TRIGONOMETRIA
A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações
trigonométricas num triângulo retângulo.
Num triângulo ABC, retângulo em A, indicaremos por Bˆ e por Cˆ as medidas dos ângulos
internos, respectivamente nos vértices B e C.
TEOREMA DE PITÁGORAS: Em todo triângulo retângulo, a soma dos quadrados das medidas
dos catetos é igual ao quadrado da medida da hipotenusa.
222
cba 
Definições:
1. Em todo triângulo retângulo, o seno de um ângulo agudo é a razão entre a medida do
cateto oposto a esse ângulo e a medida da hipotenusa.
a
b
hipotenusa
Bˆânguloaoopostocateto
Bˆsen 
a
c
hipotenusa
Cˆânguloaoopostocateto
Cˆsen 
2. Em todo triângulo retângulo, o cosseno de um ângulo agudo é a razão entre a medida do
cateto adjacente a esse ângulo e a medida da hipotenusa.
a
c
hipotenusa
Bˆânguloaoadjacentecateto
Bˆcos 
a
b
hipotenusa
Cˆânguloaoadjacentecateto
Cˆcos 
3. Em todo triângulo retângulo, a tangente de um ângulo agudo é a razão entre a medida dos
catetos oposto e adjacente a esse ângulo.
c
b
Bˆânguloaoadjacentecateto
Bˆânguloaoopostocateto
Bˆtg 
b
c
Cˆânguloaoadjacentecateto
Cˆânguloaoopostocateto
Cˆtg 
Observação:
Note que
Bˆcos
Bˆsen
a
c
a
b
c
b
Bˆtg  .
Em geral, utilizaremos
xcos
xsen
xtg  , para o ângulo x.
VALORES NOTÁVEIS
1) Considere o triângulo eqüilátero de medida de lado a.
2
1
a
2
a
)30(sen 
2
3
a
2
3a
)30cos( 
3
3
3
1
2
3a
2
a
)30(tg 
2
3
a
2
3a
)60(sen 
2
1
a
2
a
)60cos(  3
2
a
2
3a
)60(tg 
2) Considere o quadrado de medida de lado a.
2
2
2
1
2a
a
)45(sen 
2
2
2
1
2a
a
)45cos(  1
a
a
)45(tg 
Resumindo:
30o
45o
60o
Seno
2
1
2
2
2
3
Cosseno
2
3
2
2
2
1
Tangente
3
3 1 3
ARCOS DE CIRCUNFERÊNCIA
Dados dois pontos distintos A e B sobre uma circunferência, esta fica dividida em duas partes,
denominadas arcos, que indicaremos por ou .
As unidades usuais para arcos de circunferência são: grau e radiano.
MEDIDA DE ARCOS
Considere uma circunferência orientada, de centro O e raio unitário. Definimos:
GRAU: é o arco unitário correspondente a
360
1
da circunferência que contém o arco a ser
medido.
RADIANO: é um arco unitário cujo comprimento é igual ao raio da circunferência que contém o
arco a ser medido. ( o
radiano 571  )
As medidas de arcos de circunferências em graus e em radianos são diretamente proporcionais,
possibilitando a obtenção da equação de conversão de unidades, através de uma regra de três
simples, em que  é a medida em graus e  em radianos.
medida em graus medida em radianos
 
180 





180
CICLO TRIGONOMÉTRICO
Considere uma circunferência orientada, de centro O e raio unitário. Imagine um ponto A se
deslocando sobre a circunferência.
Existe uma diferença muito importante para se graduar uma reta e uma circunferência: enquanto
que na reta cada ponto corresponde a um único número real, na circunferência cada ponto
corresponde a uma infinidade de números reais e todos diferem de múltiplos inteiros de 2 .
A figura a seguir ilustra a graduação, em radianos, de uma circunferência de raio 1.
Ao marcarmos o ponto P na circunferência de raio 1, temos um triângulo retângulo
correspondente, de onde calculamos:
p
p
x
1
x
cos  ; p
p
y
y
sen 
1
; 122
 pp yx obtendo-se 122
 sencos
A figura acima mostra que no eixo x temos o valor do cosseno e no eixo y, temos o seno,
definindo o chamado ciclo trigonométrico.
Para os pontos A, B, C e D podemos obter os seguintes valores:
sen0 = yA = 0 cos0 =xA = 1
sen
2
 = yB = 1 cos
2
 =xB = 0
sen  = yC = 0 cos  =xC = -1
sen
2
3 = yD = 1 cos
2
3 =xD = 0
sen2 = yA = 0 cos2  =xA = 1
FUNÇÕES TRIGONOMÉTRICAS
Estudaremos as funções seno, cosseno, tangente, cotangente, secante e cossecante, nos ciclos
trigonométricos.
Veremos a periodicidade e os gráficos das funções seno cosseno e tangente.
O que é periodicidade?
Para que fique bem claro o que este termo quer dizer, vamos exemplificar com os dias da
semana, de 7 em 7 dias eles se repetem, chamamos este fato de periódico, e o período é 7.
Estas três funções que serão apresentadas são ditas funções periódicas.
Definição: Uma função f é periódica se existir um número real p > 0 tal que f(x+p) = f(x),
fDomx  . Neste caso, o menor valor de p que satisfaz tal condição é chamado período de f.
Observação: o gráfico de uma função periódica é caracterizado por ter seu “desenho” se
repetindo. Assim, para desenharmos a curva toda, basta desenharmos a parte correspondente a
um período e copiar à direita e à esquerda infinitas cópias da parte desenhada.
Vamos analisar a periodicidade destas três funções trigonométricas:
1) Seno
sen(x) = sen(x + 2 ) = sen(x + 4 ) =..... = sen(x + k2  ), k  Z.
Seno é função periódica de período 2 
2) Cosseno
cos(x) = cos(x + 2  ) = cos(x + 4  ) =..... = cos(x + k2  ), k  Z.
Cosseno é função periódica de período 2
3) Tangente
tg(x) = tg(x +  ) = tg(x+ 2 ) =..... = tg(x + k  ), k  Z.
Tangente é função periódica de período 
Generalizando: y = a sen(kx) e y = a cos(kx) p =
k
2
Generalizando: y = a tg(kx) p =
k

