´
                    Algebra Linear – Teoria de Matrizes

1.    Sistemas Lineares
      1.1. Coordenadas em espa¸os lineares: independˆncia linear, base,
                                  c                 e
        dimens˜o, singularidade, combina¸˜o linear
              a                         ca
      1.2.   Espa¸o imagem (colunas) - Espa¸o linhas. Posto
                 c                         c
      1.3.   Espa¸o nulo (n´cleo). Nulidade
                 c         u
2.    Autovalores e autovetores
3.    Tra¸o de matriz
         c
4.    Forma quadr´tica e sinais de matrizes
                 a
5.    Valores singulares
6.    Norma vetorial
7.    Norma matricial

                                   pag.1        Introdu¸˜o ao Controle Robusto – Aula 4
                                                       ca
c Reinaldo M. Palhares
Sistemas Lineares



    Considere o conjunto de equa¸oes alg´bricas lineares
                                c˜      e

                                                                   
          y1     =        a11 x1 + a12 x2 + · · · + a1n xn         
                                                                   
                                                                   
           .     .                       .
                                                                   
           .
           .     .
                 .                       .
                                         .                               y = Ax
                                                                   
                                                                   
                 =       am1 x1 + am2 x2 + · · · + amn xn
                                                                   
          ym                                                       


     x1 , . . . , xn denotam entradas do sistema linear
     y1 , . . . , ym denotam sa´
                               ıdas do sistema linear
     aij denotam parˆmetros que caracterizam o mapeamento entrada-sa´
                    a                                               ıda
    A ∈ Rm×n , y ∈ Rm e x ∈ Rn


                                        pag.2        Introdu¸˜o ao Controle Robusto – Aula 4
                                                            ca
c Reinaldo M. Palhares
Subespa¸os Fundamentais
                                c


Quest˜es fundamentais
     o

    Caracterizar os conjuntos de sa´  ıdas y1 , . . . , ym que podem ser obtidos
dadas as entradas x1 , . . . , xn (controlabilidade da sa´   ıda)

      Dadas as sa´ ıdas y1 , . . . , ym identificar, se poss´
                                                           ıvel, o conjunto de entradas
x1 , . . . , xn que as geram (observabilidade da entrada)

Em outras palavras... Como caracterizar uma solu¸˜o para Ax = y ? Veja que
                                                ca
tem-se um conjunto com m equa¸oes e n inc´gnitas
                             c˜           o

    Pode-se definir subespa¸os fundamentais de tal forma a obter condi¸oes de
                          c                                          c˜
existˆncia e uma forma geral de solu¸oes para Ax = y
     e                              c˜



                                      pag.3          Introdu¸˜o ao Controle Robusto – Aula 4
                                                            ca
c Reinaldo M. Palhares
Coordenadas em Espa¸os Lineares
                                            c

Nota Antes de responder a ultima quest˜o, introduze-se conceitos sobre
                            ´         a
coordenadas em espa¸os lineares...
                   c

Dependˆncia Linear Um conjunto de vetores {x1 , x2 , . . . , xk }, xi ∈ Rn ,
         e
i = 1, . . . , k, ´ linearmente dependente se existem escalares α1 , α2 , . . . , αk ,
                  e
n˜o todos nulos tais que
 a
                     k
                          α i xi = α 1 x1 + α 2 x2 + · · · + α k xk = 0
                   i=1


Caso contr´rio, o conjunto {x1 , x2 , . . . , xk } ´ linearmente independente – LI
          a                                        e

                 k
Veja que         i=1     αi xi = Xα

sendo      X     [ x1     x2   ···   xk ] ∈ Rn×k , α      [ α1    α2     ···    α k ]T ∈ R k


                                         pag.4         Introdu¸˜o ao Controle Robusto – Aula 4
                                                              ca
c Reinaldo M. Palhares
Coordenadas em Espa¸os Lineares
                                            c



Proposi¸˜o Qualquer conjunto de n vetores LI qualifica uma base em um
        ca
espa¸o linear n−dimensional (ie um espa¸o de dimens˜o n)
    c                                  c           a

Lema      Considere Q ∈ Rn×n . O sistema de equa¸oes
                                                c˜
                                                                   T
                          Qx = 0,   x       x1   x2   ···    xn

possui uma solu¸˜o n˜o-nula (x = 0) se e somente se Q ´ singular
               ca a                                   e

Teorema     Considere Q = q1 q2 · · · qn . Ent˜o Q ´ n˜o-singular se e
                                                           a     e a
somente se o conjunto de vetores {q1 , q2 , . . . , qn } ´ LI (em outras palavras,
                                                         e
∃Q−1 )



                                        pag.5         Introdu¸˜o ao Controle Robusto – Aula 4
                                                             ca
c Reinaldo M. Palhares
Coordenadas em Espa¸os Lineares
                                            c


Representa¸˜o de vetores
          ca
Considere um conjunto de vetores {q1 , q2 , . . . , qn }, base no Rn . Ent˜o todo
                                                                          a
vetor y ∈ Rn pode ser escrito como combina¸˜o linear:
                                                 ca
                                         n
                                   y=         αi qi = Qα
                                        i=1



Como Q ´ n˜o-singular:
       e a

        α = Q−1 y         representa¸˜o unica de y na base {q1 , q2 , . . . , qn }
                                    ca ´

Para outra base qualquer P , y = P ζ,            ζ = P −1 y = P −1 Qα !!!



