APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
1 
ESCOLA DR. ALFREDO JOSÉ BALBI 
UNITAU 
APOSTILA 
FUNÇÃO DO 1º GRAU 
PROF. CARLINHOS 
NOME: NO:
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
2 
FUNÇÃO DO 1º GRAU 
DEFINIÇÃO 
Chama-se função do 1.° grau toda função definida de por f(x) = ax + b com a, b e a 0. 
Exemplos: 
f(x) = 5x – 3, onde a = 5 e b = – 3 (função afim) 
f(x) = 6x, onde a = 6 e b = 0 (função linear) 
f(x) = x, onde a = 1 e b = 0 (função identidade) 
GRÁFICO DA FUNÇÃO DO 1.º GRAU 
O gráfico de uma função do 1.º grau é uma reta não-paralela nem ao eixo x nem ao eixo y. Seu domínio é 
D(f) = e sua imagem é Im(f) = . 
1.º exemplo: Construir o gráfico da função y = 2x + 3 (a = 2 > 0) 
Resolução: Sabendo que o gráfico da função y = 2x + 3 é do 1.º grau, precisamos somente conhecer dois 
de seus pontos para traçá-lo. Esses dois pontos podem ser obtidos atribuindo-se dois valores arbitrários 
para x e determinando suas ../imagens (y). 
Para x = 0 y = 3 
Para x = – 2 y = -1 
Para x = – 1 y = 1 
2.º exemplo: Construir o gráfico da função 
f (x) = – 2x + 3 (a = – 2 < 0) 
Conclusão: 
Se a > 0, a função y = ax + b é crescente. 
Se a < 0, a função y = ax + b é decrescente. 
ZERO OU RAIZ DA FUNÇÃO DO 1.º GRAU 
Chama-se zero ou raiz da função do 1.º grau f(x) = ax + b o valor de x para o qual f(x) = 0, logo: 
ax + b = 0 ⇒ ax = -b ⇒ x = - 
b 
. 
a 
raiz ou zero 
f(x) 
x 
o x 
b 
- 
a 
Observação: geometricamente, o zero da função do 1.º grau é a abscissa do ponto em que a reta corta o 
eixo x. Então, no exemplo, temos:
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
3 
COEFICIENTES ANGULAR E LINEAR DA RETA: 
O coeficiente de x, a, é chamado coeficiente angular da reta, que é o valor da tangente do ângulo do a 
que reta forma com o eixo 0x, medido do eixo para reta no sentido anti-horário. 
O termo constante b, é, chamado coeficiente linear da reta, que é, o valor da ordenada do ponto em que a 
reta corta o eixo 0y. 
f(x) a = tg a 
a 
o 
x 
coeficiente linear (b) 
Observando os gráficos dos exemplos anteriores, podemos concluir que: 
1º) Quando o coeficiente angular é positivo, ou seja , a>0, a função é crescente. 
2º) Quando o coeficiente angular é negativo, ou seja , a<0, a função é decrescente. 
Exemplos 
1) Determinar a raiz e fazer a representação gráfica das funções: 
a) f(x) = 3x+6 
Resolução: 3x + 6 = 0 ⇒ 3x = -6 ⇒ x = -2(raiz) 
f(x) 
6 coeficiente 
linear 
raiz 
-2 o x 
b) f(x)= -x+3 
Resolução: -x+3=0 ⇒ -x = -3 (-1 ⇒ x = 3(raiz) 
f(x) 
3 (coef. Linear) 
raiz 
o 3 x 
2) Determine os coeficientes angular e linear das retas representadas pelas funções abaixo e classifique-as 
em crescente ou decrescente. 
a) f(x) = 5x+9
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
4 
Resolução: Coeficiente angular a=5, linear b=9. 
a = 5 > 0, logo, é crescente a função. 
b) f(x) = -4x+8 
Resolução: Coeficiente angular a = -4, linear b = 8. 
a = -4 < 0, logo, é decrescente a função. 
