SlideShare uma empresa Scribd logo
1 de 9
Baixar para ler offline
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
1 
ESCOLA DR. ALFREDO JOSÉ BALBI 
UNITAU 
APOSTILA 
FUNÇÃO DO 1º GRAU 
PROF. CARLINHOS 
NOME: NO:
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
2 
FUNÇÃO DO 1º GRAU 
DEFINIÇÃO 
Chama-se função do 1.° grau toda função definida de por f(x) = ax + b com a, b e a 0. 
Exemplos: 
f(x) = 5x – 3, onde a = 5 e b = – 3 (função afim) 
f(x) = 6x, onde a = 6 e b = 0 (função linear) 
f(x) = x, onde a = 1 e b = 0 (função identidade) 
GRÁFICO DA FUNÇÃO DO 1.º GRAU 
O gráfico de uma função do 1.º grau é uma reta não-paralela nem ao eixo x nem ao eixo y. Seu domínio é 
D(f) = e sua imagem é Im(f) = . 
1.º exemplo: Construir o gráfico da função y = 2x + 3 (a = 2 > 0) 
Resolução: Sabendo que o gráfico da função y = 2x + 3 é do 1.º grau, precisamos somente conhecer dois 
de seus pontos para traçá-lo. Esses dois pontos podem ser obtidos atribuindo-se dois valores arbitrários 
para x e determinando suas ../imagens (y). 
Para x = 0 y = 3 
Para x = – 2 y = -1 
Para x = – 1 y = 1 
2.º exemplo: Construir o gráfico da função 
f (x) = – 2x + 3 (a = – 2 < 0) 
Conclusão: 
Se a > 0, a função y = ax + b é crescente. 
Se a < 0, a função y = ax + b é decrescente. 
ZERO OU RAIZ DA FUNÇÃO DO 1.º GRAU 
Chama-se zero ou raiz da função do 1.º grau f(x) = ax + b o valor de x para o qual f(x) = 0, logo: 
ax + b = 0 ⇒ ax = -b ⇒ x = - 
b 
. 
a 
raiz ou zero 
f(x) 
x 
o x 
b 
- 
a 
Observação: geometricamente, o zero da função do 1.º grau é a abscissa do ponto em que a reta corta o 
eixo x. Então, no exemplo, temos:
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
3 
COEFICIENTES ANGULAR E LINEAR DA RETA: 
O coeficiente de x, a, é chamado coeficiente angular da reta, que é o valor da tangente do ângulo do a 
que reta forma com o eixo 0x, medido do eixo para reta no sentido anti-horário. 
O termo constante b, é, chamado coeficiente linear da reta, que é, o valor da ordenada do ponto em que a 
reta corta o eixo 0y. 
f(x) a = tg a 
a 
o 
x 
coeficiente linear (b) 
Observando os gráficos dos exemplos anteriores, podemos concluir que: 
1º) Quando o coeficiente angular é positivo, ou seja , a>0, a função é crescente. 
2º) Quando o coeficiente angular é negativo, ou seja , a<0, a função é decrescente. 
Exemplos 
1) Determinar a raiz e fazer a representação gráfica das funções: 
a) f(x) = 3x+6 
Resolução: 3x + 6 = 0 ⇒ 3x = -6 ⇒ x = -2(raiz) 
f(x) 
6 coeficiente 
linear 
raiz 
-2 o x 
b) f(x)= -x+3 
Resolução: -x+3=0 ⇒ -x = -3 (-1 ⇒ x = 3(raiz) 
f(x) 
3 (coef. Linear) 
raiz 
o 3 x 
2) Determine os coeficientes angular e linear das retas representadas pelas funções abaixo e classifique-as 
em crescente ou decrescente. 
a) f(x) = 5x+9
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
4 
Resolução: Coeficiente angular a=5, linear b=9. 
a = 5 > 0, logo, é crescente a função. 
b) f(x) = -4x+8 
Resolução: Coeficiente angular a = -4, linear b = 8. 
a = -4 < 0, logo, é decrescente a função. 
ESTUDO DO SINAL DA FUNÇÃO DE 1º GRAU 
Estudar o sinal da função de 1º grau y = ax + b significa determinar para quais valores de x a função é 
positiva , nula ou negativa. No estudo do sinal devemos considerar 2 casos: 
1º caso: a > 0 (função crescente) 
y 
y>0 
+ 
-b/a 
_ o x 
y<0 
· x > - 
