SlideShare uma empresa Scribd logo
• Dois triângulos são semelhantes quando têm os
  ângulos correspondentes congruentes e os lados
  homólogos proporcionais.
• Considere os triângulos ABC e A’B’C’ a seguir:




        12                     15
• os ângulos correspondentes são congruentes.


      ˆ
      A     ˆ   ˆ ˆ   ˆ ˆ
            A , B B , C C
• a razão entre os lados correspondentes é 4 .
                                           5
         AB        BC       AC       4
         AB        BC       AC       5
• Podemos concluir que os triângulos ABC e A’B’C’
  são semelhantes e indicamos:

            ABC~ A B C
Denominamos:
• ângulos homólogos − os ângulos congruentes de
  dois triângulos semelhantes.

       ˆ ˆ     ˆ ˆ    ˆ ˆ
       A e A , B eB , C eC
Denominamos:
• lados homólogos: os lados determinados
   por vértices homólogos.


   AB e A B , BC e B C , AC e A C
Se uma reta é paralela a um dos lados de um
triângulo e intercepta os outros dois em pontos
distintos, então o triângulo que ela determina é
semelhante ao primeiro.



                                       ABC~        DEC
Podemos medir um terreno plano com um
obstáculo no meio com a ajuda de semelhança de
triângulos.
Como do ponto A não podemos avistar o ponto
B. Precisamos marcar um ponto C em que
avistamos os pontos A e B.

                     Morro




                              Terreno visto de cima
Fixamos então um marco em C e medimos com
a trena as distâncias AC e BC. Vamos supor que
os valores encontrados foram os seguintes:
  • AC = 112 m
  • BC = 64 m
 Agora, vamos dividir essas distâncias por um
número fixo.
Por exemplo:
         112             64
               14 e            8
          8               8
 Sobre o segmento AC coloca-se um marco no
ponto D onde CD = 14 e no segmento AB coloca-
se um marco no ponto E onde CE = 8.
O triângulo CDE criado é semelhante e oito
vezes menor que o triângulo CAB.

                   Morro




                                Terreno visto de cima
Agora, através da trena o segmento DE pode ser
medido.
 Se encontrarmos DE = 16 m, como sabemos que
AB é oito vezes maior, podemos concluir que AB
= 128 m.
 E assim, o problema está concluído.
Através desse exemplo, podemos perceber que muitos
problemas envolvendo medição, seja de um terreno,
largura de um rio, altura de um prédio, podem ser
resolvidos por intermédio de semelhança de triângulos.
• IEZZI, Gelson et al. Matemática: volume único. São
  Paulo: Atual, 1997.
• DOLCE, Osvaldo, POMPEO, José Nicolau.
  Fundamentos de Matemática Elementar 9:
  Geometria plana. São Paulo: Atual, 2005.

Mais conteúdo relacionado

Mais procurados

Porcentagem
PorcentagemPorcentagem
Porcentagem
Letinha47
 
Função de 1º Grau.
Função de 1º Grau.Função de 1º Grau.
Função de 1º Grau.
carolgouvea
 
Teorema de Tales
Teorema de TalesTeorema de Tales
Teorema de Tales
Marcela Miranda
 
Relações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo RetânguloRelações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo Retângulo
Lilene Alvarenga
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
rubensdiasjr07
 
Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)
SirlenedeAPFinotti
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
Angela Costa
 
Congruência de triângulos
Congruência de triângulos Congruência de triângulos
Congruência de triângulos
Helena Borralho
 
Principio Fundamental Da Contagem
Principio Fundamental Da ContagemPrincipio Fundamental Da Contagem
Principio Fundamental Da Contagem
teodepaula
 
Medidas de comprimento e ttempo oficial
Medidas de comprimento e ttempo oficialMedidas de comprimento e ttempo oficial
Medidas de comprimento e ttempo oficial
Pedagogia Ufal
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
André Marchesini
 
Âgulos formados por duas retas paralelas e uma transversal
Âgulos formados por duas retas paralelas e uma transversalÂgulos formados por duas retas paralelas e uma transversal
Âgulos formados por duas retas paralelas e uma transversal
Andréa Thees
 
