SlideShare uma empresa Scribd logo
1 de 13
Baixar para ler offline
Inequações do Primeiro Grau


Quando comparamos dois números reais a e b , somente uma das três afirmações é verdadeira: a < b ou a =
b ou a > b

Se os números a e b forem distintos, então a < b ou a > b e dizemos que a e b são desiguais, isto é, existe
entre eles uma desigualdade.

Vejamos alguns exemplos de desigualdades, todas verdadeiras:

4 é menor que 7     4<7
32 é maior que 11    32 > 11
- 12 é menor que 0    - 12 < 0
7/2 é maior que 2/3    7/2 > 2/3

Vejamos agora algumas sentenças abertas representadas por desigualdades:

   O dobro de um número é maior que 8        2x > 8

   O consecutivo do triplo de um número é menor que menos 14             3x + 1 < - 14

   A metade do triplo de um número não é maior que 5


   Se o número não é maior que cinco, ele pode ser menor ou igual a cinco

   O quádruplo de um número adicionado a sua metade não é menor que 0


   Se a expressão não é menor que zero, ela pode ser maior ou igual a zero

A essas sentenças abertas denominamos


 Inequação é uma sentença aberta expressa por uma desigualdade entre duas expressões
                                     algébricas.


A letra x em cada uma das desigualdades é denominada incógnita ou variável e cada expressão algébrica são
os membros da
inequação. O membro à direita é o 1º membro e a expressão situada à esquerda é o 2º membro da inequação.
Todas as quatro
inequações apresentadas são Inequações do primeiro grau, já que o grau da variável x é 1.


                         Solução de uma Inequação


Consideremos, como exemplo, a inequação

Se a expressão 3x + 7 precisa ser maior que 16        3x precisa ser maior que 9. E dessa forma, x precisa ser
maior que 3.

Se o Conjunto Universo dessa inequação for o conjunto dos naturais ou o conjunto dos números inteiros, x
poderá ser qualquer inteiro
maior que 3.   { 4; 5; 6; 7; ... }
Se o Conjunto Universo dessa inequação for o conjunto dos números racionais, x poderá ser qualquer
racional maior que 3.
   { 3,01; ... 3,012;..., 3,333...;.... 4;... 4, 3; .... }

Se o Conjunto Universo dessa inequação for o conjunto dos números reais, x poderá ser qualquer real maior
que 3.
   { 3,01; ... 3,011 ;... 4;... ; ...7, 81; ... }


                         Sentido de uma Inequação


  As inequações: 5x + 7 > 3 e 2 + 5x > 0 têm o mesmo sentido, pois possuem o mesmo sinal de
desigualdade.

   As inequações: 2x - 7 < - 2 e 4x < 7 têm o mesmo sentido, pois possuem o mesmo sinal de desigualdade.

  As inequações: x + 11 > 1 e 1 - 7x < 1 têm sentidos contrários, pois possuem sinais diferentes de
desigualdade.

  As inequações: 8 - x < - 3x e 6x > 11 têm sentidos contrários, pois possuem sinais diferentes de
desigualdade.


                     Propriedades das Desigualdades



 Propriedade I - Uma desigualdade não se altera que quando adicionamos ou subtraímos um mesmo
                                             número a
                                    ambos de seus membros.


Consideremos a desigualdade 7 > 4.
Se adicionarmos 3 unidades a cada membro, teremos : 7 + 3 > 4 + 3     10 > 7
Se diminuirmos 4 unidades de cada membro, teremos : 7 - 4 > 4 - 4     3>0
Em ambos os casos as desigualdades mantêm o mesmo sentido.

Consideremos a desigualdade - 5 < 2.
Se adicionarmos 1 unidade a cada membro, teremos : - 5 + 1 < 2 + 1     -4<3
Se diminuirmos 2 unidades de cada membro, teremos : - 5 - 2 < 2 - 2    -7<0
Em ambos os casos as desigualdades mantêm o mesmo sentido.


 Propriedade II - Uma desigualdade não se altera que quando multiplicamos ou dividimos ambos de
                                          seus membros
                                por um mesmo número positivo.


