SlideShare uma empresa Scribd logo
numerador

                          denominador

   Fração é uma forma de se representar uma quantidade a
   partir de um valor, que é dividido por um determinado
   número de partes iguais.
Por vezes, quando se dividem dois números, o
quociente é exato e é um número inteiro.

Outras vezes, quando se dividem dois números, o
quociente é exato e é um número decimal.

                  Dízima infinita
                    Periódica                              Dízima finita
                   (período 6)
                                           Dízima infinita não periódica
Observa a figura, que foi divida em 16 partes iguais, 4 partes
                     em laranja e 12 partes em amarelo.


                                                  ૝	
                                                     ?
                                                  ૚૟
A fração 4/16 pode significar que das 16 partes que compõe a
figura, estamos considerando apenas 4 delas, ou seja, estamos
considerando apenas quatro dezasseis avos da figura.

                    PROBLEMA
Na minha escola há 420 alunos, dos quais 3/5 (três quintos) são de raparigas. Quantas
raparigas há na minha escola?
                                            ૜
                                ૝૛૙	     ൈ	     =252 raparigas
                                            ૞
O denominador representa o número de partes que a unidade foi dividida. O número
de partes que se considera.
Fração própria: o          ૝	
                                                         numerador é menor
1/2 - um meio     2/5 - dois quintos
1/3 - um terço    4/7 - quatro sétimos
                                                         que o denominador:         ૚૟
1/4 - um quarto   7/8 - sete oitavos
1/5 - um quinto   15/9 - quinze nonos
1/6 - um sexto    1/10 - um décimo                       Fração imprópria: o        ૚ૡ	
1/7 - um sétimo   1/100 - um centésimo                   numerador é maior ou
1/8 - um oitavo   1/1000 - um milésimo                   igual ao denominador       ૚૛
1/9 - um nono     8/1000 - oito milésimos
                  3/12 - três doze avos

As frações decimais são aquelas cujo denominador é uma potência de base 10, ou seja,
o denominador é 10, 100, 1000, ... Estas frações são muito utilizadas quando se converte
um número decimal para fração.

   Fração            ૞	                     Número      ૝	                      Número
   decimal
                     ૚૙
                        =0,5                decimal        =0,04                decimal
                                                       ૚૙૙

                                                      Fração
                                                      decimal
Para obtermos uma fração equivalente a
outra, basta multiplicar ou dividir o
numerador e o denominador pelo mesmo
número (diferente de zero).


                                           Simplificação de Frações

                                     Simplificar   uma   fração     significa
18: 2   9: 3   3                     transformá-la numa fração equivalente
      ൌ      ൌ                       com      os  termos    respetivamente
24: 2 12: 3 4                        menores.


            Fração irredutível Quando uma fração não pode mais ser
                               simplificada, diz-se que ela é IRREDUTÍVEL ou que
                               está na sua forma mais simples. Nesse caso, o
                               numerador e o denominador são primos entre si.
As frações superiores à unidade podem ser representadas sob a
forma de uma adição ou sob a forma de numeral misto fracionário.

     Para escrever uma fração sob a forma de
     numeral misto fracionário:




                                                  Frações >1       ૡ	
     Para escrever um numeral misto na forma                       ૞
     de fração:
                                                  Frações <1       ૜	
                                                                   ૞

                                                  Frações =1
                                                                   ૞	
                                                                   ૞
Para reduzirmos duas ou mais frações             ao   mesmo
denominador, seguimos os seguintes passos:

1º - Calcula-se o m.m.c. dos denominadores das frações que
será o menor denominador comum.
2º- Divide-se o m.m.c. encontrado pelos denominadores das
frações dadas.
                                                                 Decomposição em
3º - Multiplica-se o quociente encontrado em cada divisão pelo   fatores primos
 numerador da respetiva fração. O produto encontrado é o
novo numerador.                                                    6= 2x3
                                                                   12= 2x2x3
ૡ	ൈሺ૛ሻ        ૞	ൈሺଵሻ	
                         m.m.c (6,12)=2x2x3=12
                                                         m.m.c é igual ao produto
૟	ൈሺ૛ሻ        ૚૛ሺൈ૚ሻ     12:6=2
                         12:12=1                         dos fatores primos comuns
                                                         (2x3) e não comuns (2)

  ૚૟	           ૞	
  ૚૛
          >     ૚૛
Se duas ou mais frações tem o mesmo denominador, a
maior é a que tem maior numerador.