                                        pag.6          Introdu¸˜o ao Controle Robusto – Aula 4
                                                              ca
c Reinaldo M. Palhares
Subespa¸os Fundamentais
                                 c

Defini¸˜o
     ca      O espa¸o colunas de A ´ o espa¸o gerado pelas colunas de A, e ´
                      c            e       c                               e
denominado espa¸o imagem de A — (A) . Por outro lado, o espa¸o linhas de A ´ o
                c                                               c            e
espa¸o gerado pelas linhas de A — (AT )
    c

                               T                                          1   −1   −3
Exemplo       y= 1       −1        est´ no espa¸o imagem de
                                      a        c               A=                           ?




                                                                      ¢




                                                                                        ¤
                                                                          0   10   0
                     




                           ¡




                                                                      £




                                                                                        ¥
Em outras palavras, y = Ax, para algum x? Sim, pois as colunas de A geram todo o
espa¸o 2-dimensional
    c


• posto de colunas de A ∈ Rm×n ´ a dimens˜o de
                               e         a                    (A), ie ´ equivalente ao
                                                                      e
n´mero de colunas LI de A
 u

•   posto de linhas de A ∈ Rm×n ´ a dimens˜o de
                                e         a              (AT )

•   dim (A) = dim (AT ) = r = posto(A)              ∴ posto(A) ≤ min {m, n}


                                          pag.7        Introdu¸˜o ao Controle Robusto – Aula 4
                                                              ca
c Reinaldo M. Palhares
Subespa¸os Fundamentais
                                    c

Defini¸˜o
     ca       O espa¸o nulo ` direita (ou n´cleo) de A ´ o espa¸o gerado por todos os
                     c      a              u            e       c
vetores x satisfazendo Ax = 0 — N (A). Por outro lado, o espa¸o nulo ` esquerda
                                                                 c      a
de A ´ o espa¸o gerado por todos os vetores y satisfazendo y T A = 0 — N (AT )
      e        c
                                         T
Exemplo       x= 1       10      0           est´ no espa¸o N (A):
                                                a        c
                     




                                     ¡
                                                          1       −1          −3
                                         A=                                                     ?

                                                  ¢




                                                                                      ¤
                                                          0       10              0
                                                  £




                                                                                      ¥
Em outras palavras, Ax = 0? Como

                                                                  1
                             1   −1          −3                                       −9                    0
                                                              ¢




                                                                      ¤




                                                                  10          =                     =
                         ¢




                                                      ¤




                                                                                  ¢




                                                                                            ¤




                                                                                                        ¢




                                                                                                                ¤
                                                              ¦




                                                                          §




                             0   10           0                                       100                   0
                                                              ¦




                                                                          §




                                                                  0
                         £




                                                      ¥




                                                                                  £




                                                                                            ¥




                                                                                                        £




                                                                                                                ¥
                                                              £




                                                                      ¥




portanto, a resposta ´ negativa
                     e

                                                          pag.8                           Introdu¸˜o ao Controle Robusto – Aula 4
                                                                                                 ca
c Reinaldo M. Palhares
Subespa¸os Fundamentais
                                c


• Considere A de ordem m × n
Dimens˜o dos quatro subespa¸os fundamentais:
      a                    c                             (A),   (AT ), N (A) e
N (AT )?
                              r    posto(A) = dim (A)
                                   n     colunas de A

∴ r + dim N (A) = n           →        dim N (A) = n − r        (Nulidade)

                          r       posto(AT ) = dim (AT )
                                   m       linhas de A

∴ r + dim N (AT ) = m             →      dim N (AT ) = m − r



                                        pag.9        Introdu¸˜o ao Controle Robusto – Aula 4
                                                            ca
c Reinaldo M. Palhares
Subespa¸os Fundamentais
                                c

•   O espa¸o n-dimensional de entrada X =
          c                                               (AT ) ⊕ N (A)

•   O espa¸o m-dimensional de sa´ Y =
          c                     ıda                      (A) ⊕ N (AT )

MATLAB
orth(A) – base ortonormal para       (A)
null(A) – base ortonormal para N (A)
rank(A) – posto de A

                                 0   1   1   2
                             ¢




                                                 ¤




Exemplo       Posto de A =       1   2   3   4           = a1    a2    a3    a4       ?
                             ¦




                                                     §
                             ¦




                                                     §




                                                             




                                                                                  ¡
                                 2   0   2   0
                             £




                                                 ¥




a1 e a2 s˜o LI. a3 = a1 + a2 . a4 = 2a2 . A tem duas colunas LI ∴ posto(A) = 2
         a


                                         pag.10                 Introdu¸˜o ao Controle Robusto – Aula 4
                                                                       ca
c Reinaldo M. Palhares
Subespa¸os Fundamentais
                                c




Teorema Dado A ∈ Rm×n , existe uma solu¸˜o x para Ax = y, para
                                           ca
qualquer y, sse posto(A) = m (posto completo de linhas)