ESTUDO DO SINAL DA FUNÇÃO DE 1º GRAU 
Estudar o sinal da função de 1º grau y = ax + b significa determinar para quais valores de x a função é 
positiva , nula ou negativa. No estudo do sinal devemos considerar 2 casos: 
1º caso: a > 0 (função crescente) 
y 
y>0 
+ 
-b/a 
_ o x 
y<0 
· x > - 
b 
⇒ y > 0 · x = - 
a 
b 
a 
⇒ y = 0 · x < - 
b 
a 
⇒ y < 0 
y>0 
+ 
_ -b/a x 
y<0 
2º caso: a < 0 (função decrescente) 
y 
+ 
y>0 
-b/a 
o _ x 
y<0
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
5 
· x < - 
b 
⇒ y > 0 · x = - 
a 
b 
a 
⇒ y = 0 · x > - 
b 
a 
⇒ y < 0 
+ 
y>0 
-b/a 
_ x 
y<0 
Exemplo: Estudar o sinal das funções: 
a) y = x-4 
Resolução: x-4 = 0 ⇒ x = 4 
Como a =1> 0, a função é crescente, logo: 
y>0 
4 + 
_ x 
y<0 
· x > 4 ⇒ y > 0 
· x = 4 ⇒ y = 0 
· x < 4 ⇒ y < 0 
b) y = -2x + 5 
Resolução: -2x + 5 =0⇒ -2x = -5 (-1 ⇒ 2x = 5 ⇒ x = 
5 
2 
Como a = -2 < 0, a função é decrescente,logo: 
+ 
y>0 
x 
5 
2 
y<0 - 
· x < 5/2 ⇒ y > 0 
· x = 5/2 ⇒ y = 0 
· x > 5/2 ⇒ y < 0
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
6 
EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM 
1) Classifique as funções do 1º grau abaixo em afim(A), linear(L) e identidade(I); 
a) y = 3x resp: L b) f(x) = x resp: I c) f(x) = 4x - 7 resp: A d) y = =5x +9 resp: A 
2) Determine m, de modo que f(x) = (4m + 16)x - 6, seja uma função: 
a) constante resp: m = - 4 b) do 1º grau resp: m ¹ -4 
3) Determine p, de modo que f(x) = (5p + 15)x + 6, seja uma função do 1º grau: 
a) crescente resp: p > - 3 b) decrescente resp: p < - 3 
4) Determine o valor de m, de modo que a função f(x) = 5x + ( m - 5), intercepte o eixo 
x, no ponto de abscissa 1. resp: m = 0 
5) Determine o valor de m, de modo que o coeficiente angular da reta definida pela 
função f(x) = (m + 7)x - 8, seja igual a 10. resp: m = 3 
6) Determine o valor de p, de modo que o coeficiente linear da reta definida pela função 
f(x) = x - (p + 8), seja igual a -1. resp: m = - 7 
7) Determine o valor de m, de modo que a raiz da função f(x) = (2m + 7)x - 8, seja 
igual a 1. resp: m = 1/2 
8) Dada a função f(x)= 4x-8. Determine: 
a)Os coeficientes angular e linear da reta. resp: angular a = 4 linear b = -8 
b) Se ela é crescente ou decrescente. resp: crescente 
c) A raiz. resp: 2 
d) O gráfico. resp: y 
o 2 x 
8 
9) Dada a função f(x)= -3x-3. Determine: 
a)Os coeficientes angular e linear da reta. resp: angular a = -3 linear b = -3 
b) Se ela é crescente ou decrescente. resp: decrescente 
c) A raiz. resp: -1 
d) O gráfico. resp: y 
-1 
0 x 
-3
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
10) Determine a função do 1º grau cujo o gráfico passa pelos pontos A(0; -1) e B(1; 3). 
resp: f(x) = 4x - 1 
7 
11) O custo de produção de um determinado produto é dado pelo gráfico abaixo: 
y (reais) Determine o custo de produção de 15 produtos. 