           11 7 5 3 1
              ൐ ൐ ൐ ൐
            4  4 4 4 4

Se duas ou mais frações tem o mesmo numerador, a
maior é a que tem menor denominador.

          15 15 15 15 15
             ൐   ൐   ൐   ൐
           4   6   8   10 13

                                          ૡ	ൈሺ૛ሻ      ૞	ൈሺଵሻ	
Para fazer a comparação de frações
                                          ૟	ൈሺ૛ሻ
                                                     >૚૛ሺൈ૚ሻ    m.m.c
com numeradores e denominadores                                 (6,12)=2x2x3=12
diferentes, reduzem-se as frações ao                            12:6=2
mesmo denominador.                                              12:12=1
                                           ૚૟	           ૞	
                                           ૚૛
                                                     >   ૚૛
1º) As Frações tem o mesmo Denominador.
Adicionam-se ou subtraem-se os numeradores e repete-se o
denominador.

       11 7 5 13
         ൅ െ ൌ
        4 4 4  4

2º) As Frações tem Denominadores diferentes
Reduzem-se as frações ao mesmo denominador e procede-se como no 1º caso.

      11 7 1                           m.m.c(3,4)=12
        ൅ െ ൌ
       3 4 4                           12:3=4
                                       12:4=3
      ସସ       ଶଵ   ଷ        ଺ଶ:ଶ ଷଵ
           ൅      െ      ൌ       =
      ଵଶ       ଵଶ   ଵଶ       ଵଶ:ଶ ଺
2 7 1 14: 2   7
 ൈ ൈ ൌ      ൌ
4 3 2 24: 2 12

                    Inverso de um número


                    Dois números dizem-se
                    inversos um do outro se o
                    seu produto é igual a 1.

2 7 2 3  6: 2   3    ସ   ହ ଶ଴
 : ൌ ൈ ൌ      ൌ
4 3 4 7 28: 2 14
                       	ൈ =      ൌ1
                     ହ   ସ ଶ଴

Mais conteúdo relacionado

Mais procurados

Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
Murilo Cretuchi de Oliveira
 
Ponto, reta e plano
Ponto, reta e planoPonto, reta e plano
Ponto, reta e plano
rubensdiasjr07
 
Radiciaçâo
RadiciaçâoRadiciaçâo
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
ktorz
 
Polígonos..
Polígonos..Polígonos..
Polígonos..
Rodrigo Carvalho
 
Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)
SirlenedeAPFinotti
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
betencourt
 
âNgulos
âNgulosâNgulos
Operações com números racionais
Operações com números racionaisOperações com números racionais
Operações com números racionais
Marcelo Pinheiro
 
Porcentagem
PorcentagemPorcentagem
Porcentagem
Letinha47
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
Larissa Souza
 
Slide aula angulos
Slide aula angulosSlide aula angulos
Slide aula angulos
andrewmonteiro
 
Quadrilateros
QuadrilaterosQuadrilateros
Quadrilateros
Xo_oX
 
Numeros racionais ppt
Numeros racionais pptNumeros racionais ppt
Numeros racionais ppt
rutesobral1
 
Polinomios
PolinomiosPolinomios
Polinomios
rosania39
 
Aula do 6º ano - Formas Geométricas
Aula do 6º ano - Formas GeométricasAula do 6º ano - Formas Geométricas
Aula do 6º ano - Formas Geométricas
Adriano Capilupe
 