Teorema Dado A ∈ Rn×n . Se ∃A−1 , ent˜o Ax = y tem uma unica solu¸˜o
                                            a                    ´      ca
para todo y, ie x = A−1 y. Em particular, a unica solu¸˜o para Ax = 0 ´
                                            ´         ca              e
x=0




                                pag.11      Introdu¸˜o ao Controle Robusto – Aula 4
                                                   ca
c Reinaldo M. Palhares
Autovalores e Autovetores

Defini¸˜o Um escalar λ ´ denominado um autovalor de A ∈ Rn×n se
     ca               e
∃x ∈ Rn , x = 0, satisfazendo
                                     Ax = λx

Tal x ´ denominado um autovetor de A associado ao autovalor λ
      e

Como calcular autovalor ? Basta escrever Ax = λx = λIx da forma
                                  (A − λI) x = 0


    Se (A − λI) ´ n˜o singular, ent˜o a unica solu¸˜o ´ x = 0 !!
                e a                a    ´         ca e

    Por´m x = 0, ent˜o (A − λI) deve ser necessariamente singular, ou de forma
        e            a
equivalente, det(A − λI) = 0 ...

    Toda ra´ de p(λ) = det (A − λI) ´ uma autovalor de A
           ız                       e


                                     pag.12        Introdu¸˜o ao Controle Robusto – Aula 4
                                                          ca
c Reinaldo M. Palhares
Teoria de Matrizes

Tra¸o
   c     Para A ∈ Rn×n , o tra¸o de A, denotado por Tr{A} ou Tra¸o{A}, ´
                              c                                 c      e
definido como sendo:
                                                        n
                                         Tr {A} =             aii
                                                        i=1

ie, ´ a soma dos elementos da diagonal principal
    e

Propriedades
                  n
1. Tr{A} =              λi
                  i=1

2. Tr{A + B} = Tr{B + A} = Tr{A} + Tr{B}

3. Tr{AB} = Tr B T AT = Tr{BA}= Tr AT B T                               (se existirem multiplica¸oes)
                                                                                                c˜
                        ¨




                                   ©




                                                    ¨




                                                                    ©
                        n    n
4. Tr AT A =                     a2
                                  ij
      ¨




              ©




                      i=1 i=1



                                           pag.13               Introdu¸˜o ao Controle Robusto – Aula 4
                                                                       ca
c Reinaldo M. Palhares
Forma quadr´tica e Sinais de Matrizes
                             a


Simetria P ∈ Rn×n ´ dita ser sim´trica se P = P T
                  e             e

Nota Todos os autovalores de uma matriz sim´trica s˜o reais
                                           e       a

Nota Toda matriz sim´trica pode ser diagonalizada, mesmo para autovalores repetidos
                    e
(MATLAB: jordan)

Forma Quadr´tica
           a             ´
                         E uma classe de fun¸oes escalares na forma
                                            c˜


                                                  P11   ···    P1n               x1
                                                   .    ..      .                 .
                                              ¢




                                                                     ¤




                                                                             ¢




                                                                                      ¤
    V (x) = xT P x = x1        ···   xn            .       .    .                 .           ,   P = PT
                                              ¦




                                                                         §




                                                                             ¦




                                                                                          §
                                                   .            .                 .
                                              ¦




                                                                         §




                                                                             ¦




                                                                                          §
                           




                                          ¡




                                              ¦




                                                                         §




                                                                             ¦




                                                                                          §
                                                  Pn1   ···    Pnn               xn
                                              £




                                                                     ¥




                                                                             £




                                                                                      ¥
                                      pag.14              Introdu¸˜o ao Controle Robusto – Aula 4
                                                                 ca
c Reinaldo M. Palhares
Forma quadr´tica e Sinais de Matrizes
                             a



Fun¸˜o escalar definida positiva Dado P = P T , se a fun¸˜o escalar xT P x > 0,
   ca                                                  ca
para todo x = 0, ent˜o P ´ dita ser definida positiva, sendo denotado por P
                    a    e                                                        0

Fun¸˜o escalar definida negativa Dado P = P T , se a fun¸˜o escalar
   ca                                                  ca
xT P x < 0, para todo x = 0, ent˜o P ´ dita ser definida negativa, sendo denotado
                                a    e
por P   0

Fun¸˜o escalar semidefinida positiva (negativa) Dado P = P T , se a fun¸˜o
   ca                                                                 ca
escalar xT P x ≥ 0 (xT P x ≤ 0), para todo x = 0, ent˜o P ´ dita ser semidefinida
                                                     a    e
positiva (semidefinida negativa), sendo denotado por P    0 (P     0)

Nota Se P ´ semidefin´ ent˜o ∃x = 0 tal que xT P x = 0
          e         ıda, a




                                    pag.15        Introdu¸˜o ao Controle Robusto – Aula 4
                                                         ca
c Reinaldo M. Palhares
Forma quadr´tica e Sinais de Matrizes
                             a

Teorema P = P T ∈ Rn×n ´ definida positiva (semidefinida positiva) sse
                       e
λ(P ) > 0 (λ(P ) ≥ 0)

Teorema P = P T ∈ Rn×n ´ definida negativa (semidefinida negativa) sse
                       e
λ(P ) < 0 (λ(P ) ≤ 0)

Exerc´
     ıcio Moste que V (x) ´ definida positiva
                          e

         V (x) = xT P x = 10x2 + 4x2 + x2 + 2x1 x2 − 2x2 x3 − 4x1 x3
                             1     2    3