20 
5 
0 5 x (unidades produzidas) resp: R$ 40,00 
12) Estude o sinal da função do 1º grau: 
a) y = 3x+9 resp. y>0 para x>-3, y=0 para x=-3 e y<0 para x<-3 
b) y = -4x+16 resp: resp. y>0 para x<4, y=0 para x=4 e y<0 para x>4 
c) y= 6x-30 resp: resp. y>0 para x>5, y=0 para x=5 e y<0 para x<5 
d) y= -2x+1 resp: resp. y>0 para x< 1/2, y=0 para x=1/2 e y<0 para x>1/2 
13) Resolva os sistemas: 
a) 
   
- ³ 
6 10 
4 15 15 
x 
+ > 
x 
resp: S= { xÎÂ/ x³ 5} b) 
 
 
 
- > - 
5 10 
- < 
2 2 10 
- > 
2 0 
x 
x 
x 
resp: S= { xÎÂ/ 2<x<6} 
14) Resolva as inequações: 
a) 1<3x-2£10 resp: S = { xÎÂ/ 1<x£4} 
b) 2x-5<3x+4<6x+6 resp: S = { xÎÂ/ x > -2/3} 
c) (x+2).(-2x+3) ³0 resp: S = { xÎÂ/ -2£ x £ 3/2} 
d) (-x+1).( -2x+10).(x+3) >0 resp: S = { xÎÂ/ -3< x <1 ou x > 5} 
e) 
- 
x 
3 x 
4 
- 
2 
< 0 resp: S = { xÎÂ/ 4/3 < x < 2} 
f) 
- - 
x 
( 2).(4 ) 
x x ³0 resp: S = { xÎÂ/x < -3 ou 2£ x £4} 
3 
+ 
15) (Unesp) A unidade usual de medida para a energia contida nos alimentos é kcal 
(quilocaloria). Uma fórmula aproximada para o consumo diário de energia (em kcal) 
para meninos entre 15 e 18 anos é dada pela função f(h) = 17.h, onde h indica a altura 
em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (15,3).h. Paulo, 
usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2.975 
kcal. Sabendo-se que Paulo é 5 cm mais alto que sua namorada Carla (e que ambos têm 
idade entre 15 e 18 anos), o consumo diário de energia para Carla, de acordo com a 
fórmula, em kcal, é 
a) 2501 b) 2601 c) 2770 d) 2875 e) 2970 resp: b 
16) (Puc-MG) A receita R, em reais, obtida por uma empresa com a venda de q 
unidades de certo produto, é dada por R(q) = 115q, e o custo C, em reais, para produzir 
q dessas unidades, satisfaz a equação C(q) = 90q + 760. Para que haja lucro, é
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
necessário que a receita R seja maior que o custo C. Então, para que essa empresa tenha 
lucro, o número mínimo de unidades desse produto que deverá vender é igual a: 
a) 28 b) 29 c) 30 d) 31 resp: d 
17) (Uel 2008) Um consumidor adquiriu um aparelho de telefonia celular que 
possibilita utilizar os serviços das operadoras de telefonia M e N. A operadora M cobra 
um valor fixo de R$ 0,06 quando iniciada a ligação e mais R$ 0,115 por minuto da 
mesma ligação. De modo análogo, a operadora N cobra um valor fixo de R$ 0,08 e mais 
R$ 0,11 por minuto na ligação. 
Considere as afirmativas a seguir: 
I. O custo de uma ligação de exatos 4 minutos é o mesmo, qualquer que seja a 
operadora. 
II. O custo da ligação pela operadora M será menor do que o custo da ligação pela 
operadora N, independentemente do tempo de duração da ligação. 
III. Uma ligação de 24 minutos efetuada pela operadora M custará R$ 0,10 a mais do 
que efetuada pela operadora N. 
IV. O custo da ligação pela operadora N será menor do que o custo da ligação pela 
operadora M, independentemente do tempo de duração da ligação. 
8 
Assinale a alternativa que contém todas as afirmativas corretas. 
a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV. resp: b 
18) Uma empresa de táxi E1 cobra R$ 2,00 a "bandeirada", que é o valor inicial da 
corrida, e R$ 2,00 por km rodado. Outra empresa E‚ fixa em R$ 3,00 o km rodado e não 
cobra a bandeirada. As duas tarifas estão melhor representadas, graficamente, em: 
resp: b 
19) (Puc_MG) Uma pessoa encontra-se no aeroporto (ponto A) e pretende ir para sua 
casa (ponto C), distante 20 km do aeroporto, utilizando um táxi cujo valor da corrida, 
em reais, é calculado pela expressão V(x) = 12 + 1,5 x, em que x é o número de 
quilômetros percorridos.
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
9 
Se B = 90°, C = 30° e o táxi fizer o percurso AB + BC, conforme indicado na figura, 
essa pessoa deverá pagar pela corrida: 
a) R$ 40,50 b) R$ 48,00 c) R$ 52,50 d) R$ 56,00 resp: c 
20) Sejam as funções f e g, definidas por f(x) = ax + b e g(x) = mx + n, representadas no 
gráfico. É correto afirmar que (a - m)/(b + n) é igual a 
a) -1/3 b) 0 c) 2/3 d) 1 resp: d 
Prof. Carlinhos 
Bibliografia: 
Curso de Matemática – Volume Único 
Autores: Bianchini&Paccola – Ed. Moderna 
Matemática Fundamental - Volume Único 
Autores: Giovanni/Bonjorno&Givanni Jr. – Ed. FTD 
Contexto&Aplicações – Volume Único 
Autor: Luiz Roberto Dante – Ed. Ática 
Apostila elaborada pelo : 
Prof. Luiz Carlos Souza Santos

Função do 1º grau

  • 1.