Volume e capacidade
Volume e capacidadeVolume e capacidade
Volume e capacidade
Professor Carlinhos
 
Frações
FraçõesFrações
Frações
lveiga
 
Ângulos e poligonos
Ângulos e poligonosÂngulos e poligonos
Ângulos e poligonos
Eliane
 
Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)
Leonardo Bagagi
 

Mais procurados (20)

Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
 
Ponto, reta e plano
Ponto, reta e planoPonto, reta e plano
Ponto, reta e plano
 
Radiciaçâo
RadiciaçâoRadiciaçâo
Radiciaçâo
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
Polígonos..
Polígonos..Polígonos..
Polígonos..
 
Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
âNgulos
âNgulosâNgulos
âNgulos
 
Operações com números racionais
Operações com números racionaisOperações com números racionais
Operações com números racionais
 
Porcentagem
PorcentagemPorcentagem
Porcentagem
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
Slide aula angulos
Slide aula angulosSlide aula angulos
Slide aula angulos
 
Quadrilateros
QuadrilaterosQuadrilateros
Quadrilateros
 
Numeros racionais ppt
Numeros racionais pptNumeros racionais ppt
Numeros racionais ppt
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Aula do 6º ano - Formas Geométricas
Aula do 6º ano - Formas GeométricasAula do 6º ano - Formas Geométricas
Aula do 6º ano - Formas Geométricas
 
Volume e capacidade
Volume e capacidadeVolume e capacidade
Volume e capacidade
 
Frações
FraçõesFrações
Frações
 
Ângulos e poligonos
Ângulos e poligonosÂngulos e poligonos
Ângulos e poligonos
 
Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)
 

Semelhante a Números racionais

Frações
FraçõesFrações
Ap mat fracoes
Ap mat fracoesAp mat fracoes
Ap mat fracoes
trigono_metria
 
Fracoes 5 serie_matematica
Fracoes 5 serie_matematicaFracoes 5 serie_matematica
Fracoes 5 serie_matematica
Uma_Shinigami
 
Mat fracoes 001
Mat fracoes  001Mat fracoes  001
Mat fracoes 001
trigono_metria
 
Elementos históricos sobre frações
Elementos históricos sobre fraçõesElementos históricos sobre frações
Elementos históricos sobre frações
Elton Magno
 
Mat 6 ef2_frações
Mat 6 ef2_fraçõesMat 6 ef2_frações
Mat 6 ef2_frações
Paulo André Bezerra de Melo
 
MATEMATICARLOS - FRAÇÃO
MATEMATICARLOS - FRAÇÃOMATEMATICARLOS - FRAÇÃO
MATEMATICARLOS - FRAÇÃO
CARLOS EDUARDO MORAES PIRES
 
Fraes 140131063152
Fraes 140131063152Fraes 140131063152
Fraes 140131063152
rosemereporto
 
Essencial_ Números racionais não negativos.pptx
Essencial_ Números racionais não negativos.pptxEssencial_ Números racionais não negativos.pptx
Essencial_ Números racionais não negativos.pptx
MariaFloradeSousaBri
 
Mat inequacoes do primeiro grau
Mat inequacoes do primeiro grauMat inequacoes do primeiro grau
Mat inequacoes do primeiro grau
trigono_metria
 
Adi Sub Nº Rac ConteúDos
Adi Sub  Nº Rac ConteúDosAdi Sub  Nº Rac ConteúDos
Adi Sub Nº Rac ConteúDos
pjlc
 
Frações Equivalentes
Frações EquivalentesFrações Equivalentes
Frações Equivalentes
Helen Batista
 
FraçãO Antonio Carlos
FraçãO Antonio CarlosFraçãO Antonio Carlos
FraçãO Antonio Carlos
Antonio Carneiro
 
Frações
FraçõesFrações
Frações
Luis Veiga
 
Mat inequacoes do primeiro grau 001
Mat inequacoes do primeiro grau  001Mat inequacoes do primeiro grau  001
Mat inequacoes do primeiro grau 001
trigono_metria
 