Exemplos:
1) Determine o período de cada função:
a). y = 3 sen(x) p = 2 
b) y = 3 sen(2x) p = 

2
2
c). y = 2 sen(x/2) p = 

4
2/1
2
d) y = 3 cos(2x) p = 

2
2
e) y = cos(3x/5) p =
3
10
5/3
2 


2) Determine o período de cada função:
a). y = tg(2x) p =
2

b). y = 2 tg(x) p = 
a). y = tg(x/2) p = 

2
2/1
GRÁFICO DA FUNÇÃO SENO
y = sen x
Propriedades
a) Dom = 
b) Img = [-1, 1]
c) Período = 2
d) sen (-x) = - sen (x)
GRÁFICO DA FUNÇÃO COSSENO
y = cos x
Propriedades
a) Dom = 
b) Img = [-1, 1]
c) Período = 2
d) cos (-x) = cos (x)
GRÁFICO DA FUNÇÃO TANGENTE
y = tg x
Propriedades
a) Dom = }kx/x{  2
b) Img = 
c) Período = 
d) tg (-x) = -tg (x)
RELAÇÕES FUNDAMENTAIS
tg x =
xcos
senx
, para 

 k
2
x com Zk 
sen2
x + cos2
x = 1, para Rx 
cotg x =
senx
xcos
, para  kx com Zk  sec2
x = 1 + tg2
x, para 

 k
2
x com Zk 
sec x =
xcos
1
, para 

 k
2
x com Zk 
cossec2
x = 1 + cotg2
x, para  kx com Zk 
cossec x =
senx
1
, para  kx com Zk 
FÓRMULAS DE ADIÇÃO E SUBTRAÇÃO
Sendo “a” e “b” dois números reais.
sen(a + b) = sena.cosb + cosa.senb sen(a – b) = sena.cosb – cosa.senb
cos(a + b) = cosa.cosb - sena.senb cos(a – b) = cosa.cosb + sena.senb
tg(a + b) =
tgb.tga
tgbtga


1
tg(a - b) =
tgb.tga
tgbtga


1
Exemplos
1) Calcule
a) )15cos( 
Solução:
4
26
2
1
2
2
2
3
2
2
)30(sen)45(sen)30cos()45cos()3045cos()15cos(


 
b) )15(sen 
Solução:
4
26
2
1
2
2
2
3
2
2
)30cos()45(sen)30cos()45(sen)3045(sen)15(sen


 
b) )15(tg 
Solução:
 
 
  32
6
326
6
3612
39
3369
33
33323
33
33
33
33
33
33
3
33
3
33
3
3
11
3
3
1
)30(tg)45(tg1
)30(tg)45(tg
)3045(tg)15(tg
22
22

































FÓRMULAS DE MULTIPLICAÇÃO: ARCO DUPLO (2a)
A partir das fórmulas de adição e subtração, podemos obter as seguintes fórmulas de
multiplicação:
cos(2a) = cos(a+a) = cos a cos a – sen a sen a = cos2
a – sen2
a =
=cos2
a –(1- cos2
a ) = 2 cos2
a -1
sen(2a) = sen(a+a) = sen a cos a + sen a cos b = 2 sen a cos a
tg(2a) = tg (a+a) =
atg1
tga2
tga.tga1
tgatga
2




Ou seja,
cos 2a = asenacos 22  sen 2a = 2 sen a . cos a
cos 2a = 2 cos2
a – 1
tg 2a =
.atg1
tga2
2

cos 2a= 1 – 2 sen2
a
Exemplos
1) Sabendo que
3
1
)x(tg  , calcule tg(2x).
Solução
tg(2x) =
4
3
8
9
3
2
9
8
3
2
9
1
1
3
1
2
.xtg1
xtg2
2





