Conjunto dos Números Racionais Não Nulos ℚ+={𝑥 ∈ ℚ; 𝑥 ≥ 0} Nome: Conjunto dos Números Racionais Não Negativos ℚ−={𝑥 ∈ ℚ; 𝑥 ≤ 0} Nome: Conjunto dos Números Racionais Não Positivos ℚ+ ∗ ={𝑥 ∈ ℚ; 𝑥 > 0} Nome: Conjunto dos Números RacionaisPositivos ℚ− ∗ ={𝑥 ∈ ℚ; 𝑥 < 0} Nome: Conjunto dos Números Racionais Negativos 4) Pode-se dizer que A*=A- {0}. Dado isso, seℙ é o conjunto dos números pares, o que seria ℙ*? O conjunto dos Pares menos o zero, ou seja, {2,4,6,8,..., 2n, 2n+2, ...} 5) Complete com ∈ ou ∉: 0 ∈ ℕ 0 ∈ ℤ 0∈ ℚ 5 ∈ ℕ 5∈ ℤ 5∈ ℚ -2 ∉ ℕ -2∈ ℤ -2∈ ℚ 0,3 ∉ ℕ 0,3∉ ℤ 0,3∈ ℚ 2/3 ∉ ℕ 2/3∉ ℤ 2/3∈ ℚ -0,5 ∉ ℕ -0,5∉ ℤ 0,5∈ ℚ -1/5 ∉ ℕ -1/5∉ ℤ -1/5∈ ℚ 0,333....∉ ℕ 0,333....∉ ℤ 0,333...∈ ℚ 6) Escreva os números em seus locais nos diagramas de Venn: 1 2 3 deve entrar no terceiro círculo. Nenhum dos elementos ficará no último círculo (não aprendemos ainda os números reais) CONJUNTOS NUMÉRICOS CN.7.01.C 1) Complete com ⊂ (contém) ou ⊄ (não contém): ℕ ⊂ ℤ ℕ ⊂ ℚ ℤ ⊄ ℕ ℤ ⊂ ℚ ℚ ⊄ ℕ ℚ ⊄ ℤ A relação de pertinência existe quando relacionamos ELEMENTO e CONJUNTO. Podemos dizer então que: 5∈{0,1,2,3,4,5} e 2/3 ∈ ℚ enquanto 7∉{0,1,2,3,4,5} e 2/3 ∉ ℤ Já a relação de pertinência existe quando relacionamos CONJUNTO e CONJUNTO, nesse caso dizemos que está contido e não está contido {1,2}⊂{0,1,2,3,4} {1,5}⊄{0,1,2,3,4} Um conjunto está contido no outro quando TODOS os seus elementos pertencem ao outro. 8) Determine a união e intersecção entre os conjuntos dos números naturais, inteiros e racionais. ℕ ∪ ℤ = ℤ ℕ ∪ ℚ = ℚ ℤ ∪ ℚ = ℚ ℕ ∩ ℤ = ℕ ℕ ∩ ℚ = ℕ ℤ ∩ ℚ = ℤ 9) Escreva 4 relações de inclusão entre conjuntos não-negativos, não-positivos, negativos, positivos e não- nulos envolvendo quaisquer conjuntos. ℤ+= ℕ ℤ− ∗ ⊂ ℚ− ∗ ℤ− ∗ ⊂ ℤ+ ℕ ∗=ℤ+ ∗ Existem outras 10) Pesquise as propriedades e as escreva (com ajuda do professor): Considere a, b, c números racionais. Propriedades da Adição Nome Sent; COMUTATIVA a+b=b+a ASSOCIATIVA (a+b)+c=a+(b+c) ELEMENTO NEUTRO a+0=0+a=a ELEMENTO OPOSTO a+(-a)=0 FECHAMENTO a+b∈ ℚ CANCEL. ADITIVO Se a+c+b+c então a=b Propriedades da Multiplicação Nome Sent. COMUTATIVA ab=ba ASSOCIATIVA (ab)c=a(bc) ELEMENTO NEUTRO a.1=1.a=a DISTRIBUTIVA EM RELAÇÃO À ADIÇÃO a(b+c)=ab+ac (a+b)c=ac+bc ELEMENTO INVERSO a.