• Triângulos
• Trigonometria no triângulo retângulo
• Teorema de Pitágoras
• Relação Fundamental
• sen, cos e tg
• Racionalizar
• Unidade de medida de arcos
• Círculo Trigonométrico
• Relação Fundamental e arcos complementares
• Tangente, seno, cosseno, secante, cossecante e cotangete
Triângulo
• Triângulo escaleno:
Todos os lados e ângulos são diferentes.
• Triângulos isósceles:
Dois lados iguais e os ângulos opostos a esses
lados iguais.
• Triângulo equilátero: Todos os lados e ângulos iguais.
A = B = C
Triângulo
Ângulo menor que 90º Tem um ângulo reto (90º) Ângulo maior que 90º
Trigonometria no triângulo retângulo
Teorema de Pitágoras
Hip²= cat² + cat²
O seno de um ângulo no triângulo retângulo é a razão entre o cateto
oposto e a hipotenusa.
O cosseno de um ângulo no triângulo retângulo é a razão entre o
cateto adjacente e a hipotenusa.
A tangente de um ângulo no triângulo retângulo é a razão entre o
cateto oposto e o cateto adjacente.
Hip²= cat² + cat²
Sen =
𝑐𝑜
ℎ𝑖
Cos =
𝑐𝑎
ℎ𝑖
Tg =
𝑐𝑜
𝑐𝑎
Teorema de Pitágoras - macete
Hip²= cat² + cat²
Sen =
𝑐𝑜
ℎ𝑖
Cos =
𝑐𝑎
ℎ𝑖
Tg =
𝑐𝑜
𝑐𝑎
1) Decorar a palavra SOCATOA sobre as letras
HH AO nas vogais
S = Sem
O = Cat. Oposto
C = Cosseno
A = Cat. Adjacente
T = Tangente
H = Hipotenusa
Seno = co/hip (corri)
Cosseno = ca/hip (caí)
Tangente = co/ca (coca)
Frase: Corri, caí na coca.
2) Decorar a frase ligando as três.
Tabela – Ângulos Notáveis
30° 45° 60°
Seno 1/2 √2/2 √3/2
Cosseno √3/2 √2/2 1/2
Tangente √3/3 1 √3
Macete:
Um, dois três...Três, dois um
Tudo sobre dois.
Raiz no três e também raiz no dois
A tangente é diferente,
olha só minha gente:
Raiz de três sobre três, um e raiz de três
Triângulo retângulo - exemplos
Exemplo 1. Sabendo que sen α =1/2 , determine o valor de x no triângulo retângulo abaixo:
Solução: A hipotenusa do triângulo é x e o lado com medida conhecida é o cateto oposto ao ângulo α.
Assim, temos que:
Triângulo retângulo - exemplos
Exemplo 2. Determine os valores de seno, cosseno e tangente dos ângulos agudos do triângulo
abaixo.
Solução: Temos que:
Triângulo retângulo - exemplos
Exemplo 3. Num triângulo retângulo a hipotenusa mede 8cm, e um dos ângulos internos possui
30°. Qual o valor dos catetos oposto (x) e adjacente (y) desse triângulo?
De acordo com as relações trigonométricas, o seno é representado pela seguinte relação:
Sen = cateto oposto/hipotenusa
Sen 30° = x/8
½ = x/8
2x = 8
X = 8/2
X = 4
Logo, o cateto oposto desse triângulo retângulo mede 4 cm.
A partir disso, se a hipotenusa = cateto oposto/cateto adjacente, tem-se:
hip = Co/Ca
8 = 4/y
8y=4
y = ½
Relação Fundamental
sen² α + cos² α = 1
Exemplo 4 : Sendo sen α = 3/5 , calcule cos α e tg α.
sen² α + cos² α = 1
(3/5)² + cos² α = 1
9/25 + cos² α = 1
cos² α = 1 – 9/25
cos² α =
25−9
25
= 16/25
cos α =± 16/25 = 4/5
OBS: A raiz sempre pode
ser positiva ou negativa
tg α =
𝐒𝐄𝐍 α
cos α
Tg α = 3/5 : 4/5
Tg α = 3/5 . 5/4
Tg α = 3/4
Racionalizar
Sempre que a raiz ficar em baixo, deve-se racionalizar, ou seja,
utilizar um método para que essa raiz fique em cima.
Suponha que, ao final da conta, seu resultado deu
Para racionalizar, basta multiplicar esse resultado com a
própria raiz ( 5) em forma fração.
Ao multiplicar duas raízes com o mesmo número, a raiz é eliminada.
Unidade de medida de arcos
Pode-se medir em graus ou em radianos.
360° = 2. π
180 ° = π
Guardando esses valores, da para descobrir
todos os outros graus/radianos do círculo.
Existem 4 quadrantes, que podem
ser positivos ou negativos,
dependendo se estivermos
falando de seno, cosseno ou
tangente. O sentido é anti-horário.