2) Resolva a equação 1)x(sen3)x2cos(  .
Solução
02)x(sen3)x(sen2
1)x(sen3)x(sen)x(sen1
1)x(sen3)x(sen)x(cos
1)x(sen3)x2cos(
2
22
22




Resolvendo a equação de 2º grau em sen(x), temos:
25169)2(2432 
xexistenão2
4
53
ou
k2
6
5
xouk2
6
x
2
1
4
53
4
53
)x(sen











Conjunto solução:










 Zk,k2
6
5
xouk2
6
xRxS
FÓRMULAS DE BISSECÇÃO
As fórmulas de bissecção podem ser obtidas do seguinte modo:
2
)b2cos(1
bsen)b2cos(1bsen2bsen21)b2cos( 222 
 e, se considerarmos b=
2
a
,
obtemos
2
1
2
2 acosa
sen

 .
Seguindo essa idéia, temos
2
1
2
2 acosa
sen


2
1
2
2 acosa
cos


acos
acosa
tg



1
1
2
2
RELAÇÕES DE PROSTAFÉRESE
Fazendo





qba
pba
, ou seja,










2
qp
b
2
qp
a
e substituindo nas fórmulas de adição e subtração,
obtemos as relações de prostaférese dadas por
sen p + sen q =
2
qp
cos
2
qp
sen2




sen p - sen q =
2
qp
cos
2
qp
sen2




cos p + cos q =
2
qp
cos
2
qp
cos2




cos p - cos q =
2
qp
sen
2
qp
sen2




tg p + tg q =
)qcos().pcos(
)qp(sen 
tg p - tg q =
)qcos().pcos(
)qp(sen 
FUNÇÕES TRIGONOMÉTRICAS INVERSAS
Nosso problema agora é procurar, se existirem, valores de y para os quais sen y = x,
lembrando que 1x1  .
Dado x, o valor de y correspondente tal que sen y = x determina uma função. Mas, para que o
valor de x determinado seja único, teremos que usar a restrição
2
y
2



.
Para solucionarmos esta questão, temos que estudar as funções trigonométricas inversas.
1) Função arco-seno (arcsen)
A cada x  [–1,1] associa-se um único y 




 

2
,
2
tais que sen y = x.
Assim, definimos a função
arcsen : [–1,1] 




 

2
,
2
x )x(arcseny 
Exemplos
1) Calcule
a) y = arcsen(1/2)
Solução
y = arcsen(1/2)  sen y = 1/2 . Lembrando que y 




 

2
,
2
, temos y =  /6, ou seja,
62
1
arcsen







.
b) y = arcsen(0)
Solução
y = arcsen(0)  sen y = 0 . Lembrando que y 




 

2
,
2
, temos y = 0, ou seja,   00arcsen  .
c) y = arcsen(-1/2)
Solução
y = arcsen(-1/2)  sen y = -1/2 . Lembrando que y 




 

2
,
2
, temos y =  /6, ou seja,
62
1
arcsen







 .
d) y = arcsen(1)
Solução
y = arcsen(1)  sen y = 1 . Lembrando que y 




 

2
,
2
, temos y =  /2, ou seja,  
2
1arcsen

 .
2) Função arco-cosseno (arccos)
A cada x  [–1,1] associa-se um único y   ,0 tais que cos y = x.
Assim, definimos a função
arccos : [–1,1]   ,0
x )xarccos(y 
Exemplos
1) Calcule
a) y = arccos(1/2)
Solução
y = arccos(1/2)  cos y = 1/2 . Lembrando que y   ,0 , temos y =  /3, ou seja,
32
1
arccos







.
b) y = arccos(0)
Solução
y = arccos(0)  cos y = 0 . Lembrando que y   ,0 , temos y =  /2, ou seja,  
2
0arccos

 .
c) y = arccos(-1/2)
Solução
y = arccos(-1/2)  cos y = -1/2. Lembrando que y   ,0 temos y = 2 /3, ou seja,
3
2
2
1
arccos







 .
d) y = arccos(1)
Solução
y = arccos(1)  cos y = 1 . Lembrando que y   ,0 temos y =  , ou seja,   1arccos .
3) Função arco-tangente (arctg)
A cada x  [–1,1] associa-se um único y 




 

2
,
2
tais que tg y = x.
Assim, definimos a função
arcsen : [–1,1] 




 

2
,
2
x )x(arctgy 
Exemplos
1) Calcule
a) y = arctg(1)
Solução
y = arctg(1)  tg y = 1 . Lembrando que y 




 

2
,
2
, temos y =  /4, ou seja,  
4
1arctg

 .
b) y = arcsen( 3 )
Solução
y = arctg( 3 )  tg y = 3 . Lembrando que y 




 