(1/a)=1 OBS: a≠0 FECHAMENTO ab∈ ℚ CANCELAMENTO MULTIPLICATIVO Se ac=bc então a=b OBS: a≠0 CONJUNTOS NUMÉRICOS CN.7.01.D 1) Localize na reta: a) A= ½ b) B=1/3 c) C=5/6 d) D=2/5 e) E=3/4 2) Localize na reta: a) A=-1/2 b) B=-2/3 c) C=-5/8 Pela dificuldade de edição e falta de aplicativo apropriado, pedimos que procure o professor para resolução dos exercícios 2 e 3 3) Localize na reta: a) A= 4 1 2 b) 3 2 1B c) 4 1 2C d) 5 1 1D e) 5 2 E f) 3G 4. Ache o módulo, o inverso e o oposto de: a) 2/3 módulo 2/3 inverso 3/2 oposto -2/3 b) 3/5 módulo 3/5 inverso 5/3 oposto -3/5 c) 1/4 módulo ¼ inverso 4 oposto -1/4 d) 4 módulo 4 inverso ¼ oposto -4 e) -2 módulo 2 inverso -1/2 oposto 2 f) -2/3 módulo 2/3 inverso -3/2 oposto 2/3 5.Ache o inverso de 4 1 2 . 2 1 4 = 9 4 , logo o inverso é 4/9 6. Ache o oposto do inverso de -3/4. Resposta: 4/3 7) Ache a metade do triplo do inverso de 6 1 . Inverso – 6 Triplo do inverso – 18 Metade disso – 9 8. (Concurso Professor de Matemática 5ª à 8ª séries – Prefeitura Municipal de Orlândia-SP/2003) A figura mostra um trecho da reta numérica: Os pontos P e Q, indicados pelas setas, podem corresponder, respectivamente, aos números: e) -1,64 e -1,515 9. (Avaliação do SAEB – 4ª série – 2001) A reta numerada, o ponto A representa o número c) 7,5 CONJUNTOS NUMÉRICOS CN.7.01.E 10. (Avaliação do SAEB – 4ª série – 2001) O número decimal correspondente ao ponto assinalado na reta numérica é c) 2,3 11. (Concurso Professor de Matemática 5ª à 8ª séries e Ensino Médio– SESI- SP/2002) Na figura abaixo estão representados geometricamente os números reais –1, y, 0, x e 1.
  2. Com base nessa representação, é possível concluir que o produto x.y está localizado y é negativo e menor que 1 x está entre 0 e 1 Ignorando o sinal x . y é um número menor que y, mas xy é negativo, então estão entre y e 0. Veja um exemplo y=-1,3 e x=0,5, então xy=-0,65 c) entre y e 0 12. (Concurso de Fiscal de Serviços Públicos – Prefeitura Municipal de São Carlos / 2002) Observe a figura abaixo. Os números indicados pelos pontos A e B na escala decimal são, respectivamente, c) 2,385 e 2,402 13. (Avaliação do SARESP 1998 – 5ª série - Diurno) Examine a figura: O ponto A corresponde a um dos números abaixo. A qual deles? Não há gabarito, o A deve ser próximo de 2,4 CONJUNTOS NUMÉRICOS CN.7.01.F 14. (SIMAVE – 4ª série – 2002) Roberto está com febre. Veja a ilustração do termômetro que marca a temperatura dele: O termômetro está marcando: B) 39,3º C 15. (ENCCEJA – Ensino Fundamental – 2002) Uma estrada está sinalizada com marcadores de quilometragem que guardam entre si a mesma distância. Um carro X está na posição 150 e um carro Y, na posição 310. Um carro Z está entre X e Y, conforme a figura abaixo. Dentre as alternativas, assinale a que melhor expressa, em quilômetros, a localização do carro Z. (D) 270. 