Números racionais representação fracionária e decimal - operações e proprie...
Números racionais   representação fracionária e decimal - operações e proprie...Números racionais   representação fracionária e decimal - operações e proprie...
Números racionais representação fracionária e decimal - operações e proprie...
Camila Rodrigues
 
Intervalos
IntervalosIntervalos
Intervalos
carlapiresblog
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimais
Erasmo lopes
 
Oficina de Fração
Oficina de FraçãoOficina de Fração
Oficina de Fração
Eliane
 
Ceesvo (ensino fundamental) apostila 4
Ceesvo (ensino fundamental)   apostila 4Ceesvo (ensino fundamental)   apostila 4
Ceesvo (ensino fundamental) apostila 4
Nome Sobrenome
 

Semelhante a Números racionais (20)

Frações
FraçõesFrações
Frações
 
Ap mat fracoes
Ap mat fracoesAp mat fracoes
Ap mat fracoes
 
Fracoes 5 serie_matematica
Fracoes 5 serie_matematicaFracoes 5 serie_matematica
Fracoes 5 serie_matematica
 
Mat fracoes 001
Mat fracoes  001Mat fracoes  001
Mat fracoes 001
 
Elementos históricos sobre frações
Elementos históricos sobre fraçõesElementos históricos sobre frações
Elementos históricos sobre frações
 
Mat 6 ef2_frações
Mat 6 ef2_fraçõesMat 6 ef2_frações
Mat 6 ef2_frações
 
MATEMATICARLOS - FRAÇÃO
MATEMATICARLOS - FRAÇÃOMATEMATICARLOS - FRAÇÃO
MATEMATICARLOS - FRAÇÃO
 
Fraes 140131063152
Fraes 140131063152Fraes 140131063152
Fraes 140131063152
 
Essencial_ Números racionais não negativos.pptx
Essencial_ Números racionais não negativos.pptxEssencial_ Números racionais não negativos.pptx
Essencial_ Números racionais não negativos.pptx
 
Mat inequacoes do primeiro grau
Mat inequacoes do primeiro grauMat inequacoes do primeiro grau
Mat inequacoes do primeiro grau
 
Adi Sub Nº Rac ConteúDos
Adi Sub  Nº Rac ConteúDosAdi Sub  Nº Rac ConteúDos
Adi Sub Nº Rac ConteúDos
 
Frações Equivalentes
Frações EquivalentesFrações Equivalentes
Frações Equivalentes
 
FraçãO Antonio Carlos
FraçãO Antonio CarlosFraçãO Antonio Carlos
FraçãO Antonio Carlos
 
Frações
FraçõesFrações
Frações
 
Mat inequacoes do primeiro grau 001
Mat inequacoes do primeiro grau  001Mat inequacoes do primeiro grau  001
Mat inequacoes do primeiro grau 001
 
Números racionais representação fracionária e decimal - operações e proprie...
Números racionais   representação fracionária e decimal - operações e proprie...Números racionais   representação fracionária e decimal - operações e proprie...
Números racionais representação fracionária e decimal - operações e proprie...
 
Intervalos
IntervalosIntervalos
Intervalos
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimais
 
Oficina de Fração
Oficina de FraçãoOficina de Fração
Oficina de Fração
 
Ceesvo (ensino fundamental) apostila 4
Ceesvo (ensino fundamental)   apostila 4Ceesvo (ensino fundamental)   apostila 4
Ceesvo (ensino fundamental) apostila 4
 

Mais de Helena Borralho

alimentação equilibrada e segura.pptx
alimentação equilibrada e segura.pptxalimentação equilibrada e segura.pptx
alimentação equilibrada e segura.pptx
Helena Borralho
 
Exercicios resolvidos (números racionais)
Exercicios resolvidos (números racionais)Exercicios resolvidos (números racionais)
Exercicios resolvidos (números racionais)
Helena Borralho
 