Fato Dado H ∈ Rm×n ent˜o
                      a
1. H T H ou HH T ´ sim´trica
                 e    e
2. H T H      0 ou HH T     0
3. H T H      0 se posto(H) = n (posto completo de colunas)
4. HH T       0 se posto(H) = m (posto completo de linhas)

                                    pag.16       Introdu¸˜o ao Controle Robusto – Aula 4
                                                        ca
c Reinaldo M. Palhares
Valores Singulares

   Dado H ∈ Rm×n
   Define-se M        HT H     ∴ M = MT        0, M ∈ Rn×n
   Portanto todos os autovalores de M s˜o reais e n˜o negativos
                                       a           a
   r indica o n´mero de autovalores positivos de M
               u
   Ent˜o os autovalores de M = H T H podem ser ordenados da forma
      a

                     λ2 ≥ λ2 ≥ · · · ≥λr > 0 = λr+1 = · · · = λn
                      1    2


Denote por n = min(m, n). Ent˜o o conjunto
                             a

                         λ1 ≥ λ2 ≥ · · · λr > 0 = λr+1 ≥ λn

´ denominado de valores singulares de H. Em outras palavras, os valores singulares de
e
H (denotado por σ) s˜o obtidos de:
                     a

                         σ=    λ(H T H),      MATLAB: sigma


                                     pag.17          Introdu¸˜o ao Controle Robusto – Aula 4
                                                            ca
c Reinaldo M. Palhares
Produto Interno


A fun¸˜o x, y : R × R → R ´ um produto interno se satisfaz os seguintes axiomas
     ca                   e
                                       ∗
1. x, y = y, x ,         x, y = y, x
2. α(x + y), z = α x, z + α y, z
3. x, x ≥ 0 e x, x = 0        ⇔   x=0

Representa¸˜o usual para vetores do Rn
          ca
                                             n
                                  x, y =           xi y i
                                             i=1


Vetores ortogonais – x ⊥ y
                                  x, y = xT y = 0




                                    pag.18              Introdu¸˜o ao Controle Robusto – Aula 4
                                                               ca
c Reinaldo M. Palhares
Norma Vetorial


A fun¸˜o x : R → R ´ uma norma se satisfaz os seguintes axiomas
     ca            e

1.   x+y ≤ x + y
2.   αx = |α| x
3.   x ≥0e x =0                  ⇔      x=0

Normas usuais para vetores no Rn
                                                1
                                 n              r

•    Norma-r      x      r             |xi |r       ,   1≤r<∞
                                 i=1


•    Norma-∞          x      ∞    max |xi |
                                 1≤i≤n




                                                pag.19     Introdu¸˜o ao Controle Robusto – Aula 4
                                                                  ca
c Reinaldo M. Palhares
Norma Vetorial



                                                                                    1
                                            √                         n             2

• Norma-2 ou Norma Euclidiana      x   2     xT x =     x, x =             |xi |2
                                                                     i=1



Nota Interpreta¸˜o gr´fica ? A norma-2 ´ o comprimento do vetor a partir da origem
               ca    a                e


MATLAB
norm(x,1) – norma-1
norm(x,2) ou norm(x) – norma-2
norm(x,inf) – norma-∞




                                   pag.20        Introdu¸˜o ao Controle Robusto – Aula 4
                                                        ca
c Reinaldo M. Palhares
Norma Matricial

    O conceito de norma vetorial pode ser “estendido” para matrizes, no sentido de se
poder “mensurar” matrizes. Considere X o espa¸o de entradas R n e Y o espa¸o de
                                               c                             c
  ıdas Rm
sa´

Defini¸˜o
     ca         Considere A : X → Y. O operador ´ limitado se
                                                e

                   ∃c < ∞, c ∈ R         :       Ax < c x , ∀x ∈ X


Defini¸˜o
     ca         Considere A : X → Y. A norma de A ´ a menor constante c
                                                  e

Portanto a norma de um operador linear pode ser caracterizada por

                                         Ax r
                          A   r   sup         =     sup      Ax   r
                                  x=0     x r       x r =1



      A   r   ´ denominada norma matricial induzida por uma norma vetorial r
              e


                                        pag.21        Introdu¸˜o ao Controle Robusto – Aula 4
                                                             ca
c Reinaldo M. Palhares
Norma Matricial



Para diferentes x , tem-se diferentes A

                         m
1.   A   1   = max             |aij |           ⇔         A maior soma absoluta das colunas
                 j
                         i=1


                                        1
                             T
2.   A   2   = λmax (A A)               2
                                                ⇔        Valor singular m´ximo de A
                                                                         a

                                           
                             m
3.   A   ∞   = max              |aij |        ⇔         A maior soma absoluta das linhas
                     i
                          j=1




                                                pag.22          Introdu¸˜o ao Controle Robusto – Aula 4
                                                                       ca
c Reinaldo M. Palhares
Norma Matricial



                                                         
                                                 3    2
Exemplo       Normas 1, 2 e ∞ de A =                     ?
                                                 −1   0