Decorando os 5 valores principais
e seus radianos (0, 90, 180, 270 e
360) fica mais fácil identificar todo
o resto.
Cálculo dos radianos
Cálculo dos radianos
Positivo/negativo no círculo
Círculo trigonométrico
O maior valor é o 1
O menor valor é o -1
0º 30° 45° 60° 90º
Seno 0 1/2 √2/2 √3/2 1
Cosseno 1 √3/2 √2/2 1/2 0
Tangente 0 √3/3 1 √3 -
Esquema básico do círculo trigonométrico
Tabelas com os principais valores
Círculo trigonométrico
O maior valor é o 1
O menor valor é o -1
S
E
N
O
COSSENO
T
A
N
G
E
N
T
E
Círculo trigonométrico
S
E
N
O
COSSENO
T
A
N
G
E
N
T
E
-1 -√3/2 -√2/2 -1/2
1
√3/2
√2/2
1/2
30° 45° 60°
Seno 1/2 √2/2 √3/2
Cosseno √3/2 √2/2 1/2
Tangente √3/3 1 √3
-1/2
-√2/2
-√3/2
-1
1/2 √2/2 √3/2 1
180 °
π
0
0π
360 °
2. π
90 °
π/2
270 °
3π/2
Relação fundamental
sen² x + cos² x = 1
Arcos complementares
Quando a soma dos arcos é igual a 90°.
Exemplo: sen 85° e cos 5º ; sem 20º e cos 70º.
sen x = cos ( π
2
− x )
cos x = sen ( π
2
− x )
Relação fundamental
Arcos complementares
Exemplo 5 - Dado sem x = 1/3, com
π
2
< x < π , calcule cos x.
Primeiro, vemos onde está localizado o X.
Sen²x + cos² x = 1
1/3² + cos²x = 1
cos² x = 1 – 1/9 = 9-1/9
cos x =± 8/9 =
−2. 2
3
O resultado final é negativo, pois o cos do 1º quadrante é
negativo.
π
𝛑
𝟐 Está no primeiro
quadrante, onde
cos é negativo e
sen é positivo.
Exemplo 6 – Sabendo que sen 70° = 2,
calcule cos 20°.
Como são arcos complementares
(70+20 = 90) o resultado será o
mesmo para os dois.
Assim, cos 20° = 2.
Tg, Sec, Cotg e Cossec
tg x =
sen x
cos x
cotg x =
cos x
sen x
sec x =
1
cos x
cossec x =
1
sen x
sen² x + cos² x = 1

Trigonometria no triângulo retângulo

  • 1.
    • Triângulos • Trigonometriano triângulo retângulo • Teorema de Pitágoras • Relação Fundamental • sen, cos e tg • Racionalizar • Unidade de medida de arcos • Círculo Trigonométrico • Relação Fundamental e arcos complementares • Tangente, seno, cosseno, secante, cossecante e cotangete
  • 2.
    Triângulo • Triângulo escaleno: Todosos lados e ângulos são diferentes. • Triângulos isósceles: Dois lados iguais e os ângulos opostos a esses lados iguais. • Triângulo equilátero: Todos os lados e ângulos iguais. A = B = C
  • 3.
    Triângulo Ângulo menor que90º Tem um ângulo reto (90º) Ângulo maior que 90º
  • 4.
  • 5.
    Teorema de Pitágoras Hip²=cat² + cat² O seno de um ângulo no triângulo retângulo é a razão entre o cateto oposto e a hipotenusa. O cosseno de um ângulo no triângulo retângulo é a razão entre o cateto adjacente e a hipotenusa. A tangente de um ângulo no triângulo retângulo é a razão entre o cateto oposto e o cateto adjacente. Hip²= cat² + cat² Sen = 𝑐𝑜 ℎ𝑖 Cos = 𝑐𝑎 ℎ𝑖 Tg = 𝑐𝑜 𝑐𝑎
  • 6.
    Teorema de Pitágoras- macete Hip²= cat² + cat² Sen = 𝑐𝑜 ℎ𝑖 Cos = 𝑐𝑎 ℎ𝑖 Tg = 𝑐𝑜 𝑐𝑎 1) Decorar a palavra SOCATOA sobre as letras HH AO nas vogais S = Sem O = Cat. Oposto C = Cosseno A = Cat. Adjacente T = Tangente H = Hipotenusa Seno = co/hip (corri) Cosseno = ca/hip (caí) Tangente = co/ca (coca) Frase: Corri, caí na coca. 2) Decorar a frase ligando as três.
  • 7.
    Tabela – ÂngulosNotáveis 30° 45° 60° Seno 1/2 √2/2 √3/2 Cosseno √3/2 √2/2 1/2 Tangente √3/3 1 √3 Macete: Um, dois três...Três, dois um Tudo sobre dois. Raiz no três e também raiz no dois A tangente é diferente, olha só minha gente: Raiz de três sobre três, um e raiz de três
  • 8.