Números racionais - problemas
Números racionais - problemasNúmeros racionais - problemas
Números racionais - problemas
Helena Borralho
 
Exercicios resolvidos (Frações)
Exercicios resolvidos (Frações)Exercicios resolvidos (Frações)
Exercicios resolvidos (Frações)
Helena Borralho
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
Helena Borralho
 
Criterios de divisibilidade
Criterios de divisibilidadeCriterios de divisibilidade
Criterios de divisibilidade
Helena Borralho
 
Ft areas
Ft areasFt areas
Ft areas
Helena Borralho
 
Ficha de trabalho teste global revisões_1
Ficha de trabalho teste global revisões_1Ficha de trabalho teste global revisões_1
Ficha de trabalho teste global revisões_1
Helena Borralho
 
Ficha de trabalho teste global revisões
Ficha de trabalho teste global revisõesFicha de trabalho teste global revisões
Ficha de trabalho teste global revisões
Helena Borralho
 
Ficha de trabalho areas2
Ficha de trabalho areas2Ficha de trabalho areas2
Ficha de trabalho areas2
Helena Borralho
 
Ficha de trabalho areas
Ficha de trabalho areasFicha de trabalho areas
Ficha de trabalho areas
Helena Borralho
 
Organização tratamento de_dados
Organização tratamento de_dadosOrganização tratamento de_dados
Organização tratamento de_dados
Helena Borralho
 
Ficha de trabalho_ equações
Ficha de trabalho_ equaçõesFicha de trabalho_ equações
Ficha de trabalho_ equações
Helena Borralho
 
Ficha de trabalho equações
Ficha de trabalho equaçõesFicha de trabalho equações
Ficha de trabalho equações
Helena Borralho
 
Areas1
Areas1Areas1
Areas1
Areas1Areas1
8teste 7ano2013
8teste 7ano20138teste 7ano2013
8teste 7ano2013
Helena Borralho
 
5ºt8a
5ºt8a5ºt8a
7teste 7ano2013
7teste 7ano20137teste 7ano2013
7teste 7ano2013
Helena Borralho
 
5ºt7a
5ºt7a5ºt7a

Mais de Helena Borralho (20)

alimentação equilibrada e segura.pptx
alimentação equilibrada e segura.pptxalimentação equilibrada e segura.pptx
alimentação equilibrada e segura.pptx
 
Exercicios resolvidos (números racionais)
Exercicios resolvidos (números racionais)Exercicios resolvidos (números racionais)
Exercicios resolvidos (números racionais)
 
Números racionais - problemas
Números racionais - problemasNúmeros racionais - problemas
Números racionais - problemas
 
Exercicios resolvidos (Frações)
Exercicios resolvidos (Frações)Exercicios resolvidos (Frações)
Exercicios resolvidos (Frações)
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Criterios de divisibilidade
Criterios de divisibilidadeCriterios de divisibilidade
Criterios de divisibilidade
 
Ft areas
Ft areasFt areas
Ft areas
 
Ficha de trabalho teste global revisões_1
Ficha de trabalho teste global revisões_1Ficha de trabalho teste global revisões_1
Ficha de trabalho teste global revisões_1
 
Ficha de trabalho teste global revisões
Ficha de trabalho teste global revisõesFicha de trabalho teste global revisões
Ficha de trabalho teste global revisões
 
Ficha de trabalho areas2
Ficha de trabalho areas2Ficha de trabalho areas2
Ficha de trabalho areas2
 
Ficha de trabalho areas
Ficha de trabalho areasFicha de trabalho areas
Ficha de trabalho areas
 
Organização tratamento de_dados
Organização tratamento de_dadosOrganização tratamento de_dados
Organização tratamento de_dados
 
Ficha de trabalho_ equações
Ficha de trabalho_ equaçõesFicha de trabalho_ equações
Ficha de trabalho_ equações
 
Ficha de trabalho equações
Ficha de trabalho equaçõesFicha de trabalho equações
Ficha de trabalho equações
 
