O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Mat inequacoes do primeiro grau

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Inequações do Primeiro Grau


Quando comparamos dois números reais a e b , somente uma das três afirmações é verdadeira: a...
Se o Conjunto Universo dessa inequação for o conjunto dos números racionais, x poderá ser qualquer
racional maior que 3.
 ...
Propriedade III - Uma desigualdade muda de sentido quando multiplicamos ou dividimos ambos de
                            ...
Anúncio
Anúncio
Próximos SlideShares
Inequacoes1
Inequacoes1
Carregando em…3
×

Confira estes a seguir

1 de 13 Anúncio
Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Quem viu também gostou (17)

Anúncio

Semelhante a Mat inequacoes do primeiro grau (20)

Mais de trigono_metria (20)

Anúncio

Mais recentes (20)

Mat inequacoes do primeiro grau

  1. 1. Inequações do Primeiro Grau Quando comparamos dois números reais a e b , somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b Se os números a e b forem distintos, então a < b ou a > b e dizemos que a e b são desiguais, isto é, existe entre eles uma desigualdade. Vejamos alguns exemplos de desigualdades, todas verdadeiras: 4 é menor que 7 4<7 32 é maior que 11 32 > 11 - 12 é menor que 0 - 12 < 0 7/2 é maior que 2/3 7/2 > 2/3 Vejamos agora algumas sentenças abertas representadas por desigualdades: O dobro de um número é maior que 8 2x > 8 O consecutivo do triplo de um número é menor que menos 14 3x + 1 < - 14 A metade do triplo de um número não é maior que 5 Se o número não é maior que cinco, ele pode ser menor ou igual a cinco O quádruplo de um número adicionado a sua metade não é menor que 0 Se a expressão não é menor que zero, ela pode ser maior ou igual a zero A essas sentenças abertas denominamos Inequação é uma sentença aberta expressa por uma desigualdade entre duas expressões algébricas. A letra x em cada uma das desigualdades é denominada incógnita ou variável e cada expressão algébrica são os membros da inequação. O membro à direita é o 1º membro e a expressão situada à esquerda é o 2º membro da inequação. Todas as quatro inequações apresentadas são Inequações do primeiro grau, já que o grau da variável x é 1. Solução de uma Inequação Consideremos, como exemplo, a inequação Se a expressão 3x + 7 precisa ser maior que 16 3x precisa ser maior que 9. E dessa forma, x precisa ser maior que 3. Se o Conjunto Universo dessa inequação for o conjunto dos naturais ou o conjunto dos números inteiros, x poderá ser qualquer inteiro maior que 3. { 4; 5; 6; 7; ... }
  2. 2. Se o Conjunto Universo dessa inequação for o conjunto dos números racionais, x poderá ser qualquer racional maior que 3. { 3,01; ... 3,012;..., 3,333...;.... 4;... 4, 3; .... } Se o Conjunto Universo dessa inequação for o conjunto dos números reais, x poderá ser qualquer real maior que 3. { 3,01; ... 3,011 ;... 4;... ; ...7, 81; ... } Sentido de uma Inequação As inequações: 5x + 7 > 3 e 2 + 5x > 0 têm o mesmo sentido, pois possuem o mesmo sinal de desigualdade. As inequações: 2x - 7 < - 2 e 4x < 7 têm o mesmo sentido, pois possuem o mesmo sinal de desigualdade. As inequações: x + 11 > 1 e 1 - 7x < 1 têm sentidos contrários, pois possuem sinais diferentes de desigualdade. As inequações: 8 - x < - 3x e 6x > 11 têm sentidos contrários, pois possuem sinais diferentes de desigualdade. Propriedades das Desigualdades Propriedade I - Uma desigualdade não se altera que quando adicionamos ou subtraímos um mesmo número a ambos de seus membros. Consideremos a desigualdade 7 > 4. Se adicionarmos 3 unidades a cada membro, teremos : 7 + 3 > 4 + 3 10 > 7 Se diminuirmos 4 unidades de cada membro, teremos : 7 - 4 > 4 - 4 3>0 Em ambos os casos as desigualdades mantêm o mesmo sentido. Consideremos a desigualdade - 5 < 2. Se adicionarmos 1 unidade a cada membro, teremos : - 5 + 1 < 2 + 1 -4<3 Se diminuirmos 2 unidades de cada membro, teremos : - 5 - 2 < 2 - 2 -7<0 Em ambos os casos as desigualdades mantêm o mesmo sentido. Propriedade II - Uma desigualdade não se altera que quando multiplicamos ou dividimos ambos de seus membros por um mesmo número positivo. Consideremos a desigualdade 6 > 4. Se multiplicarmos cada membro por 8, teremos : 6 x 8 > 4 x 8 48 > 32 Se dividirmos cada membro por 2, teremos : 6 : 2 > 4 : 2 3>2 Em ambos os casos as desigualdades mantêm o mesmo sentido. Consideremos a desigualdade - 8 < 10. Se multiplicarmos cada membro por 3, teremos : - 8 x 3 < 10 x 3 - 24 < 30 Se dividirmos cada membro por 4, teremos : - 8 : 4 < 10 : 4 - 2 < 2,5 Em ambos os casos as desigualdades mantêm o mesmo sentido.
  3. 3. Propriedade III - Uma desigualdade muda de sentido quando multiplicamos ou dividimos ambos de seus membros por um mesmo número negativo. Consideremos a desigualdade 12 > 5. Se multiplicarmos cada membro por - 7 , teremos : 12 x (- 7) > 5 x (- 7) - 84 < - 35 Se dividirmos cada membro por - 2, teremos : 12 : (- 2) > 5 : (- 2) - 6 < - 2,5 Em ambos os casos as desigualdades mudaram de sentido. Consideremos a desigualdade - 4 < 12. Se multiplicarmos cada membro por - 2, teremos : - 4 x ( - 2 ) < 12 x ( - 2 ) 8 > - 24 Se dividirmos cada membro por - 1 , teremos : - 4 : ( - 1 ) < 10 : ( - 1 ) 4 > - 10 Em ambos os casos as desigualdades mudaram de sentido. Resolução de uma Inequação do Primeiro Grau. Sistemas de Inequações do Primeiro Grau
  4. 4. Exercícios Propostos - Inequações
  5. 5. Respostas dos Exercícios Propostos Inequações do Primeiro Grau Inequações Fracionárias do Primeiro Grau Uma inequação do primeiro grau é fracionária quando possuir incógnita em denominador. Sua resolução será feita de forma bastante diferenciada de uma equação fracionária do primeiro grau. Para resolvê-la precisamos analisar os sinais da fração algébrica resultante. 1º Caso : O numerador é um número real qualquer e o denominador é uma expressão ou ( função ) do primeiro grau :
  6. 6. Resolução de uma Inequação Fracionária pela Quadro de Sinais
  7. 7. Montando o Quadro de Sinais Na primeira linha analisaremos a variação de sinais da função numerador, na segunda linha analisaremos a variação de sinais da função denominador e na terceira linha apresentaremos a variação de sinais do quociente resultante. No alto do quadro teremos as raízes da expressão algébrica numerador ( função numerador ) e da expressão algébrica denominador ( função denominador ), escritas como numa reta de números reais. E montando o quadro, teremos:
  8. 8. Exercícios Propostos - Inequações Fracionárias
  9. 9. Respostas dos Exercícios Propostos - Inequações Fracionárias

×