    Triângulo retângulo -exemplos Exemplo 1. Sabendo que sen α =1/2 , determine o valor de x no triângulo retângulo abaixo: Solução: A hipotenusa do triângulo é x e o lado com medida conhecida é o cateto oposto ao ângulo α. Assim, temos que:
  • 9.
    Triângulo retângulo -exemplos Exemplo 2. Determine os valores de seno, cosseno e tangente dos ângulos agudos do triângulo abaixo. Solução: Temos que:
  • 10.
    Triângulo retângulo -exemplos Exemplo 3. Num triângulo retângulo a hipotenusa mede 8cm, e um dos ângulos internos possui 30°. Qual o valor dos catetos oposto (x) e adjacente (y) desse triângulo? De acordo com as relações trigonométricas, o seno é representado pela seguinte relação: Sen = cateto oposto/hipotenusa Sen 30° = x/8 ½ = x/8 2x = 8 X = 8/2 X = 4 Logo, o cateto oposto desse triângulo retângulo mede 4 cm. A partir disso, se a hipotenusa = cateto oposto/cateto adjacente, tem-se: hip = Co/Ca 8 = 4/y 8y=4 y = ½
  • 11.
    Relação Fundamental sen² α+ cos² α = 1 Exemplo 4 : Sendo sen α = 3/5 , calcule cos α e tg α. sen² α + cos² α = 1 (3/5)² + cos² α = 1 9/25 + cos² α = 1 cos² α = 1 – 9/25 cos² α = 25−9 25 = 16/25 cos α =± 16/25 = 4/5 OBS: A raiz sempre pode ser positiva ou negativa tg α = 𝐒𝐄𝐍 α cos α Tg α = 3/5 : 4/5 Tg α = 3/5 . 5/4 Tg α = 3/4
  • 14.
    Racionalizar Sempre que araiz ficar em baixo, deve-se racionalizar, ou seja, utilizar um método para que essa raiz fique em cima. Suponha que, ao final da conta, seu resultado deu Para racionalizar, basta multiplicar esse resultado com a própria raiz ( 5) em forma fração. Ao multiplicar duas raízes com o mesmo número, a raiz é eliminada.
  • 15.
    Unidade de medidade arcos Pode-se medir em graus ou em radianos. 360° = 2. π 180 ° = π Guardando esses valores, da para descobrir todos os outros graus/radianos do círculo. Existem 4 quadrantes, que podem ser positivos ou negativos, dependendo se estivermos falando de seno, cosseno ou tangente. O sentido é anti-horário. Decorando os 5 valores principais e seus radianos (0, 90, 180, 270 e 360) fica mais fácil identificar todo o resto.
  • 16.
  • 17.
  • 18.
  • 19.
    Círculo trigonométrico O maiorvalor é o 1 O menor valor é o -1
  • 20.
    0º 30° 45°60° 90º Seno 0 1/2 √2/2 √3/2 1 Cosseno 1 √3/2 √2/2 1/2 0 Tangente 0 √3/3 1 √3 - Esquema básico do círculo trigonométrico Tabelas com os principais valores
  • 21.
    Círculo trigonométrico O maiorvalor é o 1 O menor valor é o -1 S E N O COSSENO T A N G E N T E
  • 22.
    Círculo trigonométrico S E N O COSSENO T A N G E N T E -1 -√3/2-√2/2 -1/2 1 √3/2 √2/2 1/2 30° 45° 60° Seno 1/2 √2/2 √3/2 Cosseno √3/2 √2/2 1/2 Tangente √3/3 1 √3 -1/2 -√2/2 -√3/2 -1 1/2 √2/2 √3/2 1 180 ° π 0 0π 360 ° 2. π 90 ° π/2 270 ° 3π/2
  • 23.
    Relação fundamental sen² x+ cos² x = 1 Arcos complementares Quando a soma dos arcos é igual a 90°. Exemplo: sen 85° e cos 5º ; sem 20º e cos 70º. sen x = cos ( π 2 − x ) cos x = sen ( π 2 − x )
  • 24.
    Relação fundamental Arcos complementares Exemplo5 - Dado sem x = 1/3, com π 2 < x < π , calcule cos x. Primeiro, vemos onde está localizado o X. Sen²x + cos² x = 1 1/3² + cos²x = 1 cos² x = 1 – 1/9 = 9-1/9 cos x =± 8/9 = −2. 2 3 O resultado final é negativo, pois o cos do 1º quadrante é negativo. π 𝛑 𝟐 Está no primeiro quadrante, onde cos é negativo e sen é positivo. Exemplo 6 – Sabendo que sen 70° = 2, calcule cos 20°. Como são arcos complementares (70+20 = 90) o resultado será o mesmo para os dois. Assim, cos 20° = 2.
  • 25.
    Tg, Sec, Cotge Cossec tg x = sen x cos x cotg x = cos x sen x sec x = 1 cos x cossec x = 1 sen x sen² x + cos² x = 1