Consideremos a desigualdade 6 > 4.
Se multiplicarmos cada membro por 8, teremos : 6 x 8 > 4 x 8  48 > 32
Se dividirmos cada membro por 2, teremos : 6 : 2 > 4 : 2  3>2
Em ambos os casos as desigualdades mantêm o mesmo sentido.

Consideremos a desigualdade - 8 < 10.
Se multiplicarmos cada membro por 3, teremos : - 8 x 3 < 10 x 3    - 24 < 30
Se dividirmos cada membro por 4, teremos : - 8 : 4 < 10 : 4  - 2 < 2,5
Em ambos os casos as desigualdades mantêm o mesmo sentido.
Propriedade III - Uma desigualdade muda de sentido quando multiplicamos ou dividimos ambos de
                                         seus membros
                                 por um mesmo número negativo.


Consideremos a desigualdade 12 > 5.
Se multiplicarmos cada membro por - 7 , teremos : 12 x (- 7) > 5 x (- 7)    - 84 < - 35
Se dividirmos cada membro por - 2, teremos : 12 : (- 2) > 5 : (- 2)      - 6 < - 2,5
Em ambos os casos as desigualdades mudaram de sentido.

Consideremos a desigualdade - 4 < 12.
Se multiplicarmos cada membro por - 2, teremos : - 4 x ( - 2 ) < 12 x ( - 2 )      8 > - 24
Se dividirmos cada membro por - 1 , teremos : - 4 : ( - 1 ) < 10 : ( - 1 )    4 > - 10
Em ambos os casos as desigualdades mudaram de sentido.


              Resolução de uma Inequação do Primeiro Grau.




                 Sistemas de Inequações do Primeiro Grau
Exercícios Propostos - Inequações
Respostas dos Exercícios Propostos




             Inequações do Primeiro Grau



      Inequações Fracionárias do Primeiro Grau


Uma inequação do primeiro grau é fracionária quando possuir incógnita em denominador. Sua resolução será
feita de forma bastante
diferenciada de uma equação fracionária do primeiro grau. Para resolvê-la precisamos analisar os sinais da
fração algébrica
resultante.

1º Caso : O numerador é um número real qualquer e o denominador é uma expressão ou ( função ) do
primeiro grau :
Resolução de uma Inequação Fracionária pela Quadro de Sinais
Montando o Quadro de Sinais


  Na primeira linha analisaremos a variação de sinais da função numerador, na segunda linha analisaremos a
variação de sinais da
  função denominador e na terceira linha apresentaremos a variação de sinais do quociente resultante. No
alto do quadro teremos
  as raízes da expressão algébrica numerador ( função numerador ) e da expressão algébrica denominador (
função denominador ),
  escritas como numa reta de números reais.

 E montando o quadro, teremos:
Exercícios Propostos - Inequações Fracionárias
Respostas dos Exercícios Propostos - Inequações Fracionárias

Mais conteúdo relacionado

Mais procurados

Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Adriana Bonato
 
Exercícios de equações de 1º grau
Exercícios de equações de 1º grauExercícios de equações de 1º grau
Exercícios de equações de 1º grauAluizio Santos
 
9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletasHélio Rocha
 
Expressões algébricas
Expressões algébricasExpressões algébricas
Expressões algébricasleilamaluf
 
Exercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosExercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosAndré Luís Nogueira
 
Divisao de frações e problemas
Divisao de frações e problemasDivisao de frações e problemas
Divisao de frações e problemastcrisouza
 
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...Celso do Rozário Brasil Gonçalves
 
Mat exercicios resolvidos 003
Mat exercicios resolvidos  003Mat exercicios resolvidos  003
Mat exercicios resolvidos 003trigono_metrico
 
Exercicios de-radiciacao
Exercicios de-radiciacaoExercicios de-radiciacao
Exercicios de-radiciacaoRonaldoii
 
Exercícios resolvidos sobre logaritmos (Inclui o uso das propriedades, restiç...
Exercícios resolvidos sobre logaritmos (Inclui o uso das propriedades, restiç...Exercícios resolvidos sobre logaritmos (Inclui o uso das propriedades, restiç...
Exercícios resolvidos sobre logaritmos (Inclui o uso das propriedades, restiç...wilkerfilipel
 
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo AulasMatemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo AulasVídeo Aulas Apoio
 
Recuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRecuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRafael Marques
 