    APOSTILA FUNÇÃO DO1º GRAU - PROF. CARLINHOS 1 ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: NO:
  • 2.
    APOSTILA FUNÇÃO DO1º GRAU - PROF. CARLINHOS 2 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1.° grau toda função definida de por f(x) = ax + b com a, b e a 0. Exemplos: f(x) = 5x – 3, onde a = 5 e b = – 3 (função afim) f(x) = 6x, onde a = 6 e b = 0 (função linear) f(x) = x, onde a = 1 e b = 0 (função identidade) GRÁFICO DA FUNÇÃO DO 1.º GRAU O gráfico de uma função do 1.º grau é uma reta não-paralela nem ao eixo x nem ao eixo y. Seu domínio é D(f) = e sua imagem é Im(f) = . 1.º exemplo: Construir o gráfico da função y = 2x + 3 (a = 2 > 0) Resolução: Sabendo que o gráfico da função y = 2x + 3 é do 1.º grau, precisamos somente conhecer dois de seus pontos para traçá-lo. Esses dois pontos podem ser obtidos atribuindo-se dois valores arbitrários para x e determinando suas ../imagens (y). Para x = 0 y = 3 Para x = – 2 y = -1 Para x = – 1 y = 1 2.º exemplo: Construir o gráfico da função f (x) = – 2x + 3 (a = – 2 < 0) Conclusão: Se a > 0, a função y = ax + b é crescente. Se a < 0, a função y = ax + b é decrescente. ZERO OU RAIZ DA FUNÇÃO DO 1.º GRAU Chama-se zero ou raiz da função do 1.º grau f(x) = ax + b o valor de x para o qual f(x) = 0, logo: ax + b = 0 ⇒ ax = -b ⇒ x = - b . a raiz ou zero f(x) x o x b - a Observação: geometricamente, o zero da função do 1.º grau é a abscissa do ponto em que a reta corta o eixo x. Então, no exemplo, temos:
  • 3.
    APOSTILA FUNÇÃO DO1º GRAU - PROF. CARLINHOS 3 COEFICIENTES ANGULAR E LINEAR DA RETA: O coeficiente de x, a, é chamado coeficiente angular da reta, que é o valor da tangente do ângulo do a que reta forma com o eixo 0x, medido do eixo para reta no sentido anti-horário. O termo constante b, é, chamado coeficiente linear da reta, que é, o valor da ordenada do ponto em que a reta corta o eixo 0y. f(x) a = tg a a o x coeficiente linear (b) Observando os gráficos dos exemplos anteriores, podemos concluir que: 1º) Quando o coeficiente angular é positivo, ou seja , a>0, a função é crescente. 2º) Quando o coeficiente angular é negativo, ou seja , a<0, a função é decrescente. Exemplos 1) Determinar a raiz e fazer a representação gráfica das funções: a) f(x) = 3x+6 Resolução: 3x + 6 = 0 ⇒ 3x = -6 ⇒ x = -2(raiz) f(x) 6 coeficiente linear raiz -2 o x b) f(x)= -x+3 Resolução: -x+3=0 ⇒ -x = -3 (-1 ⇒ x = 3(raiz) f(x) 3 (coef. Linear) raiz o 3 x 2) Determine os coeficientes angular e linear das retas representadas pelas funções abaixo e classifique-as em crescente ou decrescente. a) f(x) = 5x+9
  • 4.
    APOSTILA FUNÇÃO DO1º GRAU - PROF. CARLINHOS 4 Resolução: Coeficiente angular a=5, linear b=9. a = 5 > 0, logo, é crescente a função. b) f(x) = -4x+8 Resolução: Coeficiente angular a = -4, linear b = 8. a = -4 < 0, logo, é decrescente a função. ESTUDO DO SINAL DA FUNÇÃO DE 1º GRAU Estudar o sinal da função de 1º grau y = ax + b significa determinar para quais valores de x a função é positiva , nula ou negativa. No estudo do sinal devemos considerar 2 casos: 1º caso: a > 0 (função crescente) y y>0 + -b/a _ o x y<0 · x > - b ⇒ y > 0 · x = - a b a ⇒ y = 0 · x < - b a ⇒ y < 0 y>0 + _ -b/a x y<0 2º caso: a < 0 (função decrescente) y + y>0 -b/a o _ x y<0
  • 5.
