Distribuição de    (Qui-Quadrado) IC e TH
  para a Variância de Populações Normais



A Estatística   =      )2 =      , tem
distribuição Qui-Quadrada com    grau de
liberdade. :N(0,1)
Do fato de que ( ) = 1
 (       )=     )=   ( )=
E
     (   )=2
Como a variável     resulta da soma de
variáveis independentes e igualmente
distribuídas → tende a distribuição normal
com o aumento dos graus de liberdade.
Outra propriedade importante das
distribuições   é sua aditividade. Essa
propriedade significa que a soma de duas
variáveis independentes com distribuições
   com      e  graus de liberdade terá
também distribuição     com +      graus
de liberdade (decorre diretamente da
definição).
O conhecimento das distribuições    nos
leva à determinação da distribuição
amostral da estatística   Pode-se
demonstrar que a estatística

          =         ,

Obtida por substituição de por na
definição da variável   tem distribuição
com n-1 graus de liberdade. Logo:

     =         =        .       =          →

                =           .
( )=        . (        )=      .          =

Interpolação no uso da Tabela
Para α%
Exemplo:
Determinar       tal que P (        ≥   ) = 0,40
Para
Exemplos:
     = 31 determinar           ≥        = 0,95
2)   = 50 determinar                     = 0,95


IC e TH para a variância de uma
População Normal com Média
Conhecida
Retira-se uma amostra de tamanho n e
calcula-se   =                 pois sendo a
média conhecida este resultado é mais
preciso do que se usasse .

         =                            =

                          ↓
                              =
O IC para         ao nível α%:
P(                  ) = 1- α
P(           )=     e P(          ≥       )=

     =               e     =

P(                         ) = 1- α →

P(                                    ) = 1- α

Como                  =        temos:

P(                   ) = 1- α
Exemplo :
Sabe-se que a vida útil de uma certa
lâmpada tem distribuição normal, com
média de 500 horas e variância
desconhecida. Uma amostra de 25
lâmpadas forneceu                = 62500h.
Construir um IC para     ao nível de 5%.
Teste de Hipóteses :
  :       =
  :       ≠   ou       >       ou   <

      =          ou        =

Exemplo :
 De uma população normal com média
 300, levantou-se uma amostra de 26
 elementos, obtendo-se :
                = 129000
Ao nível de 5%, testar as hipóteses :
    :   =
    :   <         0


IC e TH para a da População Normal
com Desconhecida


Distribuição de                   pode ser
demonstrada como uma              com (n-1) graus
de liberdade.

        =              como       =        - )2

→           - )2 = (          →

             =(          →            =
IC para

P{                          } = 1- α   ou

P{                              }

Exemplo:
Sabe-se que a vida útil de uma certa
válvula tem distribuição normal. Uma
amostra de 25 válvulas resultou = 500h e
 = 50h. Construir um IC para      ao nível
de 2%.

TH para
  :   =
  :       ≠   ou        >       ou      <

      =            ou          =
Exemplo:
Avaliou-se em 240kg o desvio padrão das
tensões de ruptura de certos cabos
produzidos por uma fábrica. Depois de ter
sido introduzida uma mudança no processo
de fabricação destes cabos, as tensões de
ruptura de uma amostra de 8 cabos
apresentaram o desvio padrão de 300kg.
Investigar a significância do aumento
aparente da variância, ao nível de 5%.
Problemas
  1. De uma população normal com média
       = 20, levantou-se uma amostra de
     24 elementos, obtendo-se
                  = 423,42. Ao nível de
     10%, construir um IC para a variância
     populacional.
2. De uma população normal X com
   média 1000, levanta-se uma amostra
   de 15 elementos, obtendo-se
               = 200. Ao nível de 1%,
   testar.
      :    =
      :    >

3. De uma população normal levantou-
   se uma amostra de 10 observações,
   obtendo os seguintes valores: 10, 8,
   15, 11, 13, 19, 21, 13, 15 e 14.
   Sabendo-se que a população tem
   média = 14, construir um IC para a
       populacional ao nível de 5% e, ao
   mesmo nível, testar :
     :    =
     :    ≠
4. A variância de 10 lâmpadas de uma
   amostra é de 120 horas. Construir um
   IC para a variância da população das
   lâmpadas ao nível de 90%.

5. Observou-se durante vários anos a
   produção mensal de uma indústria,
   verificando-se que essa produção se
   distribuía normalmente com variância
   300. Foi adotada uma nova técnica e,
   durante 24 meses, verificou-se a
   produção mensal, constatando-se
   que = 10000 e       = 400. Há razões
   para se acreditar que a qualidade da
   produção piorou, ao nível de 10%?
6. De uma população normal com média
   desconhecida, levantou-se uma
   amostra casual de 21 elementos:
   1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5,
   5, 5, 5, 6, 6, 7
   a)ao nível de 10%, construir um IC
   para ;
   b)e, ao mesmo nível, testar se a
   variância populacional é menor que 4.