                         A   1   = max {3 + | − 1|; 2 + 0} = 4


                                        A   2    = 3.7


                         A   ∞   = max {3 + 2; | − 1| + 0} = 5




                                        pag.23            Introdu¸˜o ao Controle Robusto – Aula 4
                                                                 ca
c Reinaldo M. Palhares
Norma Matricial



    Interpreta¸˜o gr´fica ? Considere por exemplo a norma A
              ca    a                                                                                    1.      Note que y = Ax e
                                                                                     n
                                     x       1   =1           ⇒         x   1   =             |xi |
                                                                                    i=1


portanto
                   3     2       1                   3                                          3        2               0                    2
y1 = Ax =                                    =                ,        y2 = Ax =                                                 =
               ¢




                         ¤




                             ¢




                                 ¤




                                                 ¢




                                                         ¤




                                                                                          ¢




                                                                                                             ¤




                                                                                                                     ¢




                                                                                                                             ¤




                                                                                                                                          ¢




                                                                                                                                                  ¤
                   −1    0       0                   −1                                        −1        0               1                    0
               £




                         ¥




                             £




                                 ¥




                                                 £




                                                         ¥




                                                                                          £




                                                                                                             ¥




                                                                                                                     £




                                                                                                                             ¥




                                                                                                                                          £




                                                                                                                                                  ¥
                   3     2       −1                      −3                                         3            2               0                        −2
y3 = Ax =                                        =                 ,    y4 = Ax =                                                             =
               ¢




                         ¤




                             ¢




                                         ¤




                                                     ¢




                                                               ¤




                                                                                                ¢




                                                                                                                 ¤




                                                                                                                         ¢




                                                                                                                                      ¤




                                                                                                                                                      ¢




                                                                                                                                                              ¤
                   −1    0       0                       1                                          −1           0               −1                       0
               £




                         ¥




                             £




                                         ¥




                                                     £




                                                               ¥




                                                                                                £




                                                                                                                 ¥




                                                                                                                         £




                                                                                                                                      ¥




                                                                                                                                                      £




                                                                                                                                                              ¥
                                                             pag.24                 Introdu¸˜o ao Controle Robusto – Aula 4
                                                                                           ca
c Reinaldo M. Palhares
Norma Matricial

                           2



                       1.5



                           1                          x   1   =1

                       0.5



                           0



                      −0.5



                       −1

PSfrag replacements
                      −1.5
                                                      A   1   =3+1=4
                       −2
                        −4     −3   −2   −1       0   1        2    3      4




 MATLAB         norm(A,r), r = 1, 2 ou r =inf


                                         pag.25           Introdu¸˜o ao Controle Robusto – Aula 4
                                                                 ca
  c Reinaldo M. Palhares
Exerc´
                                                 ıcios

                                0   1   1    2        −1




                            




                                                           
1. Calcule o posto de A =       1   2   3    4        −1




                            




                                                               
                            




                                                               
                                2   0   2    0        2




                            




                                                           
                                                                            1           −0.5         2




                                                                       




                                                                                                           
2. Calcule as normas induzidas 1,2 e ∞ para A =                             0           0.7          0.3




                                                                       




                                                                                                               
                                                                       




                                                                                                               
                                                                           −0.9          0           0.1




                                                                       




                                                                                                           
                                                 −4            −1               2
3. Encontre os valores singulares de A =
                                             




                                                                                    
                                             
                                                 2             0.5              −1




                                                                                    
                                                      0            1        1       1    1
                                                  




                                                                                             
                                                      0            0        1       1    1
                                                  




                                                                                                 
                                                  




                                                                                                 
4.   Encontre uma forma diagonal para A =             0            0        0       1    1
                                                  




                                                                                                 
                                                  




                                                                                                 
                                                  




                                                                                                 
                                                      0            0        0       0    1
                                                  




                                                                                                 
                                                  




                                                                                                 
                                                      0            0        0       0    0
                                                  




                                                                                             




                                            pag.26                              Introdu¸˜o ao Controle Robusto – Aula 4
                                                                                       ca
c Reinaldo M. Palhares