Expressões numéricas com potências
Expressões numéricas com potênciasExpressões numéricas com potências
Expressões numéricas com potênciasRita Sousa
 
Geometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidoscon_seguir
 

Mais procurados (20)

Equações
EquaçõesEquações
Equações
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0
 
Exercícios de equações de 1º grau
Exercícios de equações de 1º grauExercícios de equações de 1º grau
Exercícios de equações de 1º grau
 
9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas
 
Função 1 grau
Função 1 grauFunção 1 grau
Função 1 grau
 
Expressões algébricas
Expressões algébricasExpressões algébricas
Expressões algébricas
 
Algebra
AlgebraAlgebra
Algebra
 
Exercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosExercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômios
 
Listão 7º ano
Listão  7º anoListão  7º ano
Listão 7º ano
 
Exercicios equação de 2º grau
Exercicios   equação de 2º grauExercicios   equação de 2º grau
Exercicios equação de 2º grau
 
Divisao de frações e problemas
Divisao de frações e problemasDivisao de frações e problemas
Divisao de frações e problemas
 
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
 
Mat exercicios resolvidos 003
Mat exercicios resolvidos  003Mat exercicios resolvidos  003
Mat exercicios resolvidos 003
 
Exercicios de-radiciacao
Exercicios de-radiciacaoExercicios de-radiciacao
Exercicios de-radiciacao
 
Exercícios resolvidos sobre logaritmos (Inclui o uso das propriedades, restiç...
Exercícios resolvidos sobre logaritmos (Inclui o uso das propriedades, restiç...Exercícios resolvidos sobre logaritmos (Inclui o uso das propriedades, restiç...
Exercícios resolvidos sobre logaritmos (Inclui o uso das propriedades, restiç...
 
Função afim
Função afimFunção afim
Função afim
 
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo AulasMatemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
 
Recuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRecuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestre
 
Expressões numéricas com potências
Expressões numéricas com potênciasExpressões numéricas com potências
Expressões numéricas com potências
 
Geometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidos
 

Destaque

Equaçoes 1ºgrau com denominadores
Equaçoes 1ºgrau com denominadoresEquaçoes 1ºgrau com denominadores
Equaçoes 1ºgrau com denominadoresRita Sousa
 
Equações e inequações fracionárias
Equações e inequações fracionáriasEquações e inequações fracionárias
Equações e inequações fracionáriassilvia_lfr
 
Modular
ModularModular
Modulargdw147
 
Monómios e polinómios
Monómios e polinómiosMonómios e polinómios
Monómios e polinómiosInês Mota
 
Polinómios e monómios
Polinómios e monómiosPolinómios e monómios
Polinómios e monómiosaldaalves
 
Exercícios: noções de conjuntos e conjuntos numéricos
Exercícios: noções de conjuntos e conjuntos numéricosExercícios: noções de conjuntos e conjuntos numéricos
Exercícios: noções de conjuntos e conjuntos numéricosthieresaulas
 
Transformar número decimal em fração decimal
Transformar número decimal em fração decimalTransformar número decimal em fração decimal
Transformar número decimal em fração decimalMarcia Roberto
 
1ª lista de exerc(monomios) 8º ano ilton bruno
1ª lista de exerc(monomios) 8º ano   ilton bruno1ª lista de exerc(monomios) 8º ano   ilton bruno
1ª lista de exerc(monomios) 8º ano ilton brunoIlton Bruno
 
2ª lista de exerc(monomios e polinômios) 8º ano ilton bruno
2ª lista de exerc(monomios e polinômios) 8º ano   ilton bruno2ª lista de exerc(monomios e polinômios) 8º ano   ilton bruno
2ª lista de exerc(monomios e polinômios) 8º ano ilton brunoIlton Bruno
 
Exercícios resolvidos de conjuntos
Exercícios resolvidos de conjuntosExercícios resolvidos de conjuntos
Exercícios resolvidos de conjuntosJunior Magalhães
 
Conjuntos numéricos mari
Conjuntos numéricos mariConjuntos numéricos mari
Conjuntos numéricos marieadfae
 

Destaque (19)

Aula inequacoes
Aula inequacoesAula inequacoes
Aula inequacoes
 
Equaçoes 1ºgrau com denominadores
Equaçoes 1ºgrau com denominadoresEquaçoes 1ºgrau com denominadores
Equaçoes 1ºgrau com denominadores
 