Areas1
Areas1Areas1
Areas1
 
Areas1
Areas1Areas1
Areas1
 
8teste 7ano2013
8teste 7ano20138teste 7ano2013
8teste 7ano2013
 
5ºt8a
5ºt8a5ºt8a
5ºt8a
 
7teste 7ano2013
7teste 7ano20137teste 7ano2013
7teste 7ano2013
 
5ºt7a
5ºt7a5ºt7a
5ºt7a
 

Último

REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
Eró Cunha
 
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
LeticiaRochaCupaiol
 
Aula história , caracteristicas e esteriótipos em relação a DANÇA DE SALAO.pptx
Aula história , caracteristicas e esteriótipos em relação a DANÇA DE SALAO.pptxAula história , caracteristicas e esteriótipos em relação a DANÇA DE SALAO.pptx
Aula história , caracteristicas e esteriótipos em relação a DANÇA DE SALAO.pptx
edivirgesribeiro1
 
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.pptEstrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
livrosjovert
 
D20 - Descritores SAEB de Língua Portuguesa
D20 - Descritores SAEB de Língua PortuguesaD20 - Descritores SAEB de Língua Portuguesa
D20 - Descritores SAEB de Língua Portuguesa
eaiprofpolly
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
MarcosPaulo777883
 
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptxSlides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
TomasSousa7
 
cronograma-enem-2024-planejativo-estudos.pdf
cronograma-enem-2024-planejativo-estudos.pdfcronograma-enem-2024-planejativo-estudos.pdf
cronograma-enem-2024-planejativo-estudos.pdf
todorokillmepls
 
livro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdflivro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdf
cmeioctaciliabetesch
 
epidemias endemia-pandemia-e-epidemia (1).ppt
epidemias endemia-pandemia-e-epidemia (1).pptepidemias endemia-pandemia-e-epidemia (1).ppt
epidemias endemia-pandemia-e-epidemia (1).ppt
MarceloMonteiro213738
 
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIASA SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
HisrelBlog
 
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.pptLeis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
PatriciaZanoli
 
Rimas, Luís Vaz de Camões. pptx
Rimas, Luís Vaz de Camões.          pptxRimas, Luís Vaz de Camões.          pptx
Rimas, Luís Vaz de Camões. pptx
TomasSousa7
 
O que é um Ménage a Trois Contemporâneo .pdf
O que é um Ménage a Trois Contemporâneo .pdfO que é um Ménage a Trois Contemporâneo .pdf
O que é um Ménage a Trois Contemporâneo .pdf
Pastor Robson Colaço
 
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
LucianaCristina58
 
Leonardo da Vinci .pptx
Leonardo da Vinci                  .pptxLeonardo da Vinci                  .pptx
Leonardo da Vinci .pptx
TomasSousa7
 
Educação trabalho HQ em sala de aula uma excelente ideia
Educação  trabalho HQ em sala de aula uma excelente  ideiaEducação  trabalho HQ em sala de aula uma excelente  ideia
Educação trabalho HQ em sala de aula uma excelente ideia
joseanesouza36
 
Potenciação e Radiciação de Números Racionais
Potenciação e Radiciação de Números RacionaisPotenciação e Radiciação de Números Racionais
Potenciação e Radiciação de Números Racionais
wagnermorais28
 
Introdução à Sociologia: caça-palavras na escola
Introdução à Sociologia: caça-palavras na escolaIntrodução à Sociologia: caça-palavras na escola
Introdução à Sociologia: caça-palavras na escola
Professor Belinaso
 

Último (20)

REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
 
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
 
Aula história , caracteristicas e esteriótipos em relação a DANÇA DE SALAO.pptx
Aula história , caracteristicas e esteriótipos em relação a DANÇA DE SALAO.pptxAula história , caracteristicas e esteriótipos em relação a DANÇA DE SALAO.pptx
Aula história , caracteristicas e esteriótipos em relação a DANÇA DE SALAO.pptx
 