Aula4 introbusto

  • 1.
    ´ Algebra Linear – Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espa¸os lineares: independˆncia linear, base, c e dimens˜o, singularidade, combina¸˜o linear a ca 1.2. Espa¸o imagem (colunas) - Espa¸o linhas. Posto c c 1.3. Espa¸o nulo (n´cleo). Nulidade c u 2. Autovalores e autovetores 3. Tra¸o de matriz c 4. Forma quadr´tica e sinais de matrizes a 5. Valores singulares 6. Norma vetorial 7. Norma matricial pag.1 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 2.
    Sistemas Lineares Considere o conjunto de equa¸oes alg´bricas lineares c˜ e  y1 = a11 x1 + a12 x2 + · · · + a1n xn    . . .  . . . . . . y = Ax   = am1 x1 + am2 x2 + · · · + amn xn  ym  x1 , . . . , xn denotam entradas do sistema linear y1 , . . . , ym denotam sa´ ıdas do sistema linear aij denotam parˆmetros que caracterizam o mapeamento entrada-sa´ a ıda A ∈ Rm×n , y ∈ Rm e x ∈ Rn pag.2 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 3.
    Subespa¸os Fundamentais c Quest˜es fundamentais o Caracterizar os conjuntos de sa´ ıdas y1 , . . . , ym que podem ser obtidos dadas as entradas x1 , . . . , xn (controlabilidade da sa´ ıda) Dadas as sa´ ıdas y1 , . . . , ym identificar, se poss´ ıvel, o conjunto de entradas x1 , . . . , xn que as geram (observabilidade da entrada) Em outras palavras... Como caracterizar uma solu¸˜o para Ax = y ? Veja que ca tem-se um conjunto com m equa¸oes e n inc´gnitas c˜ o Pode-se definir subespa¸os fundamentais de tal forma a obter condi¸oes de c c˜ existˆncia e uma forma geral de solu¸oes para Ax = y e c˜ pag.3 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 4.
    Coordenadas em Espa¸osLineares c Nota Antes de responder a ultima quest˜o, introduze-se conceitos sobre ´ a coordenadas em espa¸os lineares... c Dependˆncia Linear Um conjunto de vetores {x1 , x2 , . . . , xk }, xi ∈ Rn , e i = 1, . . . , k, ´ linearmente dependente se existem escalares α1 , α2 , . . . , αk , e n˜o todos nulos tais que a k α i xi = α 1 x1 + α 2 x2 + · · · + α k xk = 0 i=1 Caso contr´rio, o conjunto {x1 , x2 , . . . , xk } ´ linearmente independente – LI a e k Veja que i=1 αi xi = Xα sendo X [ x1 x2 ··· xk ] ∈ Rn×k , α [ α1 α2 ··· α k ]T ∈ R k pag.4 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 5.
    Coordenadas em Espa¸osLineares c Proposi¸˜o Qualquer conjunto de n vetores LI qualifica uma base em um ca espa¸o linear n−dimensional (ie um espa¸o de dimens˜o n) c c a Lema Considere Q ∈ Rn×n . O sistema de equa¸oes c˜ T Qx = 0, x x1 x2 ··· xn possui uma solu¸˜o n˜o-nula (x = 0) se e somente se Q ´ singular ca a e Teorema Considere Q = q1 q2 · · · qn . Ent˜o Q ´ n˜o-singular se e a e a somente se o conjunto de vetores {q1 , q2 , . . . , qn } ´ LI (em outras palavras, e ∃Q−1 ) pag.5 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 6.
    Coordenadas em Espa¸osLineares c Representa¸˜o de vetores ca Considere um conjunto de vetores {q1 , q2 , . . . , qn }, base no Rn . Ent˜o todo a vetor y ∈ Rn pode ser escrito como combina¸˜o linear: ca n y= αi qi = Qα i=1 Como Q ´ n˜o-singular: e a α = Q−1 y representa¸˜o unica de y na base {q1 , q2 , . . . , qn } ca ´ Para outra base qualquer P , y = P ζ, ζ = P −1 y = P −1 Qα !!! pag.6 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 7.
    Subespa¸os Fundamentais c Defini¸˜o ca O espa¸o colunas de A ´ o espa¸o gerado pelas colunas de A, e ´ c e c e denominado espa¸o imagem de A — (A) . Por outro lado, o espa¸o linhas de A ´ o c c e espa¸o gerado pelas linhas de A — (AT ) c T 1 −1 −3 Exemplo y= 1 −1 est´ no espa¸o imagem de a c A= ? ¢ ¤ 0 10 0   ¡ £ ¥ Em outras palavras, y = Ax, para algum x? Sim, pois as colunas de A geram todo o espa¸o 2-dimensional c • posto de colunas de A ∈ Rm×n ´ a dimens˜o de e a (A), ie ´ equivalente ao e n´mero de colunas LI de A u • posto de linhas de A ∈ Rm×n ´ a dimens˜o de e a (AT ) • dim (A) = dim (AT ) = r = posto(A) ∴ posto(A) ≤ min {m, n} pag.7 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 8.