Equações e inequações fracionárias
Equações e inequações fracionáriasEquações e inequações fracionárias
Equações e inequações fracionárias
 
Modular
ModularModular
Modular
 
Inequaçoes
InequaçoesInequaçoes
Inequaçoes
 
Inequações
InequaçõesInequações
Inequações
 
Inequações
InequaçõesInequações
Inequações
 
Monómios e polinómios
Monómios e polinómiosMonómios e polinómios
Monómios e polinómios
 
Polinómios e monómios
Polinómios e monómiosPolinómios e monómios
Polinómios e monómios
 
Exercícios: noções de conjuntos e conjuntos numéricos
Exercícios: noções de conjuntos e conjuntos numéricosExercícios: noções de conjuntos e conjuntos numéricos
Exercícios: noções de conjuntos e conjuntos numéricos
 
População e amostra
População e amostraPopulação e amostra
População e amostra
 
Transformar número decimal em fração decimal
Transformar número decimal em fração decimalTransformar número decimal em fração decimal
Transformar número decimal em fração decimal
 
Números decimais gabarito
Números decimais  gabaritoNúmeros decimais  gabarito
Números decimais gabarito
 
Numeros decimais
Numeros decimaisNumeros decimais
Numeros decimais
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
1ª lista de exerc(monomios) 8º ano ilton bruno
1ª lista de exerc(monomios) 8º ano   ilton bruno1ª lista de exerc(monomios) 8º ano   ilton bruno
1ª lista de exerc(monomios) 8º ano ilton bruno
 
2ª lista de exerc(monomios e polinômios) 8º ano ilton bruno
2ª lista de exerc(monomios e polinômios) 8º ano   ilton bruno2ª lista de exerc(monomios e polinômios) 8º ano   ilton bruno
2ª lista de exerc(monomios e polinômios) 8º ano ilton bruno
 
Exercícios resolvidos de conjuntos
Exercícios resolvidos de conjuntosExercícios resolvidos de conjuntos
Exercícios resolvidos de conjuntos
 
Conjuntos numéricos mari
Conjuntos numéricos mariConjuntos numéricos mari
Conjuntos numéricos mari
 

Semelhante a Mat inequacoes do primeiro grau

Mat inequacoes do primeiro grau 001
Mat inequacoes do primeiro grau  001Mat inequacoes do primeiro grau  001
Mat inequacoes do primeiro grau 001trigono_metria
 
inequacoes_do_1o_grau 6a série ou 5° ano
inequacoes_do_1o_grau 6a série ou 5° anoinequacoes_do_1o_grau 6a série ou 5° ano
inequacoes_do_1o_grau 6a série ou 5° anoamulherdarosa
 
Equações do 1º grau a uma incognita 8ºano (sónia andrea pires's conflicted co...
Equações do 1º grau a uma incognita 8ºano (sónia andrea pires's conflicted co...Equações do 1º grau a uma incognita 8ºano (sónia andrea pires's conflicted co...
Equações do 1º grau a uma incognita 8ºano (sónia andrea pires's conflicted co...estudamatematica
 
Intervalos de-numeros-reais
Intervalos de-numeros-reaisIntervalos de-numeros-reais
Intervalos de-numeros-reais7f14_15
 
Equaode1grau 120204171219-phpapp02
Equaode1grau 120204171219-phpapp02Equaode1grau 120204171219-phpapp02
Equaode1grau 120204171219-phpapp02AlissonSantos146
 
Inequações do 2°grau
Inequações do 2°grauInequações do 2°grau
Inequações do 2°grauLSKY
 
Equações do 1º grau II.ppt
Equações do 1º grau II.pptEquações do 1º grau II.ppt
Equações do 1º grau II.pptricardoluiz71
 
Equações de 1º grau
Equações de 1º grauEquações de 1º grau
Equações de 1º graumarlismarques
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimaisErasmo lopes
 

Semelhante a Mat inequacoes do primeiro grau (20)

Mat inequacoes do primeiro grau 001
Mat inequacoes do primeiro grau  001Mat inequacoes do primeiro grau  001
Mat inequacoes do primeiro grau 001
 