16. (Concurso Público para Professor de 5ª à 8ª série – Prefeitura Municipal de Araçatuba – SP/2000) Com 3 cartões numerados de 1 a 3, e um cartão marcado com uma vírgula, podemos representar, por exemplo, o no decimal 1,23. O maior número e o menor número, expressos na notação decimal, que podemos representar com os quatro cartões são, respectivamente: c) 32,1 e 1,23 17.(Avaliação do SARESP 2000 – 5ª série - Diurno) Das comparações abaixo, qual é verdadeira? d) 2>1,9 18. (Concurso Público para Professor de 1ª à 4ª série – Prefeitura Cidade do Rio de Janeiro/2001?) Com 3 cartões numerados de 1 a 3, e um quarto cartão com uma vírgula, podemos representar, por exemplo, o no decimal 1,23. Quantos números decimais podemos representar com os quatro cartões? d) 12 Ignorando a vírgula temos 3x2x1=6 possibilidades. A vírgula pode ser colocada em 2 posições, ou seja 6x2=12, números. Listando: 1,23 12,3 1,32 13,2 2,13 21,3 2,31 23,1 3,12 31,2 3,21 32,1 CONJUNTOS NUMÉRICOS CN.7.01.G 19. (ENCCEJA – Ensino Fundamental – 2002) Uma agência de modelos está selecionando jovens para uma propaganda de sorvetes. Entre as exigências, a agência solicita que os jovens tenham altura mínima de 1,65 m e máxima de 1,78 m. Se x é um número racional que representa a altura, em metros, de um jovem que pode ser escolhido para essa propaganda, é correto afirmar que (C) 1,65 x 1,78 (D) 1,65 x 1,78 Veja que as respostas estão iguais (erro meu) 20. (Avaliação do SARESP 1998 – 5ª série - Diurno) Célia fez regime e anotou seu progresso numa tabela: Semana Perda em Quilogramas 1ª 2,45 2ª 1,3 3ª 2,54 4ª 1,03 Em qual semana Célia perdeu menos peso? d) 4ª 21. (Avaliação do SAEB – 4ª série – 2001) Qual é o maior dos números abaixo: d) 0,8 22. (Concurso para o Magistério do Estado e Município do Rio de Janeiro – 1988) Se x e y são números reais tais que 3,23<x<5,01 e 2,81<y<4,54, então, sobre a diferença x-y, pode-se afirmar que: a) -1,31<x-y<2,20 b) -1,41<x-y<0,73 c) 0,42<x-y<2,50 d) 0,42<x-y<2,73 e) 6,04<x-y<9,55 23. (Concurso do Magistério Estadual do Rio de Janeiro – 1990) Numa régua graduada, o segmento cujos extremos são X=7,13 e Y=8,32 se encontra dividido em sete partes iguais, conforme se vê na figura abaixo. O número decimal Z, correspondente à terceira divisão a partir da extremidade X, é expresso por: 8,32-7,13=1,19 São 7 segmentos 1,19:7=0,17 3 x 0,17 = 0,51 7,13+0,51 = 7,64 d) 7,64 CONJUNTOS NUMÉRICOS CN.7.01.H 1) Escreva, usando as três notações: a) o intervalo aberto de extremos -2 e 1. -2<x<1 ]-2,1[ b) o intervalo semi-aberto à esquerda de extremos 3 e 8. 