2
,
2
, temos y =  /3, ou seja,
  3
3arctg

 .
c) y = arctg(-1)
Solução
y = arctg(-1)  tg y = -1 . Lembrando que y 




 

2
,
2
, temos y =  /4, ou seja,  
4
1arctg

 .
EXERCÍCIOS SOBRE TRIGONOMETRIA
1) Em cada um dos casos, calcule o seno, o cosseno, a tangente do ângulo agudo assinalado:
2) Um barco deveria sair do porto da cidade A e ir até o porto da cidade B em uma linha reta, (no
sentido norte-sul). Entretanto, uma correnteza fez com que o barco sofresse um desvio de na
direção leste. Ultrapassando o trecho de correnteza o capitão necessitou efetuar uma correção no
rumo no barco de 45º para a esquerda, de tal forma que ao reencontrar a rota original é possível
traçar um triângulo retângulo.
(norte) A
5 milhas
(leste)
(sul) B
3) A lua é satélite natural da Terra e faz uma revolução em torno do sol em aproximadamente 28
dias.
a) De quantos radianos é o movimento da lua em um dia?
b) Qual a distância percorrida pela lua em uma revolução completa? (adote a distância da terra à
lua de 385.000km).
4) Reduza os arcos à primeira volta, represente-os graficamente e calcule o valor de seu seno,
cosseno e tangente.
a)1470º b) –1020º c)
4
25
d)
2
5

5) Determine o valor de
(a) sen 1620º (b) sen (-990º)
6) Sendo sen a = 1/2 e cos b = -1/2, sabendo que a e b são arcos do 2º quadrante, calcule:
a) sen (a+b) b) cos(a-b) c) tg (a+b)
Se o barco percorreu 5 milhas na direção
leste, quanto ele teve que andar para
retornar á rota original?
7) Resolva a expressão matemática
a) x = sen (/6)- cos (2/3)-3*sen()
b) y = tg(/4)+2*sen(5/6) – [sen (/3)-cos(/6)]
8) (MACK) O valor se sen 55º.cos35º+sen35º.cos55º é:
a) –1 b) -0,5 c) zero d)0,5 e) 1,0
9) Simplifique as expressões:
a) )x5(sen)x9(sen  b) sen (x-900º) + cos (x-540º)
10) Construa o gráfico (dois períodos completos) das seguintes funções, explicitando o domínio, a
imagem e o período:
a) y = 4 sen x b) y=1 - sen x c) y = 2 sen x/4
11) Calcule :
a) sen (9/4) e cos (9/4)
b) sen (-2/3) e sen (-2/3)
c) sen 8 e cos8
12. Encontre os valores do ângulo no intervalo [0, 2) que satisfaça as equações:
a) sen =1; cos=-1; tg =1; sec=1;
b) sen =0; cos=0; tg=0; sec=0;
c) sen = -1/2; cos= 1/2; tg= -1; sec=2.
13. Determine o período das funções:
a) y = sen (8) b) z= 4 sen (8)
c) x = cos (4/7) d) p=3 cos(/4+/2)
14. Simplifique a expressão 







 cos
2
sen)sen()sen( .
15. Sabendo-se que sen  = -1/3, calcule:
a) sen (  - ) b) sen (  + ) c) cos (/2 - )
16. Usando as fórmulas de adição, calcule:
a) sen (+/2) b) cos75º c) cos (5/6), (sugestão 5/6 = /2+/3)
17. Mostre que  cossen22sen .
18. Mostre que
2
2cos
2
1
cos2 
 .
RESPOSTAS DOS EXERCÍCIOS DO CÁLCULO ZERO - TRIGONOMETRIA
1) a)
2
1
tg,
5
52
cos,
5
5
sen  b)
4
3
tg,
5
4
cos,
5
3
sen 
2) 5 2
3) a) /14 rad b) 770.000  km
4) a) 1470º equivale a 30º portando sen 30º = ½; cos 30º = 3 /2 e tg 30º = 3 /3
b) – 920 º equivale a 60º portando sen 60º = 3 /2 , cos 60º =1/2 e tg 60º = 3
c) 25/4 equivale a /4 portando sen /4 = 2 /2 , cos /4 = 2 /2 e tg /4 = 1
d) -5/2 equivale a 3/2 portando sen 3/2 = -1 , cos 3/2 = 0 e tg 3/2 = indefinida
5) a) zero b) 1
6) a) 1 b) 3 /2 c)indefinido
7) a) -1 b) 2
8) e
9) a) 2 sen x b) -sen x - cos x
10) a) Dom =  , Im = [-4, 4], p=2 b) ) Dom =  , Im = [0, 1], p=2
c) Dom =  , Im = [-2, 2], p=8
11) a) 2 /2 e 2 /2 b) - 3 /2 e -1/2 c) 0 e 1
12) a) /2, , /4 e 5/4, 0
b) 0 e , /2 e 3/2, 0 e , /2 e 3/2
c) 7/6 e 11/6, /3 e 5/3, 3/4 e 7/4, /3 e 5/3
13) a) /4 b) /4 c) 7/2 d) 8
14) –2sen
15) a) – 1/3 b) 1/3 c) -1/2
16) a) - 3 /2 b)   4/26  c) - 3 /2