02 matematica 7ano1
02 matematica 7ano102 matematica 7ano1
02 matematica 7ano1
 
inequacoes_do_1o_grau 6a série ou 5° ano
inequacoes_do_1o_grau 6a série ou 5° anoinequacoes_do_1o_grau 6a série ou 5° ano
inequacoes_do_1o_grau 6a série ou 5° ano
 
Números racionais
Números racionaisNúmeros racionais
Números racionais
 
Equações do 1º grau a uma incognita 8ºano (sónia andrea pires's conflicted co...
Equações do 1º grau a uma incognita 8ºano (sónia andrea pires's conflicted co...Equações do 1º grau a uma incognita 8ºano (sónia andrea pires's conflicted co...
Equações do 1º grau a uma incognita 8ºano (sónia andrea pires's conflicted co...
 
Intervalos de-numeros-reais
Intervalos de-numeros-reaisIntervalos de-numeros-reais
Intervalos de-numeros-reais
 
Equações7
Equações7Equações7
Equações7
 
Equações7
Equações7Equações7
Equações7
 
Equações7
Equações7Equações7
Equações7
 
Equações7
Equações7Equações7
Equações7
 
Equações7
Equações7Equações7
Equações7
 
Equações7
Equações7Equações7
Equações7
 
Aula2 equação 1º_
Aula2 equação 1º_Aula2 equação 1º_
Aula2 equação 1º_
 
Equaode1grau 120204171219-phpapp02
Equaode1grau 120204171219-phpapp02Equaode1grau 120204171219-phpapp02
Equaode1grau 120204171219-phpapp02
 
Intervalos
IntervalosIntervalos
Intervalos
 
Inequações do 2°grau
Inequações do 2°grauInequações do 2°grau
Inequações do 2°grau
 
Equações do 1º grau II.ppt
Equações do 1º grau II.pptEquações do 1º grau II.ppt
Equações do 1º grau II.ppt
 
Equações de 1º grau
Equações de 1º grauEquações de 1º grau
Equações de 1º grau
 
Mat67b
Mat67bMat67b
Mat67b
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimais
 

Mais de trigono_metria

Mat utfrs 03. potenciacao
Mat utfrs 03. potenciacaoMat utfrs 03. potenciacao
Mat utfrs 03. potenciacaotrigono_metria
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numerotrigono_metria
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grautrigono_metria
 
Mat expressoes algebricas
Mat expressoes algebricasMat expressoes algebricas
Mat expressoes algebricastrigono_metria
 
Mat numeros decimais parte ii
Mat numeros decimais parte iiMat numeros decimais parte ii
Mat numeros decimais parte iitrigono_metria
 
Mat equacao do segundo grau parte i
Mat equacao do segundo grau   parte iMat equacao do segundo grau   parte i
Mat equacao do segundo grau parte itrigono_metria
 
Mat razoes e proporcoes 002
Mat razoes e proporcoes  002Mat razoes e proporcoes  002
Mat razoes e proporcoes 002trigono_metria
 
Mat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciosMat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciostrigono_metria
 
Mat conjuntos numericos
Mat conjuntos numericosMat conjuntos numericos
Mat conjuntos numericostrigono_metria
 
Mat leitura numero decimal
Mat leitura numero decimalMat leitura numero decimal
Mat leitura numero decimaltrigono_metria
 
Mat equacoes do 1 grau 004
Mat equacoes do 1 grau  004Mat equacoes do 1 grau  004
Mat equacoes do 1 grau 004trigono_metria
 
Mat fatoracao algebrica exercicios resolvidos
Mat fatoracao algebrica exercicios resolvidosMat fatoracao algebrica exercicios resolvidos
Mat fatoracao algebrica exercicios resolvidostrigono_metria
 
Mat utfrs 05. radiciacao
Mat utfrs 05. radiciacaoMat utfrs 05. radiciacao
Mat utfrs 05. radiciacaotrigono_metria
 
Mat equacoes do 1 grau 001
Mat equacoes do 1 grau  001Mat equacoes do 1 grau  001
Mat equacoes do 1 grau 001trigono_metria
 
Mat equacao do primeiro grau resolvidos 002
Mat equacao do primeiro grau resolvidos  002Mat equacao do primeiro grau resolvidos  002
Mat equacao do primeiro grau resolvidos 002trigono_metria
 