    Subespa¸os Fundamentais c Defini¸˜o ca O espa¸o nulo ` direita (ou n´cleo) de A ´ o espa¸o gerado por todos os c a u e c vetores x satisfazendo Ax = 0 — N (A). Por outro lado, o espa¸o nulo ` esquerda c a de A ´ o espa¸o gerado por todos os vetores y satisfazendo y T A = 0 — N (AT ) e c T Exemplo x= 1 10 0 est´ no espa¸o N (A): a c   ¡ 1 −1 −3 A= ? ¢ ¤ 0 10 0 £ ¥ Em outras palavras, Ax = 0? Como 1 1 −1 −3 −9 0 ¢ ¤ 10 = = ¢ ¤ ¢ ¤ ¢ ¤ ¦ § 0 10 0 100 0 ¦ § 0 £ ¥ £ ¥ £ ¥ £ ¥ portanto, a resposta ´ negativa e pag.8 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 9.
    Subespa¸os Fundamentais c • Considere A de ordem m × n Dimens˜o dos quatro subespa¸os fundamentais: a c (A), (AT ), N (A) e N (AT )? r posto(A) = dim (A) n colunas de A ∴ r + dim N (A) = n → dim N (A) = n − r (Nulidade) r posto(AT ) = dim (AT ) m linhas de A ∴ r + dim N (AT ) = m → dim N (AT ) = m − r pag.9 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 10.
    Subespa¸os Fundamentais c • O espa¸o n-dimensional de entrada X = c (AT ) ⊕ N (A) • O espa¸o m-dimensional de sa´ Y = c ıda (A) ⊕ N (AT ) MATLAB orth(A) – base ortonormal para (A) null(A) – base ortonormal para N (A) rank(A) – posto de A 0 1 1 2 ¢ ¤ Exemplo Posto de A = 1 2 3 4 = a1 a2 a3 a4 ? ¦ § ¦ §   ¡ 2 0 2 0 £ ¥ a1 e a2 s˜o LI. a3 = a1 + a2 . a4 = 2a2 . A tem duas colunas LI ∴ posto(A) = 2 a pag.10 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 11.
    Subespa¸os Fundamentais c Teorema Dado A ∈ Rm×n , existe uma solu¸˜o x para Ax = y, para ca qualquer y, sse posto(A) = m (posto completo de linhas) Teorema Dado A ∈ Rn×n . Se ∃A−1 , ent˜o Ax = y tem uma unica solu¸˜o a ´ ca para todo y, ie x = A−1 y. Em particular, a unica solu¸˜o para Ax = 0 ´ ´ ca e x=0 pag.11 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 12.
    Autovalores e Autovetores Defini¸˜oUm escalar λ ´ denominado um autovalor de A ∈ Rn×n se ca e ∃x ∈ Rn , x = 0, satisfazendo Ax = λx Tal x ´ denominado um autovetor de A associado ao autovalor λ e Como calcular autovalor ? Basta escrever Ax = λx = λIx da forma (A − λI) x = 0 Se (A − λI) ´ n˜o singular, ent˜o a unica solu¸˜o ´ x = 0 !! e a a ´ ca e Por´m x = 0, ent˜o (A − λI) deve ser necessariamente singular, ou de forma e a equivalente, det(A − λI) = 0 ... Toda ra´ de p(λ) = det (A − λI) ´ uma autovalor de A ız e pag.12 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 13.
    Teoria de Matrizes Tra¸o c Para A ∈ Rn×n , o tra¸o de A, denotado por Tr{A} ou Tra¸o{A}, ´ c c e definido como sendo: n Tr {A} = aii i=1 ie, ´ a soma dos elementos da diagonal principal e Propriedades n 1. Tr{A} = λi i=1 2. Tr{A + B} = Tr{B + A} = Tr{A} + Tr{B} 3. Tr{AB} = Tr B T AT = Tr{BA}= Tr AT B T (se existirem multiplica¸oes) c˜ ¨ © ¨ © n n 4. Tr AT A = a2 ij ¨ © i=1 i=1 pag.13 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 14.
    Forma quadr´tica eSinais de Matrizes a Simetria P ∈ Rn×n ´ dita ser sim´trica se P = P T e e Nota Todos os autovalores de uma matriz sim´trica s˜o reais e a Nota Toda matriz sim´trica pode ser diagonalizada, mesmo para autovalores repetidos e (MATLAB: jordan) Forma Quadr´tica a ´ E uma classe de fun¸oes escalares na forma c˜ P11 ··· P1n x1 . .. . . ¢ ¤ ¢ ¤ V (x) = xT P x = x1 ··· xn . . . . , P = PT ¦ § ¦ § . . . ¦ § ¦ §   ¡ ¦ § ¦ § Pn1 ··· Pnn xn £ ¥ £ ¥ pag.14 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 15.
    Forma quadr´tica eSinais de Matrizes a Fun¸˜o escalar definida positiva Dado P = P T , se a fun¸˜o escalar xT P x > 0, ca ca para todo x = 0, ent˜o P ´ dita ser definida positiva, sendo denotado por P a e 0 Fun¸˜o escalar definida negativa Dado P = P T , se a fun¸˜o escalar ca ca xT P x < 0, para todo x = 0, ent˜o P ´ dita ser definida negativa, sendo denotado a e por P 0 Fun¸˜o escalar semidefinida positiva (negativa) Dado P = P T , se a fun¸˜o ca ca escalar xT P x ≥ 0 (xT P x ≤ 0), para todo x = 0, ent˜o P ´ dita ser semidefinida a e positiva (semidefinida negativa), sendo denotado por P 0 (P 0) Nota Se P ´ semidefin´ ent˜o ∃x = 0 tal que xT P x = 0 e ıda, a pag.15 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 16.