8 distribuição qui-quadrado

  • 1.
    Distribuição de (Qui-Quadrado) IC e TH para a Variância de Populações Normais A Estatística = )2 = , tem distribuição Qui-Quadrada com grau de liberdade. :N(0,1) Do fato de que ( ) = 1 ( )= )= ( )= E ( )=2 Como a variável resulta da soma de variáveis independentes e igualmente distribuídas → tende a distribuição normal com o aumento dos graus de liberdade. Outra propriedade importante das distribuições é sua aditividade. Essa propriedade significa que a soma de duas
  • 2.
    variáveis independentes comdistribuições com e graus de liberdade terá também distribuição com + graus de liberdade (decorre diretamente da definição). O conhecimento das distribuições nos leva à determinação da distribuição amostral da estatística Pode-se demonstrar que a estatística = , Obtida por substituição de por na definição da variável tem distribuição com n-1 graus de liberdade. Logo: = = . = → = .
  • 3.
    ( )= . ( )= . = Interpolação no uso da Tabela Para α% Exemplo: Determinar tal que P ( ≥ ) = 0,40 Para Exemplos: = 31 determinar ≥ = 0,95 2) = 50 determinar = 0,95 IC e TH para a variância de uma População Normal com Média Conhecida Retira-se uma amostra de tamanho n e calcula-se = pois sendo a
  • 4.
    média conhecida esteresultado é mais preciso do que se usasse . = = ↓ = O IC para ao nível α%: P( ) = 1- α P( )= e P( ≥ )= = e = P( ) = 1- α → P( ) = 1- α Como = temos: P( ) = 1- α
  • 5.
    Exemplo : Sabe-se quea vida útil de uma certa lâmpada tem distribuição normal, com média de 500 horas e variância desconhecida. Uma amostra de 25 lâmpadas forneceu = 62500h. Construir um IC para ao nível de 5%. Teste de Hipóteses : : = : ≠ ou > ou < = ou = Exemplo : De uma população normal com média 300, levantou-se uma amostra de 26 elementos, obtendo-se : = 129000
  • 6.
    Ao nível de5%, testar as hipóteses : : = : < 0 IC e TH para a da População Normal com Desconhecida Distribuição de pode ser demonstrada como uma com (n-1) graus de liberdade. = como = - )2 → - )2 = ( → =( → =
  • 7.
    IC para P{ } = 1- α ou P{ } Exemplo: Sabe-se que a vida útil de uma certa válvula tem distribuição normal. Uma amostra de 25 válvulas resultou = 500h e = 50h. Construir um IC para ao nível de 2%. TH para : = : ≠ ou > ou < = ou =
  • 8.
    Exemplo: Avaliou-se em 240kgo desvio padrão das tensões de ruptura de certos cabos produzidos por uma fábrica. Depois de ter sido introduzida uma mudança no processo de fabricação destes cabos, as tensões de ruptura de uma amostra de 8 cabos apresentaram o desvio padrão de 300kg. Investigar a significância do aumento aparente da variância, ao nível de 5%. Problemas 1. De uma população normal com média = 20, levantou-se uma amostra de 24 elementos, obtendo-se = 423,42. Ao nível de 10%, construir um IC para a variância populacional.
  • 9.
    2. De umapopulação normal X com média 1000, levanta-se uma amostra de 15 elementos, obtendo-se = 200. Ao nível de 1%, testar. : = : > 3. De uma população normal levantou- se uma amostra de 10 observações, obtendo os seguintes valores: 10, 8, 15, 11, 13, 19, 21, 13, 15 e 14. Sabendo-se que a população tem média = 14, construir um IC para a populacional ao nível de 5% e, ao mesmo nível, testar : : = : ≠
  • 10.
    4. A variânciade 10 lâmpadas de uma amostra é de 120 horas. Construir um IC para a variância da população das lâmpadas ao nível de 90%. 5. Observou-se durante vários anos a produção mensal de uma indústria, verificando-se que essa produção se distribuía normalmente com variância 300. Foi adotada uma nova técnica e, durante 24 meses, verificou-se a produção mensal, constatando-se que = 10000 e = 400. Há razões para se acreditar que a qualidade da produção piorou, ao nível de 10%?
  • 11.
    6. De umapopulação normal com média desconhecida, levantou-se uma amostra casual de 21 elementos: 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7 a)ao nível de 10%, construir um IC para ; b)e, ao mesmo nível, testar se a variância populacional é menor que 4.