Mais de trigono_metria (20)

Mat utfrs 03. potenciacao
Mat utfrs 03. potenciacaoMat utfrs 03. potenciacao
Mat utfrs 03. potenciacao
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numero
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
 
Mat areas e volumes
Mat areas e volumesMat areas e volumes
Mat areas e volumes
 
Mat expressoes algebricas
Mat expressoes algebricasMat expressoes algebricas
Mat expressoes algebricas
 
Mat numeros decimais parte ii
Mat numeros decimais parte iiMat numeros decimais parte ii
Mat numeros decimais parte ii
 
Mat equacao do segundo grau parte i
Mat equacao do segundo grau   parte iMat equacao do segundo grau   parte i
Mat equacao do segundo grau parte i
 
Mat razoes e proporcoes 002
Mat razoes e proporcoes  002Mat razoes e proporcoes  002
Mat razoes e proporcoes 002
 
Mat sc conicas
Mat sc conicasMat sc conicas
Mat sc conicas
 
Mat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciosMat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exercicios
 
Mat conjuntos numericos
Mat conjuntos numericosMat conjuntos numericos
Mat conjuntos numericos
 
Mat leitura numero decimal
Mat leitura numero decimalMat leitura numero decimal
Mat leitura numero decimal
 
Mat numeros racionais
Mat numeros racionaisMat numeros racionais
Mat numeros racionais
 
Mat divisibilidade
Mat divisibilidadeMat divisibilidade
Mat divisibilidade
 
Mat equacoes do 1 grau 004
Mat equacoes do 1 grau  004Mat equacoes do 1 grau  004
Mat equacoes do 1 grau 004
 
Mat fatoracao algebrica exercicios resolvidos
Mat fatoracao algebrica exercicios resolvidosMat fatoracao algebrica exercicios resolvidos
Mat fatoracao algebrica exercicios resolvidos
 
Mat utfrs 05. radiciacao
Mat utfrs 05. radiciacaoMat utfrs 05. radiciacao
Mat utfrs 05. radiciacao
 
Mat derivadas
Mat derivadasMat derivadas
Mat derivadas
 
Mat equacoes do 1 grau 001
Mat equacoes do 1 grau  001Mat equacoes do 1 grau  001
Mat equacoes do 1 grau 001
 
Mat equacao do primeiro grau resolvidos 002
Mat equacao do primeiro grau resolvidos  002Mat equacao do primeiro grau resolvidos  002
Mat equacao do primeiro grau resolvidos 002
 

Último

Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...azulassessoria9
 
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Mary Alvarenga
 
Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Paula Meyer Piagentini
 
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...DominiqueFaria2
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxacaciocarmo1
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
UM CURSO DE INFORMATICA BASICA PARA IDOSOS
UM CURSO DE INFORMATICA BASICA PARA IDOSOSUM CURSO DE INFORMATICA BASICA PARA IDOSOS
UM CURSO DE INFORMATICA BASICA PARA IDOSOSdjgsantos1981
 
Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Paula Meyer Piagentini
 
NOVA ORDEM MUNDIAL - Conceitos básicos na NOM
NOVA ORDEM MUNDIAL - Conceitos básicos na NOMNOVA ORDEM MUNDIAL - Conceitos básicos na NOM
NOVA ORDEM MUNDIAL - Conceitos básicos na NOMHenrique Pontes
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Paula Meyer Piagentini
 
Livro de bio celular e molecular Junqueira e Carneiro.pdf
Livro de bio celular e molecular Junqueira e Carneiro.pdfLivro de bio celular e molecular Junqueira e Carneiro.pdf
Livro de bio celular e molecular Junqueira e Carneiro.pdfRafaela Vieira
 
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...azulassessoria9
 
Modelos Evolutivos em História das Religiões
Modelos Evolutivos em História das ReligiõesModelos Evolutivos em História das Religiões
Modelos Evolutivos em História das ReligiõesGilbraz Aragão
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxGislaineDuresCruz
 
Modernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e AméricaModernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e Américawilson778875
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terraBiblioteca UCS
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas BrasileirosMary Alvarenga
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREIVONETETAVARESRAMOS
 

Último (20)

Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
 
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
 
Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.
 