3<x≤8 ]3,8] c) o intervalo fechado de extremos 0 e 5. 0≤x≤5 [0,5] d) o intervalo semi-aberto à direita de extremos -5 e 1. -5≤x<1 [-5,1[ 2) Usando a notação de intervalo, escreva: a) o subconjunto de IR formado pelos números reais maiores que 3. x>3 ]3,∞[ b) o subconjunto de IR formado pelos números reais menores que -1. x<-1 ]-∞,-1[ c) o subconjunto de IR formado pelos números reais maiores ou iguais a 2. x≥2 [2,∞[ d) o subconjunto de IR formado pelos números reais menores ou iguais a ½. x≤1/2 ]- ∞,1/2] 3)Usando a notação de conjuntos, escreva os intervalos: a) [6,10[ 6≤x<10 b) ]-1,5] -1<x≤ 5 c) ]-6,0[ -6<x<0 d) [0,+[ x≥0 e) ]-,3[ x<3 f) [-5,2[ -5≤ 𝑥 < 2 g) ]-10,10[ -10<x<10 h)[- 3 , 3 ] −√3 ≤ 𝑥 ≤ √3 i)]-,1] x≤ 1 Outros exercícios da folha verificar com o professor. CONJUNTOS NUMÉRICOS CN.7.01.I 1) Escreva os conjuntos por extenso (use adequadamente as reticências ... ) {𝑥 ∈ ℤ; 3 < 𝑥 < 10}= {4,5,6,7,8,9} {𝑥 ∈ ℤ; −2 < 𝑥 < 7}= {-1,0,1,2,3,4,5,6} {𝑥 ∈ ℤ ∗; −2 < 𝑥 < 7}= {-1,1,2,3,4,5,6} {𝑥 ∈ ℕ; 3 < 𝑥 < 10}= {4,5,6,7,8,9} {𝑥 ∈ ℕ; −2 < 𝑥 < 7}= {0,1,2,3,4,5,6} {𝑥 ∈ ℕ ∗; −2 < 𝑥 < 7}= {1,2,3,4,5,6} {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10}= {3,4,5,6,7,8,9} {𝑥 ∈ ℤ; 3 < 𝑥 ≤ 10}= {4,5,6,7,8,9,10} {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10}= {3,4,5,6,7,8,9} {𝑥 ∈ ℤ; −1 ≤ 𝑥 < 5}= {-1,0,1,2,3,4} {𝑥 ∈ ℤ; −3 < 𝑥 ≤ 1}= {-2,-1,0,1} {𝑥 ∈ ℤ; −5 ≤ 𝑥 < −3}= {-5,-4} {𝑥 ∈ ℕ; 3 < 𝑥 < 4}= { }=∅ (nenhum número, não há números entre 3 e 4) {𝑥 ∈ ℕ; −5 < 𝑥 < −2}= { }=∅ (nenhum número, números naturais não podem ser negativos) {𝑥 ∈ ℕ; 5 < 𝑥 < 100}= {6,7,8,9,...,99,100} {𝑥 ∈ ℕ; −10 < 𝑥 < 500}= {-0,1,2,3,....,499,500} {𝑥 ∈ ℕ; 𝑥 < 10}= {0,1,2,3,4,5,6,7,8,9} {𝑥 ∈ ℕ; 𝑥 > 10}= {11,12,13,14,...} {𝑥 ∈ ℤ; 𝑥 < 10}= {...,-2,-1, 0,1,2,3,4,5,6,7,8,9} {𝑥 ∈ ℤ; 𝑥 > 10}= {11,12,13,14,...} {𝑥 ∈ ℤ ∗; 𝑥 > 10}= {11,12,13,14,...} {𝑥 ∈ ℤ; 𝑥 ≥ 10}= {...,-2,-1, 0,1,2,3,4,5,6,7,8,9,10} 2) Complete com ∈ (pertence) e ∉ (não pertence) -3 ∉ {𝑥 ∈ ℤ; 3 < 𝑥 < 10} 4 ∈ {𝑥 ∈ ℤ; 3 < 𝑥 < 10} 3 ∉ {𝑥 ∈ ℤ; 3 < 𝑥 < 10} 3∈ {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10} 5,2∉ {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10} 7/2∉ {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10} 5,2∈ {𝑥 ∈ ℚ; 3 ≤ 𝑥 < 10} 7/2∈ {𝑥 ∈ ℚ; 3 ≤ 𝑥 < 10} 0,555........ ∈ {𝑥 ∈ ℚ; −5 < 𝑥 < 10} -1/3∈ {𝑥 ∈ ℚ; −2 < 𝑥 ≤ 3} 5/9∉ {𝑥 ∈ ℚ; 1 ≤ 𝑥 ≤ 2} 9/7∈ {𝑥 ∈ ℚ; 0 ≤ 𝑥 < 1} 1 3 5 ∈ {𝑥 ∈ ℚ; 1 < 𝑥 < 2}
Anúncio