    Forma quadr´tica eSinais de Matrizes a Teorema P = P T ∈ Rn×n ´ definida positiva (semidefinida positiva) sse e λ(P ) > 0 (λ(P ) ≥ 0) Teorema P = P T ∈ Rn×n ´ definida negativa (semidefinida negativa) sse e λ(P ) < 0 (λ(P ) ≤ 0) Exerc´ ıcio Moste que V (x) ´ definida positiva e V (x) = xT P x = 10x2 + 4x2 + x2 + 2x1 x2 − 2x2 x3 − 4x1 x3 1 2 3 Fato Dado H ∈ Rm×n ent˜o a 1. H T H ou HH T ´ sim´trica e e 2. H T H 0 ou HH T 0 3. H T H 0 se posto(H) = n (posto completo de colunas) 4. HH T 0 se posto(H) = m (posto completo de linhas) pag.16 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 17.
    Valores Singulares Dado H ∈ Rm×n Define-se M HT H ∴ M = MT 0, M ∈ Rn×n Portanto todos os autovalores de M s˜o reais e n˜o negativos a a r indica o n´mero de autovalores positivos de M u Ent˜o os autovalores de M = H T H podem ser ordenados da forma a λ2 ≥ λ2 ≥ · · · ≥λr > 0 = λr+1 = · · · = λn 1 2 Denote por n = min(m, n). Ent˜o o conjunto a λ1 ≥ λ2 ≥ · · · λr > 0 = λr+1 ≥ λn ´ denominado de valores singulares de H. Em outras palavras, os valores singulares de e H (denotado por σ) s˜o obtidos de: a σ= λ(H T H), MATLAB: sigma pag.17 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 18.
    Produto Interno A fun¸˜ox, y : R × R → R ´ um produto interno se satisfaz os seguintes axiomas ca e ∗ 1. x, y = y, x , x, y = y, x 2. α(x + y), z = α x, z + α y, z 3. x, x ≥ 0 e x, x = 0 ⇔ x=0 Representa¸˜o usual para vetores do Rn ca n x, y = xi y i i=1 Vetores ortogonais – x ⊥ y x, y = xT y = 0 pag.18 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 19.
    Norma Vetorial A fun¸˜ox : R → R ´ uma norma se satisfaz os seguintes axiomas ca e 1. x+y ≤ x + y 2. αx = |α| x 3. x ≥0e x =0 ⇔ x=0 Normas usuais para vetores no Rn 1 n r • Norma-r x r |xi |r , 1≤r<∞ i=1 • Norma-∞ x ∞ max |xi | 1≤i≤n pag.19 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 20.
    Norma Vetorial 1 √ n 2 • Norma-2 ou Norma Euclidiana x 2 xT x = x, x = |xi |2 i=1 Nota Interpreta¸˜o gr´fica ? A norma-2 ´ o comprimento do vetor a partir da origem ca a e MATLAB norm(x,1) – norma-1 norm(x,2) ou norm(x) – norma-2 norm(x,inf) – norma-∞ pag.20 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 21.
    Norma Matricial O conceito de norma vetorial pode ser “estendido” para matrizes, no sentido de se poder “mensurar” matrizes. Considere X o espa¸o de entradas R n e Y o espa¸o de c c ıdas Rm sa´ Defini¸˜o ca Considere A : X → Y. O operador ´ limitado se e ∃c < ∞, c ∈ R : Ax < c x , ∀x ∈ X Defini¸˜o ca Considere A : X → Y. A norma de A ´ a menor constante c e Portanto a norma de um operador linear pode ser caracterizada por Ax r A r sup = sup Ax r x=0 x r x r =1 A r ´ denominada norma matricial induzida por uma norma vetorial r e pag.21 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 22.
    Norma Matricial Para diferentesx , tem-se diferentes A m 1. A 1 = max |aij | ⇔ A maior soma absoluta das colunas j i=1 1 T 2. A 2 = λmax (A A) 2 ⇔ Valor singular m´ximo de A a   m 3. A ∞ = max  |aij | ⇔ A maior soma absoluta das linhas i j=1 pag.22 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 23.
    Norma Matricial   3 2 Exemplo Normas 1, 2 e ∞ de A =  ? −1 0 A 1 = max {3 + | − 1|; 2 + 0} = 4 A 2 = 3.7 A ∞ = max {3 + 2; | − 1| + 0} = 5 pag.23 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 24.
    Norma Matricial Interpreta¸˜o gr´fica ? Considere por exemplo a norma A ca a 1. Note que y = Ax e n x 1 =1 ⇒ x 1 = |xi | i=1 portanto 3 2 1 3 3 2 0 2 y1 = Ax = = , y2 = Ax = = ¢ ¤ ¢ ¤ ¢ ¤ ¢ ¤ ¢ ¤ ¢ ¤ −1 0 0 −1 −1 0 1 0 £ ¥ £ ¥ £ ¥ £ ¥ £ ¥ £ ¥ 3 2 −1 −3 3 2 0 −2 y3 = Ax = = , y4 = Ax = = ¢ ¤ ¢ ¤ ¢ ¤ ¢ ¤ ¢ ¤ ¢ ¤ −1 0 0 1 −1 0 −1 0 £ ¥ £ ¥ £ ¥ £ ¥ £ ¥ £ ¥ pag.24 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 25.
    Norma Matricial 2 1.5 1 x 1 =1 0.5 0 −0.5 −1 PSfrag replacements −1.5 A 1 =3+1=4 −2 −4 −3 −2 −1 0 1 2 3 4 MATLAB norm(A,r), r = 1, 2 ou r =inf pag.25 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares
  • 26.
    Exerc´ ıcios 0 1 1 2 −1 1. Calcule o posto de A = 1 2 3 4 −1 2 0 2 0 2 1 −0.5 2 2. Calcule as normas induzidas 1,2 e ∞ para A = 0 0.7 0.3 −0.9 0 0.1 −4 −1 2 3. Encontre os valores singulares de A = 2 0.5 −1 0 1 1 1 1 0 0 1 1 1 4. Encontre uma forma diagonal para A = 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 pag.26 Introdu¸˜o ao Controle Robusto – Aula 4 ca c Reinaldo M. Palhares