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
 
MANEJO INTEGRADO DE DOENÇAS (MID)
MANEJO INTEGRADO DE DOENÇAS (MID)MANEJO INTEGRADO DE DOENÇAS (MID)
MANEJO INTEGRADO DE DOENÇAS (MID)
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptx
 
Os Ratos - Dyonelio Machado FUVEST 2025
Os Ratos  -  Dyonelio Machado  FUVEST 2025Os Ratos  -  Dyonelio Machado  FUVEST 2025
Os Ratos - Dyonelio Machado FUVEST 2025
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
UM CURSO DE INFORMATICA BASICA PARA IDOSOS
UM CURSO DE INFORMATICA BASICA PARA IDOSOSUM CURSO DE INFORMATICA BASICA PARA IDOSOS
UM CURSO DE INFORMATICA BASICA PARA IDOSOS
 
Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)
 
NOVA ORDEM MUNDIAL - Conceitos básicos na NOM
NOVA ORDEM MUNDIAL - Conceitos básicos na NOMNOVA ORDEM MUNDIAL - Conceitos básicos na NOM
NOVA ORDEM MUNDIAL - Conceitos básicos na NOM
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.
 
Livro de bio celular e molecular Junqueira e Carneiro.pdf
Livro de bio celular e molecular Junqueira e Carneiro.pdfLivro de bio celular e molecular Junqueira e Carneiro.pdf
Livro de bio celular e molecular Junqueira e Carneiro.pdf
 
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
 
Modelos Evolutivos em História das Religiões
Modelos Evolutivos em História das ReligiõesModelos Evolutivos em História das Religiões
Modelos Evolutivos em História das Religiões
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
 
Modernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e AméricaModernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e América
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terra
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas Brasileiros
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
 