    APOSTILA FUNÇÃO DO1º GRAU - PROF. CARLINHOS 5 · x < - b ⇒ y > 0 · x = - a b a ⇒ y = 0 · x > - b a ⇒ y < 0 + y>0 -b/a _ x y<0 Exemplo: Estudar o sinal das funções: a) y = x-4 Resolução: x-4 = 0 ⇒ x = 4 Como a =1> 0, a função é crescente, logo: y>0 4 + _ x y<0 · x > 4 ⇒ y > 0 · x = 4 ⇒ y = 0 · x < 4 ⇒ y < 0 b) y = -2x + 5 Resolução: -2x + 5 =0⇒ -2x = -5 (-1 ⇒ 2x = 5 ⇒ x = 5 2 Como a = -2 < 0, a função é decrescente,logo: + y>0 x 5 2 y<0 - · x < 5/2 ⇒ y > 0 · x = 5/2 ⇒ y = 0 · x > 5/2 ⇒ y < 0
  • 6.
    APOSTILA FUNÇÃO DO1º GRAU - PROF. CARLINHOS 6 EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM 1) Classifique as funções do 1º grau abaixo em afim(A), linear(L) e identidade(I); a) y = 3x resp: L b) f(x) = x resp: I c) f(x) = 4x - 7 resp: A d) y = =5x +9 resp: A 2) Determine m, de modo que f(x) = (4m + 16)x - 6, seja uma função: a) constante resp: m = - 4 b) do 1º grau resp: m ¹ -4 3) Determine p, de modo que f(x) = (5p + 15)x + 6, seja uma função do 1º grau: a) crescente resp: p > - 3 b) decrescente resp: p < - 3 4) Determine o valor de m, de modo que a função f(x) = 5x + ( m - 5), intercepte o eixo x, no ponto de abscissa 1. resp: m = 0 5) Determine o valor de m, de modo que o coeficiente angular da reta definida pela função f(x) = (m + 7)x - 8, seja igual a 10. resp: m = 3 6) Determine o valor de p, de modo que o coeficiente linear da reta definida pela função f(x) = x - (p + 8), seja igual a -1. resp: m = - 7 7) Determine o valor de m, de modo que a raiz da função f(x) = (2m + 7)x - 8, seja igual a 1. resp: m = 1/2 8) Dada a função f(x)= 4x-8. Determine: a)Os coeficientes angular e linear da reta. resp: angular a = 4 linear b = -8 b) Se ela é crescente ou decrescente. resp: crescente c) A raiz. resp: 2 d) O gráfico. resp: y o 2 x 8 9) Dada a função f(x)= -3x-3. Determine: a)Os coeficientes angular e linear da reta. resp: angular a = -3 linear b = -3 b) Se ela é crescente ou decrescente. resp: decrescente c) A raiz. resp: -1 d) O gráfico. resp: y -1 0 x -3
  • 7.
    APOSTILA FUNÇÃO DO1º GRAU - PROF. CARLINHOS 10) Determine a função do 1º grau cujo o gráfico passa pelos pontos A(0; -1) e B(1; 3). resp: f(x) = 4x - 1 7 11) O custo de produção de um determinado produto é dado pelo gráfico abaixo: y (reais) Determine o custo de produção de 15 produtos. 20 5 0 5 x (unidades produzidas) resp: R$ 40,00 12) Estude o sinal da função do 1º grau: a) y = 3x+9 resp. y>0 para x>-3, y=0 para x=-3 e y<0 para x<-3 b) y = -4x+16 resp: resp. y>0 para x<4, y=0 para x=4 e y<0 para x>4 c) y= 6x-30 resp: resp. y>0 para x>5, y=0 para x=5 e y<0 para x<5 d) y= -2x+1 resp: resp. y>0 para x< 1/2, y=0 para x=1/2 e y<0 para x>1/2 13) Resolva os sistemas: a)    - ³ 6 10 4 15 15 x + > x resp: S= { xÎÂ/ x³ 5} b)    - > - 5 10 - < 2 2 10 - > 2 0 x x x resp: S= { xÎÂ/ 2<x<6} 14) Resolva as inequações: a) 1<3x-2£10 resp: S = { xÎÂ/ 1<x£4} b) 2x-5<3x+4<6x+6 resp: S = { xÎÂ/ x > -2/3} c) (x+2).(-2x+3) ³0 resp: S = { xÎÂ/ -2£ x £ 3/2} d) (-x+1).( -2x+10).(x+3) >0 resp: S = { xÎÂ/ -3< x <1 ou x > 5} e) - x 3 x 4 - 2 < 0 resp: S = { xÎÂ/ 4/3 < x < 2} f) - - x ( 2).