Angulos
AngulosAngulos
Angulos
cleusamoreira
 
Lista de Exercícios - Teorema de Tales
Lista de Exercícios - Teorema de TalesLista de Exercícios - Teorema de Tales
Lista de Exercícios - Teorema de Tales
Everton Moraes
 
Potenciação
PotenciaçãoPotenciação
Potenciação
andreapmnobre
 
Produtos Notavéis 8º ano
Produtos Notavéis 8º ano Produtos Notavéis 8º ano
Produtos Notavéis 8º ano
Lucimeires Cabral Dias
 
Ciclo trigonométrico
Ciclo trigonométricoCiclo trigonométrico
Ciclo trigonométrico
Bruno Galvão
 
Teorema de tales e situações problemas.docx gabarito
Teorema de tales e situações problemas.docx gabaritoTeorema de tales e situações problemas.docx gabarito
Teorema de tales e situações problemas.docx gabarito
CIEP 456 - E.M. Milcah de Sousa
 
Numeros racionais
Numeros racionaisNumeros racionais
Numeros racionais
Rosana.Parolisi
 
Triângulos
TriângulosTriângulos
Triângulos
Rodrigo Carvalho
 

Mais procurados (20)

Porcentagem
PorcentagemPorcentagem
Porcentagem
 
Função de 1º Grau.
Função de 1º Grau.Função de 1º Grau.
Função de 1º Grau.
 
Teorema de Tales
Teorema de TalesTeorema de Tales
Teorema de Tales
 
Relações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo RetânguloRelações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo Retângulo
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
 
Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
 
Congruência de triângulos
Congruência de triângulos Congruência de triângulos
Congruência de triângulos
 
Principio Fundamental Da Contagem
Principio Fundamental Da ContagemPrincipio Fundamental Da Contagem
Principio Fundamental Da Contagem
 
Medidas de comprimento e ttempo oficial
Medidas de comprimento e ttempo oficialMedidas de comprimento e ttempo oficial
Medidas de comprimento e ttempo oficial
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
 
Âgulos formados por duas retas paralelas e uma transversal
Âgulos formados por duas retas paralelas e uma transversalÂgulos formados por duas retas paralelas e uma transversal
Âgulos formados por duas retas paralelas e uma transversal
 
Angulos
AngulosAngulos
Angulos
 
Lista de Exercícios - Teorema de Tales
Lista de Exercícios - Teorema de TalesLista de Exercícios - Teorema de Tales
Lista de Exercícios - Teorema de Tales
 
Potenciação
PotenciaçãoPotenciação
Potenciação
 
Produtos Notavéis 8º ano
Produtos Notavéis 8º ano Produtos Notavéis 8º ano
Produtos Notavéis 8º ano
 
Ciclo trigonométrico
Ciclo trigonométricoCiclo trigonométrico
Ciclo trigonométrico
 
Teorema de tales e situações problemas.docx gabarito
Teorema de tales e situações problemas.docx gabaritoTeorema de tales e situações problemas.docx gabarito
Teorema de tales e situações problemas.docx gabarito
 
Numeros racionais
Numeros racionaisNumeros racionais
Numeros racionais
 
Triângulos
TriângulosTriângulos
Triângulos
 

Semelhante a Semelhança de triângulos

Semelhança de Triângulos, conceito com exemplos
Semelhança de Triângulos, conceito com exemplosSemelhança de Triângulos, conceito com exemplos
Semelhança de Triângulos, conceito com exemplos
AndersonSilva984142
 
Mat semelhanca
Mat semelhancaMat semelhanca
Mat semelhanca
trigono_metria
 
Relações métricas no triângulo retângulo
Relações métricas no triângulo retânguloRelações métricas no triângulo retângulo
Relações métricas no triângulo retângulo
Neil Azevedo
 
Relações métricas no triângulo retângulo
Relações métricas no triângulo retânguloRelações métricas no triângulo retângulo
Relações métricas no triângulo retângulo
CIEP 456 - E.M. Milcah de Sousa
 