Trigonometria

  • 1.
    TRIGONOMETRIA A trigonometria éuma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. Num triângulo ABC, retângulo em A, indicaremos por Bˆ e por Cˆ as medidas dos ângulos internos, respectivamente nos vértices B e C. TEOREMA DE PITÁGORAS: Em todo triângulo retângulo, a soma dos quadrados das medidas dos catetos é igual ao quadrado da medida da hipotenusa. 222 cba  Definições: 1. Em todo triângulo retângulo, o seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. a b hipotenusa Bˆânguloaoopostocateto Bˆsen  a c hipotenusa Cˆânguloaoopostocateto Cˆsen  2. Em todo triângulo retângulo, o cosseno de um ângulo agudo é a razão entre a medida do cateto adjacente a esse ângulo e a medida da hipotenusa. a c hipotenusa Bˆânguloaoadjacentecateto Bˆcos  a b hipotenusa Cˆânguloaoadjacentecateto Cˆcos 
  • 2.
    3. Em todotriângulo retângulo, a tangente de um ângulo agudo é a razão entre a medida dos catetos oposto e adjacente a esse ângulo. c b Bˆânguloaoadjacentecateto Bˆânguloaoopostocateto Bˆtg  b c Cˆânguloaoadjacentecateto Cˆânguloaoopostocateto Cˆtg  Observação: Note que Bˆcos Bˆsen a c a b c b Bˆtg  . Em geral, utilizaremos xcos xsen xtg  , para o ângulo x. VALORES NOTÁVEIS 1) Considere o triângulo eqüilátero de medida de lado a. 2 1 a 2 a )30(sen  2 3 a 2 3a )30cos(  3 3 3 1 2 3a 2 a )30(tg  2 3 a 2 3a )60(sen  2 1 a 2 a )60cos(  3 2 a 2 3a )60(tg 
  • 3.
    2) Considere oquadrado de medida de lado a. 2 2 2 1 2a a )45(sen  2 2 2 1 2a a )45cos(  1 a a )45(tg  Resumindo: 30o 45o 60o Seno 2 1 2 2 2 3 Cosseno 2 3 2 2 2 1 Tangente 3 3 1 3 ARCOS DE CIRCUNFERÊNCIA Dados dois pontos distintos A e B sobre uma circunferência, esta fica dividida em duas partes, denominadas arcos, que indicaremos por ou . As unidades usuais para arcos de circunferência são: grau e radiano.
  • 4.
    MEDIDA DE ARCOS Considereuma circunferência orientada, de centro O e raio unitário. Definimos: GRAU: é o arco unitário correspondente a 360 1 da circunferência que contém o arco a ser medido. RADIANO: é um arco unitário cujo comprimento é igual ao raio da circunferência que contém o arco a ser medido. ( o radiano 571  ) As medidas de arcos de circunferências em graus e em radianos são diretamente proporcionais, possibilitando a obtenção da equação de conversão de unidades, através de uma regra de três simples, em que  é a medida em graus e  em radianos. medida em graus medida em radianos   180       180 CICLO TRIGONOMÉTRICO Considere uma circunferência orientada, de centro O e raio unitário. Imagine um ponto A se deslocando sobre a circunferência. Existe uma diferença muito importante para se graduar uma reta e uma circunferência: enquanto que na reta cada ponto corresponde a um único número real, na circunferência cada ponto corresponde a uma infinidade de números reais e todos diferem de múltiplos inteiros de 2 .
  • 5.
    A figura aseguir ilustra a graduação, em radianos, de uma circunferência de raio 1. Ao marcarmos o ponto P na circunferência de raio 1, temos um triângulo retângulo correspondente, de onde calculamos: p p x 1 x cos  ; p p y y sen  1 ; 122  pp yx obtendo-se 122  sencos A figura acima mostra que no eixo x temos o valor do cosseno e no eixo y, temos o seno, definindo o chamado ciclo trigonométrico.
  • 6.