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.pptEstrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
 
D20 - Descritores SAEB de Língua Portuguesa
D20 - Descritores SAEB de Língua PortuguesaD20 - Descritores SAEB de Língua Portuguesa
D20 - Descritores SAEB de Língua Portuguesa
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
 
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptxSlides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
 
cronograma-enem-2024-planejativo-estudos.pdf
cronograma-enem-2024-planejativo-estudos.pdfcronograma-enem-2024-planejativo-estudos.pdf
cronograma-enem-2024-planejativo-estudos.pdf
 
livro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdflivro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdf
 
epidemias endemia-pandemia-e-epidemia (1).ppt
epidemias endemia-pandemia-e-epidemia (1).pptepidemias endemia-pandemia-e-epidemia (1).ppt
epidemias endemia-pandemia-e-epidemia (1).ppt
 
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIASA SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
 
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.pptLeis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
 
Rimas, Luís Vaz de Camões. pptx
Rimas, Luís Vaz de Camões.          pptxRimas, Luís Vaz de Camões.          pptx
Rimas, Luís Vaz de Camões. pptx
 
O que é um Ménage a Trois Contemporâneo .pdf
O que é um Ménage a Trois Contemporâneo .pdfO que é um Ménage a Trois Contemporâneo .pdf
O que é um Ménage a Trois Contemporâneo .pdf
 
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
 
Leonardo da Vinci .pptx
Leonardo da Vinci                  .pptxLeonardo da Vinci                  .pptx
Leonardo da Vinci .pptx
 
Educação trabalho HQ em sala de aula uma excelente ideia
Educação  trabalho HQ em sala de aula uma excelente  ideiaEducação  trabalho HQ em sala de aula uma excelente  ideia
Educação trabalho HQ em sala de aula uma excelente ideia
 
Potenciação e Radiciação de Números Racionais
Potenciação e Radiciação de Números RacionaisPotenciação e Radiciação de Números Racionais
Potenciação e Radiciação de Números Racionais
 
Introdução à Sociologia: caça-palavras na escola
Introdução à Sociologia: caça-palavras na escolaIntrodução à Sociologia: caça-palavras na escola
Introdução à Sociologia: caça-palavras na escola
 