Tales Semelhanca
Tales SemelhancaTales Semelhanca
Tales Semelhanca
ISJ
 
8 ano - Congruência e Semelhança e Angulos em Triangulos.ppt
8 ano - Congruência e Semelhança e  Angulos em Triangulos.ppt8 ano - Congruência e Semelhança e  Angulos em Triangulos.ppt
8 ano - Congruência e Semelhança e Angulos em Triangulos.ppt
DaniloConceiodaSilva
 
Rela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
Rela‡äEs M‚Tricas No Tri.RetƒNgulo ExelenteRela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
Rela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
Antonio Carneiro
 
Semelhança em figuras planas
Semelhança em figuras planasSemelhança em figuras planas
Semelhança em figuras planas
Silvana Santos
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
Clarice Leclaire
 
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
Beatriz Góes
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
grpoliart
 
Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2
grpoliart
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
grpoliart
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
grpoliart
 
Ef constucoes geometricas
Ef constucoes geometricasEf constucoes geometricas
Ef constucoes geometricas
Uclatandariel Uclatandariel
 
Gaal vetores aplicaçoes e demostraçoes de algumas propriedades.
Gaal  vetores aplicaçoes e demostraçoes de algumas propriedades.Gaal  vetores aplicaçoes e demostraçoes de algumas propriedades.
Gaal vetores aplicaçoes e demostraçoes de algumas propriedades.
Ruan Yvis Brito
 
Tales semelhanca 12
Tales semelhanca 12Tales semelhanca 12
Tales semelhanca 12
Edenize
 
Tales semelhanca 12
Tales semelhanca 12Tales semelhanca 12
Tales semelhanca 12
Edenize
 
Volumes e áreas
Volumes e áreasVolumes e áreas
Volumes e áreas
Grácia Rodrigues
 
Polígonos semelhantes 2014 9 ano gabarito do 2
Polígonos semelhantes 2014 9 ano gabarito do 2Polígonos semelhantes 2014 9 ano gabarito do 2
Polígonos semelhantes 2014 9 ano gabarito do 2
CIEP 456 - E.M. Milcah de Sousa
 

Semelhante a Semelhança de triângulos (20)

Semelhança de Triângulos, conceito com exemplos
Semelhança de Triângulos, conceito com exemplosSemelhança de Triângulos, conceito com exemplos
Semelhança de Triângulos, conceito com exemplos
 
Mat semelhanca
Mat semelhancaMat semelhanca
Mat semelhanca
 
Relações métricas no triângulo retângulo
Relações métricas no triângulo retânguloRelações métricas no triângulo retângulo
Relações métricas no triângulo retângulo
 
Relações métricas no triângulo retângulo
Relações métricas no triângulo retânguloRelações métricas no triângulo retângulo
Relações métricas no triângulo retângulo
 
Tales Semelhanca
Tales SemelhancaTales Semelhanca
Tales Semelhanca
 
8 ano - Congruência e Semelhança e Angulos em Triangulos.ppt
8 ano - Congruência e Semelhança e  Angulos em Triangulos.ppt8 ano - Congruência e Semelhança e  Angulos em Triangulos.ppt
8 ano - Congruência e Semelhança e Angulos em Triangulos.ppt
 
Rela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
Rela‡äEs M‚Tricas No Tri.RetƒNgulo ExelenteRela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
Rela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
 
Semelhança em figuras planas
Semelhança em figuras planasSemelhança em figuras planas
Semelhança em figuras planas
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
 
Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
 
Ef constucoes geometricas
Ef constucoes geometricasEf constucoes geometricas
Ef constucoes geometricas
 
Gaal vetores aplicaçoes e demostraçoes de algumas propriedades.
Gaal  vetores aplicaçoes e demostraçoes de algumas propriedades.Gaal  vetores aplicaçoes e demostraçoes de algumas propriedades.
Gaal vetores aplicaçoes e demostraçoes de algumas propriedades.
 