    Para os pontosA, B, C e D podemos obter os seguintes valores: sen0 = yA = 0 cos0 =xA = 1 sen 2  = yB = 1 cos 2  =xB = 0 sen  = yC = 0 cos  =xC = -1 sen 2 3 = yD = 1 cos 2 3 =xD = 0 sen2 = yA = 0 cos2  =xA = 1 FUNÇÕES TRIGONOMÉTRICAS Estudaremos as funções seno, cosseno, tangente, cotangente, secante e cossecante, nos ciclos trigonométricos. Veremos a periodicidade e os gráficos das funções seno cosseno e tangente. O que é periodicidade? Para que fique bem claro o que este termo quer dizer, vamos exemplificar com os dias da semana, de 7 em 7 dias eles se repetem, chamamos este fato de periódico, e o período é 7. Estas três funções que serão apresentadas são ditas funções periódicas. Definição: Uma função f é periódica se existir um número real p > 0 tal que f(x+p) = f(x), fDomx  . Neste caso, o menor valor de p que satisfaz tal condição é chamado período de f.
  • 7.
    Observação: o gráficode uma função periódica é caracterizado por ter seu “desenho” se repetindo. Assim, para desenharmos a curva toda, basta desenharmos a parte correspondente a um período e copiar à direita e à esquerda infinitas cópias da parte desenhada. Vamos analisar a periodicidade destas três funções trigonométricas: 1) Seno sen(x) = sen(x + 2 ) = sen(x + 4 ) =..... = sen(x + k2  ), k  Z. Seno é função periódica de período 2  2) Cosseno cos(x) = cos(x + 2  ) = cos(x + 4  ) =..... = cos(x + k2  ), k  Z. Cosseno é função periódica de período 2 3) Tangente tg(x) = tg(x +  ) = tg(x+ 2 ) =..... = tg(x + k  ), k  Z. Tangente é função periódica de período  Generalizando: y = a sen(kx) e y = a cos(kx) p = k 2 Generalizando: y = a tg(kx) p = k  Exemplos: 1) Determine o período de cada função: a). y = 3 sen(x) p = 2  b) y = 3 sen(2x) p =   2 2 c). y = 2 sen(x/2) p =   4 2/1 2 d) y = 3 cos(2x) p =   2 2 e) y = cos(3x/5) p = 3 10 5/3 2    2) Determine o período de cada função: a). y = tg(2x) p = 2  b). y = 2 tg(x) p =  a). y = tg(x/2) p =   2 2/1
  • 8.
    GRÁFICO DA FUNÇÃOSENO y = sen x Propriedades a) Dom =  b) Img = [-1, 1] c) Período = 2 d) sen (-x) = - sen (x) GRÁFICO DA FUNÇÃO COSSENO y = cos x Propriedades a) Dom =  b) Img = [-1, 1] c) Período = 2 d) cos (-x) = cos (x) GRÁFICO DA FUNÇÃO TANGENTE y = tg x Propriedades a) Dom = }kx/x{  2 b) Img =  c) Período =  d) tg (-x) = -tg (x) RELAÇÕES FUNDAMENTAIS tg x = xcos senx , para    k 2 x com Zk  sen2 x + cos2 x = 1, para Rx  cotg x = senx xcos , para  kx com Zk  sec2 x = 1 + tg2 x, para    k 2 x com Zk  sec x = xcos 1 , para    k 2 x com Zk  cossec2 x = 1 + cotg2 x, para  kx com Zk  cossec x = senx 1 , para  kx com Zk 
  • 9.
    FÓRMULAS DE ADIÇÃOE SUBTRAÇÃO Sendo “a” e “b” dois números reais. sen(a + b) = sena.cosb + cosa.senb sen(a – b) = sena.cosb – cosa.senb cos(a + b) = cosa.cosb - sena.senb cos(a – b) = cosa.cosb + sena.senb tg(a + b) = tgb.tga tgbtga   1 tg(a - b) = tgb.tga tgbtga   1 Exemplos 1) Calcule a) )15cos(  Solução: 4 26 2 1 2 2 2 3 2 2 )30(sen)45(sen)30cos()45cos()3045cos()15cos(     b) )15(sen  Solução: 4 26 2 1 2 2 2 3 2 2 )30cos()45(sen)30cos()45(sen)3045(sen)15(sen     b) )15(tg  Solução:       32 6 326 6 3612 39 3369 33 33323 33 33 33 33 33 33 3 33 3 33 3 3 11 3 3 1 )30(tg)45(tg1 )30(tg)45(tg )3045(tg)15(tg 22 22                                 
  • 10.
    FÓRMULAS DE MULTIPLICAÇÃO:ARCO DUPLO (2a) A partir das fórmulas de adição e subtração, podemos obter as seguintes fórmulas de multiplicação: cos(2a) = cos(a+a) = cos a cos a – sen a sen a = cos2 a – sen2 a = =cos2 a –(1- cos2 a ) = 2 cos2 a -1 sen(2a) = sen(a+a) = sen a cos a + sen a cos b = 2 sen a cos a tg(2a) = tg (a+a) = atg1 tga2 tga.tga1 tgatga 2     Ou seja, cos 2a = asenacos 22  sen 2a = 2 sen a . cos a cos 2a = 2 cos2 a – 1 tg 2a = .atg1 tga2 2  cos 2a= 1 – 2 sen2 a Exemplos 1) Sabendo que 3 1 )x(tg  , calcule tg(2x). Solução tg(2x) = 4 3 8 9 3 2 9 8 3 2 9 1 1 3 1 2 .xtg1 xtg2 2      2) Resolva a equação 1)x(sen3)x2cos(  . Solução 02)x(sen3)x(sen2 1)x(sen3)x(sen)x(sen1 1)x(sen3)x(sen)x(cos 1)x(sen3)x2cos( 2 22 22     Resolvendo a equação de 2º grau em sen(x), temos: 25169)2(2432 