(4 ) x x ³0 resp: S = { xÎÂ/x < -3 ou 2£ x £4} 3 + 15) (Unesp) A unidade usual de medida para a energia contida nos alimentos é kcal (quilocaloria). Uma fórmula aproximada para o consumo diário de energia (em kcal) para meninos entre 15 e 18 anos é dada pela função f(h) = 17.h, onde h indica a altura em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (15,3).h. Paulo, usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2.975 kcal. Sabendo-se que Paulo é 5 cm mais alto que sua namorada Carla (e que ambos têm idade entre 15 e 18 anos), o consumo diário de energia para Carla, de acordo com a fórmula, em kcal, é a) 2501 b) 2601 c) 2770 d) 2875 e) 2970 resp: b 16) (Puc-MG) A receita R, em reais, obtida por uma empresa com a venda de q unidades de certo produto, é dada por R(q) = 115q, e o custo C, em reais, para produzir q dessas unidades, satisfaz a equação C(q) = 90q + 760. Para que haja lucro, é
  • 8.
    APOSTILA FUNÇÃO DO1º GRAU - PROF. CARLINHOS necessário que a receita R seja maior que o custo C. Então, para que essa empresa tenha lucro, o número mínimo de unidades desse produto que deverá vender é igual a: a) 28 b) 29 c) 30 d) 31 resp: d 17) (Uel 2008) Um consumidor adquiriu um aparelho de telefonia celular que possibilita utilizar os serviços das operadoras de telefonia M e N. A operadora M cobra um valor fixo de R$ 0,06 quando iniciada a ligação e mais R$ 0,115 por minuto da mesma ligação. De modo análogo, a operadora N cobra um valor fixo de R$ 0,08 e mais R$ 0,11 por minuto na ligação. Considere as afirmativas a seguir: I. O custo de uma ligação de exatos 4 minutos é o mesmo, qualquer que seja a operadora. II. O custo da ligação pela operadora M será menor do que o custo da ligação pela operadora N, independentemente do tempo de duração da ligação. III. Uma ligação de 24 minutos efetuada pela operadora M custará R$ 0,10 a mais do que efetuada pela operadora N. IV. O custo da ligação pela operadora N será menor do que o custo da ligação pela operadora M, independentemente do tempo de duração da ligação. 8 Assinale a alternativa que contém todas as afirmativas corretas. a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV. resp: b 18) Uma empresa de táxi E1 cobra R$ 2,00 a "bandeirada", que é o valor inicial da corrida, e R$ 2,00 por km rodado. Outra empresa E‚ fixa em R$ 3,00 o km rodado e não cobra a bandeirada. As duas tarifas estão melhor representadas, graficamente, em: resp: b 19) (Puc_MG) Uma pessoa encontra-se no aeroporto (ponto A) e pretende ir para sua casa (ponto C), distante 20 km do aeroporto, utilizando um táxi cujo valor da corrida, em reais, é calculado pela expressão V(x) = 12 + 1,5 x, em que x é o número de quilômetros percorridos.
  • 9.
    APOSTILA FUNÇÃO DO1º GRAU - PROF. CARLINHOS 9 Se B = 90°, C = 30° e o táxi fizer o percurso AB + BC, conforme indicado na figura, essa pessoa deverá pagar pela corrida: a) R$ 40,50 b) R$ 48,00 c) R$ 52,50 d) R$ 56,00 resp: c 20) Sejam as funções f e g, definidas por f(x) = ax + b e g(x) = mx + n, representadas no gráfico. É correto afirmar que (a - m)/(b + n) é igual a a) -1/3 b) 0 c) 2/3 d) 1 resp: d Prof. Carlinhos Bibliografia: Curso de Matemática – Volume Único Autores: Bianchini&Paccola – Ed. Moderna Matemática Fundamental - Volume Único Autores: Giovanni/Bonjorno&Givanni Jr. – Ed. FTD Contexto&Aplicações – Volume Único Autor: Luiz Roberto Dante – Ed. Ática Apostila elaborada pelo : Prof. Luiz Carlos Souza Santos