Tales semelhanca 12
Tales semelhanca 12Tales semelhanca 12
Tales semelhanca 12
 
Tales semelhanca 12
Tales semelhanca 12Tales semelhanca 12
Tales semelhanca 12
 
Volumes e áreas
Volumes e áreasVolumes e áreas
Volumes e áreas
 
Polígonos semelhantes 2014 9 ano gabarito do 2
Polígonos semelhantes 2014 9 ano gabarito do 2Polígonos semelhantes 2014 9 ano gabarito do 2
Polígonos semelhantes 2014 9 ano gabarito do 2
 

Último

AUTISMO LEGAL - DIREITOS DOS AUTISTAS- LEGISLAÇÃO
AUTISMO LEGAL - DIREITOS DOS AUTISTAS- LEGISLAÇÃOAUTISMO LEGAL - DIREITOS DOS AUTISTAS- LEGISLAÇÃO
AUTISMO LEGAL - DIREITOS DOS AUTISTAS- LEGISLAÇÃO
FernandaOliveira758273
 
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdfUFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
Manuais Formação
 
Roteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptxRoteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptx
pamellaaraujo10
 
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
Eró Cunha
 
Gênero Textual sobre Crônicas, 8º e 9º
Gênero Textual sobre Crônicas,  8º e  9ºGênero Textual sobre Crônicas,  8º e  9º
Gênero Textual sobre Crônicas, 8º e 9º
sjcelsorocha
 
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIASA SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
HisrelBlog
 
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasnTabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
CarlosJean21
 
497417426-conheca-os-principais-graficos-da-radiestesia-e-da-radionica.pdf
497417426-conheca-os-principais-graficos-da-radiestesia-e-da-radionica.pdf497417426-conheca-os-principais-graficos-da-radiestesia-e-da-radionica.pdf
497417426-conheca-os-principais-graficos-da-radiestesia-e-da-radionica.pdf
JoanaFigueira11
 
A importância das conjunções- Ensino Médio
A importância das conjunções- Ensino MédioA importância das conjunções- Ensino Médio
A importância das conjunções- Ensino Médio
nunesly
 
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptxAtpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
joaresmonte3
 
A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...
ANDRÉA FERREIRA
 
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdfUFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
Manuais Formação
 
A Núbia e o Reino De Cuxe- 6º ano....ppt
A Núbia e o Reino De Cuxe- 6º ano....pptA Núbia e o Reino De Cuxe- 6º ano....ppt
A Núbia e o Reino De Cuxe- 6º ano....ppt
WilianeBarbosa2
 
Dicas de normas ABNT para trabalho de conclusão de curso
Dicas de normas ABNT para trabalho de conclusão de cursoDicas de normas ABNT para trabalho de conclusão de curso
Dicas de normas ABNT para trabalho de conclusão de curso
Simone399395
 
Slide de biologia aula2 2 bimestre no ano de 2024
Slide de biologia aula2  2 bimestre no ano de 2024Slide de biologia aula2  2 bimestre no ano de 2024
Slide de biologia aula2 2 bimestre no ano de 2024
vinibolado86
 
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
fagnerlopes11
 
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
Manuais Formação
 
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇOPALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
ARIADNEMARTINSDACRUZ
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Como montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdfComo montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdf
AlineOliveira625820
 

Último (20)

AUTISMO LEGAL - DIREITOS DOS AUTISTAS- LEGISLAÇÃO
AUTISMO LEGAL - DIREITOS DOS AUTISTAS- LEGISLAÇÃOAUTISMO LEGAL - DIREITOS DOS AUTISTAS- LEGISLAÇÃO
AUTISMO LEGAL - DIREITOS DOS AUTISTAS- LEGISLAÇÃO
 
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdfUFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
UFCD_4667_Preparação e confeção de molhos e fundos de cozinha_índice.pdf
 
Roteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptxRoteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptx
 
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
 
Gênero Textual sobre Crônicas, 8º e 9º
Gênero Textual sobre Crônicas,  8º e  9ºGênero Textual sobre Crônicas,  8º e  9º
Gênero Textual sobre Crônicas, 8º e 9º
 
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIASA SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
A SOCIOLOGIA E O TRABALHO: ANÁLISES E VIVÊNCIAS
 
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasnTabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
 
497417426-conheca-os-principais-graficos-da-radiestesia-e-da-radionica.pdf
497417426-conheca-os-principais-graficos-da-radiestesia-e-da-radionica.pdf497417426-conheca-os-principais-graficos-da-radiestesia-e-da-radionica.pdf
497417426-conheca-os-principais-graficos-da-radiestesia-e-da-radionica.pdf
 
A importância das conjunções- Ensino Médio
A importância das conjunções- Ensino MédioA importância das conjunções- Ensino Médio
A importância das conjunções- Ensino Médio
 
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptxAtpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
 
A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...
 