  • 11.
    xexistenão2 4 53 ou k2 6 5 xouk2 6 x 2 1 4 53 4 53 )x(sen            Conjunto solução:            Zk,k2 6 5 xouk2 6 xRxS FÓRMULASDE BISSECÇÃO As fórmulas de bissecção podem ser obtidas do seguinte modo: 2 )b2cos(1 bsen)b2cos(1bsen2bsen21)b2cos( 222   e, se considerarmos b= 2 a , obtemos 2 1 2 2 acosa sen   . Seguindo essa idéia, temos 2 1 2 2 acosa sen   2 1 2 2 acosa cos   acos acosa tg    1 1 2 2 RELAÇÕES DE PROSTAFÉRESE Fazendo      qba pba , ou seja,           2 qp b 2 qp a e substituindo nas fórmulas de adição e subtração, obtemos as relações de prostaférese dadas por sen p + sen q = 2 qp cos 2 qp sen2     sen p - sen q = 2 qp cos 2 qp sen2    
  • 12.
    cos p +cos q = 2 qp cos 2 qp cos2     cos p - cos q = 2 qp sen 2 qp sen2     tg p + tg q = )qcos().pcos( )qp(sen  tg p - tg q = )qcos().pcos( )qp(sen  FUNÇÕES TRIGONOMÉTRICAS INVERSAS Nosso problema agora é procurar, se existirem, valores de y para os quais sen y = x, lembrando que 1x1  . Dado x, o valor de y correspondente tal que sen y = x determina uma função. Mas, para que o valor de x determinado seja único, teremos que usar a restrição 2 y 2    . Para solucionarmos esta questão, temos que estudar as funções trigonométricas inversas. 1) Função arco-seno (arcsen) A cada x  [–1,1] associa-se um único y         2 , 2 tais que sen y = x. Assim, definimos a função arcsen : [–1,1]         2 , 2 x )x(arcseny 
  • 13.
    Exemplos 1) Calcule a) y= arcsen(1/2) Solução y = arcsen(1/2)  sen y = 1/2 . Lembrando que y         2 , 2 , temos y =  /6, ou seja, 62 1 arcsen        . b) y = arcsen(0) Solução y = arcsen(0)  sen y = 0 . Lembrando que y         2 , 2 , temos y = 0, ou seja,   00arcsen  . c) y = arcsen(-1/2) Solução y = arcsen(-1/2)  sen y = -1/2 . Lembrando que y         2 , 2 , temos y =  /6, ou seja, 62 1 arcsen         . d) y = arcsen(1) Solução y = arcsen(1)  sen y = 1 . Lembrando que y         2 , 2 , temos y =  /2, ou seja,   2 1arcsen   .
  • 14.
    2) Função arco-cosseno(arccos) A cada x  [–1,1] associa-se um único y   ,0 tais que cos y = x. Assim, definimos a função arccos : [–1,1]   ,0 x )xarccos(y  Exemplos 1) Calcule a) y = arccos(1/2) Solução y = arccos(1/2)  cos y = 1/2 . Lembrando que y   ,0 , temos y =  /3, ou seja, 32 1 arccos        . b) y = arccos(0) Solução y = arccos(0)  cos y = 0 . Lembrando que y   ,0 , temos y =  /2, ou seja,   2 0arccos   . c) y = arccos(-1/2) Solução y = arccos(-1/2)  cos y = -1/2. Lembrando que y   ,0 temos y = 2 /3, ou seja, 3 2 2 1 arccos         . d) y = arccos(1) Solução y = arccos(1)  cos y = 1 . Lembrando que y   ,0 temos y =  , ou seja,   1arccos .
  • 15.
    3) Função arco-tangente(arctg) A cada x  [–1,1] associa-se um único y         2 , 2 tais que tg y = x. Assim, definimos a função arcsen : [–1,1]         2 , 2 x )x(arctgy  Exemplos 1) Calcule a) y = arctg(1) Solução y = arctg(1)  tg y = 1 . Lembrando que y         2 , 2 , temos y =  /4, ou seja,   4 1arctg   . b) y = arcsen( 3 ) Solução y = arctg( 3 )  tg y = 3 . Lembrando que y         2 , 2 , temos y =  /3, ou seja,   3 3arctg   . c) y = arctg(-1) Solução y = arctg(-1)  tg y = -1 . Lembrando que y         2 , 2 , temos y =  /4, ou seja,   4 1arctg   .