Mat inequacoes do primeiro grau

  • 1. Inequações do Primeiro Grau Quando comparamos dois números reais a e b , somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b Se os números a e b forem distintos, então a < b ou a > b e dizemos que a e b são desiguais, isto é, existe entre eles uma desigualdade. Vejamos alguns exemplos de desigualdades, todas verdadeiras: 4 é menor que 7 4<7 32 é maior que 11 32 > 11 - 12 é menor que 0 - 12 < 0 7/2 é maior que 2/3 7/2 > 2/3 Vejamos agora algumas sentenças abertas representadas por desigualdades: O dobro de um número é maior que 8 2x > 8 O consecutivo do triplo de um número é menor que menos 14 3x + 1 < - 14 A metade do triplo de um número não é maior que 5 Se o número não é maior que cinco, ele pode ser menor ou igual a cinco O quádruplo de um número adicionado a sua metade não é menor que 0 Se a expressão não é menor que zero, ela pode ser maior ou igual a zero A essas sentenças abertas denominamos Inequação é uma sentença aberta expressa por uma desigualdade entre duas expressões algébricas. A letra x em cada uma das desigualdades é denominada incógnita ou variável e cada expressão algébrica são os membros da inequação. O membro à direita é o 1º membro e a expressão situada à esquerda é o 2º membro da inequação. Todas as quatro inequações apresentadas são Inequações do primeiro grau, já que o grau da variável x é 1. Solução de uma Inequação Consideremos, como exemplo, a inequação Se a expressão 3x + 7 precisa ser maior que 16 3x precisa ser maior que 9. E dessa forma, x precisa ser maior que 3. Se o Conjunto Universo dessa inequação for o conjunto dos naturais ou o conjunto dos números inteiros, x poderá ser qualquer inteiro maior que 3. { 4; 5; 6; 7; ... }
  • 2. Se o Conjunto Universo dessa inequação for o conjunto dos números racionais, x poderá ser qualquer racional maior que 3. { 3,01; ... 3,012;..., 3,333...;.... 4;... 4, 3; .... } Se o Conjunto Universo dessa inequação for o conjunto dos números reais, x poderá ser qualquer real maior que 3. { 3,01; ... 3,011 ;... 4;... ; ...7, 81; ... } Sentido de uma Inequação As inequações: 5x + 7 > 3 e 2 + 5x > 0 têm o mesmo sentido, pois possuem o mesmo sinal de desigualdade. As inequações: 2x - 7 < - 2 e 4x < 7 têm o mesmo sentido, pois possuem o mesmo sinal de desigualdade. As inequações: x + 11 > 1 e 1 - 7x < 1 têm sentidos contrários, pois possuem sinais diferentes de desigualdade. As inequações: 8 - x < - 3x e 6x > 11 têm sentidos contrários, pois possuem sinais diferentes de desigualdade. Propriedades das Desigualdades Propriedade I - Uma desigualdade não se altera que quando adicionamos ou subtraímos um mesmo número a ambos de seus membros. Consideremos a desigualdade 7 > 4. Se adicionarmos 3 unidades a cada membro, teremos : 7 + 3 > 4 + 3 10 > 7 Se diminuirmos 4 unidades de cada membro, teremos : 7 - 4 > 4 - 4 3>0 Em ambos os casos as desigualdades mantêm o mesmo sentido. Consideremos a desigualdade - 5 < 2. Se adicionarmos 1 unidade a cada membro, teremos : - 5 + 1 < 2 + 1 -4<3 Se diminuirmos 2 unidades de cada membro, teremos : - 5 - 2 < 2 - 2 -7<0 Em ambos os casos as desigualdades mantêm o mesmo sentido. Propriedade II - Uma desigualdade não se altera que quando multiplicamos ou dividimos ambos de seus membros por um mesmo número positivo. Consideremos a desigualdade 6 > 4. Se multiplicarmos cada membro por 8, teremos : 6 x 8 > 4 x 8 48 > 32 Se dividirmos cada membro por 2, teremos : 6 : 2 > 4 : 2 3>2 Em ambos os casos as desigualdades mantêm o mesmo sentido. Consideremos a desigualdade - 8 < 10. Se multiplicarmos cada membro por 3, teremos : - 8 x 3 < 10 x 3 - 24 < 30 Se dividirmos cada membro por 4, teremos : - 8 : 4 < 10 : 4 - 2 < 2,5 Em ambos os casos as desigualdades mantêm o mesmo sentido.
  • 3. Propriedade III - Uma desigualdade muda de sentido quando multiplicamos ou dividimos ambos de seus membros por um mesmo número negativo. Consideremos a desigualdade 12 > 5. Se multiplicarmos cada membro por - 7 , teremos : 12 x (- 7) > 5 x (- 7) - 84 < - 35 Se dividirmos cada membro por - 2, teremos : 12 : (- 2) > 5 : (- 2) - 6 < - 2,5 Em ambos os casos as desigualdades mudaram de sentido. Consideremos a desigualdade - 4 < 12. Se multiplicarmos cada membro por - 2, teremos : - 4 x ( - 2 ) < 12 x ( - 2 ) 8 > - 24 Se dividirmos cada membro por - 1 , teremos : - 4 : ( - 1 ) < 10 : ( - 1 ) 4 > - 10 Em ambos os casos as desigualdades mudaram de sentido. Resolução de uma Inequação do Primeiro Grau. Sistemas de Inequações do Primeiro Grau
  • 4. Exercícios Propostos - Inequações
  • 5.
  • 6. Respostas dos Exercícios Propostos Inequações do Primeiro Grau Inequações Fracionárias do Primeiro Grau Uma inequação do primeiro grau é fracionária quando possuir incógnita em denominador. Sua resolução será feita de forma bastante diferenciada de uma equação fracionária do primeiro grau. Para resolvê-la precisamos analisar os sinais da fração algébrica resultante. 1º Caso : O numerador é um número real qualquer e o denominador é uma expressão ou ( função ) do primeiro grau :
  • 7.
  • 8. Resolução de uma Inequação Fracionária pela Quadro de Sinais
  • 9. Montando o Quadro de Sinais Na primeira linha analisaremos a variação de sinais da função numerador, na segunda linha analisaremos a variação de sinais da função denominador e na terceira linha apresentaremos a variação de sinais do quociente resultante. No alto do quadro teremos as raízes da expressão algébrica numerador ( função numerador ) e da expressão algébrica denominador ( função denominador ), escritas como numa reta de números reais. E montando o quadro, teremos:
  • 10.
  • 11. Exercícios Propostos - Inequações Fracionárias
  • 12.
  • 13. Respostas dos Exercícios Propostos - Inequações Fracionárias