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdfUFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
 
A Núbia e o Reino De Cuxe- 6º ano....ppt
A Núbia e o Reino De Cuxe- 6º ano....pptA Núbia e o Reino De Cuxe- 6º ano....ppt
A Núbia e o Reino De Cuxe- 6º ano....ppt
 
Dicas de normas ABNT para trabalho de conclusão de curso
Dicas de normas ABNT para trabalho de conclusão de cursoDicas de normas ABNT para trabalho de conclusão de curso
Dicas de normas ABNT para trabalho de conclusão de curso
 
Slide de biologia aula2 2 bimestre no ano de 2024
Slide de biologia aula2  2 bimestre no ano de 2024Slide de biologia aula2  2 bimestre no ano de 2024
Slide de biologia aula2 2 bimestre no ano de 2024
 
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
 
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
UFCD_7211_Os sistemas do corpo humano_ imunitário, circulatório, respiratório...
 
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇOPALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
 
Como montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdfComo montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdf
 

Semelhança de triângulos

  • 1.
  • 2. • Dois triângulos são semelhantes quando têm os ângulos correspondentes congruentes e os lados homólogos proporcionais.
  • 3. • Considere os triângulos ABC e A’B’C’ a seguir: 12 15
  • 4. • os ângulos correspondentes são congruentes. ˆ A ˆ ˆ ˆ ˆ ˆ A , B B , C C
  • 5. • a razão entre os lados correspondentes é 4 . 5 AB BC AC 4 AB BC AC 5 • Podemos concluir que os triângulos ABC e A’B’C’ são semelhantes e indicamos: ABC~ A B C
  • 6. Denominamos: • ângulos homólogos − os ângulos congruentes de dois triângulos semelhantes. ˆ ˆ ˆ ˆ ˆ ˆ A e A , B eB , C eC
  • 7. Denominamos: • lados homólogos: os lados determinados por vértices homólogos. AB e A B , BC e B C , AC e A C
  • 8. Se uma reta é paralela a um dos lados de um triângulo e intercepta os outros dois em pontos distintos, então o triângulo que ela determina é semelhante ao primeiro. ABC~ DEC
  • 9. Podemos medir um terreno plano com um obstáculo no meio com a ajuda de semelhança de triângulos.
  • 10. Como do ponto A não podemos avistar o ponto B. Precisamos marcar um ponto C em que avistamos os pontos A e B. Morro Terreno visto de cima
  • 11. Fixamos então um marco em C e medimos com a trena as distâncias AC e BC. Vamos supor que os valores encontrados foram os seguintes: • AC = 112 m • BC = 64 m Agora, vamos dividir essas distâncias por um número fixo.
  • 12. Por exemplo: 112 64 14 e 8 8 8 Sobre o segmento AC coloca-se um marco no ponto D onde CD = 14 e no segmento AB coloca- se um marco no ponto E onde CE = 8.
  • 13. O triângulo CDE criado é semelhante e oito vezes menor que o triângulo CAB. Morro Terreno visto de cima
  • 14. Agora, através da trena o segmento DE pode ser medido. Se encontrarmos DE = 16 m, como sabemos que AB é oito vezes maior, podemos concluir que AB = 128 m. E assim, o problema está concluído.
  • 15. Através desse exemplo, podemos perceber que muitos problemas envolvendo medição, seja de um terreno, largura de um rio, altura de um prédio, podem ser resolvidos por intermédio de semelhança de triângulos.
  • 16. • IEZZI, Gelson et al. Matemática: volume único. São Paulo: Atual, 1997. • DOLCE, Osvaldo, POMPEO, José Nicolau. Fundamentos de Matemática Elementar 9: Geometria plana. São Paulo: Atual, 2005.