Números racionais

  • 1.
  • 2. numerador denominador Fração é uma forma de se representar uma quantidade a partir de um valor, que é dividido por um determinado número de partes iguais. Por vezes, quando se dividem dois números, o quociente é exato e é um número inteiro. Outras vezes, quando se dividem dois números, o quociente é exato e é um número decimal. Dízima infinita Periódica Dízima finita (período 6) Dízima infinita não periódica
  • 3. Observa a figura, que foi divida em 16 partes iguais, 4 partes em laranja e 12 partes em amarelo. ૝ ? ૚૟ A fração 4/16 pode significar que das 16 partes que compõe a figura, estamos considerando apenas 4 delas, ou seja, estamos considerando apenas quatro dezasseis avos da figura. PROBLEMA Na minha escola há 420 alunos, dos quais 3/5 (três quintos) são de raparigas. Quantas raparigas há na minha escola? ૜ ૝૛૙ ൈ =252 raparigas ૞ O denominador representa o número de partes que a unidade foi dividida. O número de partes que se considera.
  • 4. Fração própria: o ૝ numerador é menor 1/2 - um meio 2/5 - dois quintos 1/3 - um terço 4/7 - quatro sétimos que o denominador: ૚૟ 1/4 - um quarto 7/8 - sete oitavos 1/5 - um quinto 15/9 - quinze nonos 1/6 - um sexto 1/10 - um décimo Fração imprópria: o ૚ૡ 1/7 - um sétimo 1/100 - um centésimo numerador é maior ou 1/8 - um oitavo 1/1000 - um milésimo igual ao denominador ૚૛ 1/9 - um nono 8/1000 - oito milésimos 3/12 - três doze avos As frações decimais são aquelas cujo denominador é uma potência de base 10, ou seja, o denominador é 10, 100, 1000, ... Estas frações são muito utilizadas quando se converte um número decimal para fração. Fração ૞ Número ૝ Número decimal ૚૙ =0,5 decimal =0,04 decimal ૚૙૙ Fração decimal
  • 5. Para obtermos uma fração equivalente a outra, basta multiplicar ou dividir o numerador e o denominador pelo mesmo número (diferente de zero). Simplificação de Frações Simplificar uma fração significa 18: 2 9: 3 3 transformá-la numa fração equivalente ൌ ൌ com os termos respetivamente 24: 2 12: 3 4 menores. Fração irredutível Quando uma fração não pode mais ser simplificada, diz-se que ela é IRREDUTÍVEL ou que está na sua forma mais simples. Nesse caso, o numerador e o denominador são primos entre si.
  • 6. As frações superiores à unidade podem ser representadas sob a forma de uma adição ou sob a forma de numeral misto fracionário. Para escrever uma fração sob a forma de numeral misto fracionário: Frações >1 ૡ Para escrever um numeral misto na forma ૞ de fração: Frações <1 ૜ ૞ Frações =1 ૞ ૞
  • 7. Para reduzirmos duas ou mais frações ao mesmo denominador, seguimos os seguintes passos: 1º - Calcula-se o m.m.c. dos denominadores das frações que será o menor denominador comum. 2º- Divide-se o m.m.c. encontrado pelos denominadores das frações dadas. Decomposição em 3º - Multiplica-se o quociente encontrado em cada divisão pelo fatores primos numerador da respetiva fração. O produto encontrado é o novo numerador. 6= 2x3 12= 2x2x3 ૡ ൈሺ૛ሻ ૞ ൈሺଵሻ m.m.c (6,12)=2x2x3=12 m.m.c é igual ao produto ૟ ൈሺ૛ሻ ૚૛ሺൈ૚ሻ 12:6=2 12:12=1 dos fatores primos comuns (2x3) e não comuns (2) ૚૟ ૞ ૚૛ > ૚૛
  • 8. Se duas ou mais frações tem o mesmo denominador, a maior é a que tem maior numerador. 11 7 5 3 1 ൐ ൐ ൐ ൐ 4 4 4 4 4 Se duas ou mais frações tem o mesmo numerador, a maior é a que tem menor denominador. 15 15 15 15 15 ൐ ൐ ൐ ൐ 4 6 8 10 13 ૡ ൈሺ૛ሻ ૞ ൈሺଵሻ Para fazer a comparação de frações ૟ ൈሺ૛ሻ >૚૛ሺൈ૚ሻ m.m.c com numeradores e denominadores (6,12)=2x2x3=12 diferentes, reduzem-se as frações ao 12:6=2 mesmo denominador. 12:12=1 ૚૟ ૞ ૚૛ > ૚૛
  • 9. 1º) As Frações tem o mesmo Denominador. Adicionam-se ou subtraem-se os numeradores e repete-se o denominador. 11 7 5 13 ൅ െ ൌ 4 4 4 4 2º) As Frações tem Denominadores diferentes Reduzem-se as frações ao mesmo denominador e procede-se como no 1º caso. 11 7 1 m.m.c(3,4)=12 ൅ െ ൌ 3 4 4 12:3=4 12:4=3 ସସ ଶଵ ଷ ଺ଶ:ଶ ଷଵ ൅ െ ൌ = ଵଶ ଵଶ ଵଶ ଵଶ:ଶ ଺
  • 10. 2 7 1 14: 2 7 ൈ ൈ ൌ ൌ 4 3 2 24: 2 12 Inverso de um número Dois números dizem-se inversos um do outro se o seu produto é igual a 1. 2 7 2 3 6: 2 3 ସ ହ ଶ଴ : ൌ ൈ ൌ ൌ 4 3 4 7 28: 2 14 ൈ = ൌ1 ହ ସ ଶ଴