  • 16.
    EXERCÍCIOS SOBRE TRIGONOMETRIA 1)Em cada um dos casos, calcule o seno, o cosseno, a tangente do ângulo agudo assinalado: 2) Um barco deveria sair do porto da cidade A e ir até o porto da cidade B em uma linha reta, (no sentido norte-sul). Entretanto, uma correnteza fez com que o barco sofresse um desvio de na direção leste. Ultrapassando o trecho de correnteza o capitão necessitou efetuar uma correção no rumo no barco de 45º para a esquerda, de tal forma que ao reencontrar a rota original é possível traçar um triângulo retângulo. (norte) A 5 milhas (leste) (sul) B 3) A lua é satélite natural da Terra e faz uma revolução em torno do sol em aproximadamente 28 dias. a) De quantos radianos é o movimento da lua em um dia? b) Qual a distância percorrida pela lua em uma revolução completa? (adote a distância da terra à lua de 385.000km). 4) Reduza os arcos à primeira volta, represente-os graficamente e calcule o valor de seu seno, cosseno e tangente. a)1470º b) –1020º c) 4 25 d) 2 5  5) Determine o valor de (a) sen 1620º (b) sen (-990º) 6) Sendo sen a = 1/2 e cos b = -1/2, sabendo que a e b são arcos do 2º quadrante, calcule: a) sen (a+b) b) cos(a-b) c) tg (a+b) Se o barco percorreu 5 milhas na direção leste, quanto ele teve que andar para retornar á rota original?
  • 17.
    7) Resolva aexpressão matemática a) x = sen (/6)- cos (2/3)-3*sen() b) y = tg(/4)+2*sen(5/6) – [sen (/3)-cos(/6)] 8) (MACK) O valor se sen 55º.cos35º+sen35º.cos55º é: a) –1 b) -0,5 c) zero d)0,5 e) 1,0 9) Simplifique as expressões: a) )x5(sen)x9(sen  b) sen (x-900º) + cos (x-540º) 10) Construa o gráfico (dois períodos completos) das seguintes funções, explicitando o domínio, a imagem e o período: a) y = 4 sen x b) y=1 - sen x c) y = 2 sen x/4 11) Calcule : a) sen (9/4) e cos (9/4) b) sen (-2/3) e sen (-2/3) c) sen 8 e cos8 12. Encontre os valores do ângulo no intervalo [0, 2) que satisfaça as equações: a) sen =1; cos=-1; tg =1; sec=1; b) sen =0; cos=0; tg=0; sec=0; c) sen = -1/2; cos= 1/2; tg= -1; sec=2. 13. Determine o período das funções: a) y = sen (8) b) z= 4 sen (8) c) x = cos (4/7) d) p=3 cos(/4+/2) 14. Simplifique a expressão          cos 2 sen)sen()sen( . 15. Sabendo-se que sen  = -1/3, calcule: a) sen (  - ) b) sen (  + ) c) cos (/2 - ) 16. Usando as fórmulas de adição, calcule: a) sen (+/2) b) cos75º c) cos (5/6), (sugestão 5/6 = /2+/3) 17. Mostre que  cossen22sen . 18. Mostre que 2 2cos 2 1 cos2   .
  • 18.
    RESPOSTAS DOS EXERCÍCIOSDO CÁLCULO ZERO - TRIGONOMETRIA 1) a) 2 1 tg, 5 52 cos, 5 5 sen  b) 4 3 tg, 5 4 cos, 5 3 sen  2) 5 2 3) a) /14 rad b) 770.000  km 4) a) 1470º equivale a 30º portando sen 30º = ½; cos 30º = 3 /2 e tg 30º = 3 /3 b) – 920 º equivale a 60º portando sen 60º = 3 /2 , cos 60º =1/2 e tg 60º = 3 c) 25/4 equivale a /4 portando sen /4 = 2 /2 , cos /4 = 2 /2 e tg /4 = 1 d) -5/2 equivale a 3/2 portando sen 3/2 = -1 , cos 3/2 = 0 e tg 3/2 = indefinida 5) a) zero b) 1 6) a) 1 b) 3 /2 c)indefinido 7) a) -1 b) 2 8) e 9) a) 2 sen x b) -sen x - cos x 10) a) Dom =  , Im = [-4, 4], p=2 b) ) Dom =  , Im = [0, 1], p=2 c) Dom =  , Im = [-2, 2], p=8 11) a) 2 /2 e 2 /2 b) - 3 /2 e -1/2 c) 0 e 1 12) a) /2, , /4 e 5/4, 0 b) 0 e , /2 e 3/2, 0 e , /2 e 3/2 c) 7/6 e 11/6, /3 e 5/3, 3/4 e 7/4, /3 e 5/3 13) a) /4 b) /4 c) 7/2 d) 8 14) –2sen 15) a) – 1/3 b) 1/3 c) -1/2 16) a) - 3 /2 b)   4/26  c) - 3 /2