b 
⇒ y > 0 · x = - 
a 
b 
a 
⇒ y = 0 · x < - 
b 
a 
⇒ y < 0 
y>0 
+ 
_ -b/a x 
y<0 
2º caso: a < 0 (função decrescente) 
y 
+ 
y>0 
-b/a 
o _ x 
y<0
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
5 
· x < - 
b 
⇒ y > 0 · x = - 
a 
b 
a 
⇒ y = 0 · x > - 
b 
a 
⇒ y < 0 
+ 
y>0 
-b/a 
_ x 
y<0 
Exemplo: Estudar o sinal das funções: 
a) y = x-4 
Resolução: x-4 = 0 ⇒ x = 4 
Como a =1> 0, a função é crescente, logo: 
y>0 
4 + 
_ x 
y<0 
· x > 4 ⇒ y > 0 
· x = 4 ⇒ y = 0 
· x < 4 ⇒ y < 0 
b) y = -2x + 5 
Resolução: -2x + 5 =0⇒ -2x = -5 (-1 ⇒ 2x = 5 ⇒ x = 
5 
2 
Como a = -2 < 0, a função é decrescente,logo: 
+ 
y>0 
x 
5 
2 
y<0 - 
· x < 5/2 ⇒ y > 0 
· x = 5/2 ⇒ y = 0 
· x > 5/2 ⇒ y < 0
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
6 
EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM 
1) Classifique as funções do 1º grau abaixo em afim(A), linear(L) e identidade(I); 
a) y = 3x resp: L b) f(x) = x resp: I c) f(x) = 4x - 7 resp: A d) y = =5x +9 resp: A 
2) Determine m, de modo que f(x) = (4m + 16)x - 6, seja uma função: 
a) constante resp: m = - 4 b) do 1º grau resp: m ¹ -4 
3) Determine p, de modo que f(x) = (5p + 15)x + 6, seja uma função do 1º grau: 
a) crescente resp: p > - 3 b) decrescente resp: p < - 3 
4) Determine o valor de m, de modo que a função f(x) = 5x + ( m - 5), intercepte o eixo 
x, no ponto de abscissa 1. resp: m = 0 
5) Determine o valor de m, de modo que o coeficiente angular da reta definida pela 
função f(x) = (m + 7)x - 8, seja igual a 10. resp: m = 3 
6) Determine o valor de p, de modo que o coeficiente linear da reta definida pela função 
f(x) = x - (p + 8), seja igual a -1. resp: m = - 7 
7) Determine o valor de m, de modo que a raiz da função f(x) = (2m + 7)x - 8, seja 
igual a 1. resp: m = 1/2 
8) Dada a função f(x)= 4x-8. Determine: 
a)Os coeficientes angular e linear da reta. resp: angular a = 4 linear b = -8 
b) Se ela é crescente ou decrescente. resp: crescente 
c) A raiz. resp: 2 
d) O gráfico. resp: y 
o 2 x 
8 
9) Dada a função f(x)= -3x-3. Determine: 
a)Os coeficientes angular e linear da reta. resp: angular a = -3 linear b = -3 
b) Se ela é crescente ou decrescente. resp: decrescente 
c) A raiz. resp: -1 
d) O gráfico. resp: y 
-1 
0 x 
-3
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
10) Determine a função do 1º grau cujo o gráfico passa pelos pontos A(0; -1) e B(1; 3). 
resp: f(x) = 4x - 1 
7 
11) O custo de produção de um determinado produto é dado pelo gráfico abaixo: 
y (reais) Determine o custo de produção de 15 produtos. 
20 
5 
0 5 x (unidades produzidas) resp: R$ 40,00 
12) Estude o sinal da função do 1º grau: 
a) y = 3x+9 resp. y>0 para x>-3, y=0 para x=-3 e y<0 para x<-3 
b) y = -4x+16 resp: resp. y>0 para x<4, y=0 para x=4 e y<0 para x>4 
c) y= 6x-30 resp: resp. y>0 para x>5, y=0 para x=5 e y<0 para x<5 
d) y= -2x+1 resp: resp. y>0 para x< 1/2, y=0 para x=1/2 e y<0 para x>1/2 
13) Resolva os sistemas: 
a) 
   
- ³ 
6 10 
4 15 15 
x 
+ > 
x 
resp: S= { xÎÂ/ x³ 5} b) 
 
 
 
- > - 
5 10 
- < 
2 2 10 
- > 
2 0 
x 
x 
x 
resp: S= { xÎÂ/ 2<x<6} 
14) Resolva as inequações: 
a) 1<3x-2£10 resp: S = { xÎÂ/ 1<x£4} 
b) 2x-5<3x+4<6x+6 resp: S = { xÎÂ/ x > -2/3} 
c) (x+2).(-2x+3) ³0 resp: S = { xÎÂ/ -2£ x £ 3/2} 
d) (-x+1).( -2x+10).(x+3) >0 resp: S = { xÎÂ/ -3< x <1 ou x > 5} 
e) 
- 
x 
3 x 
4 
- 
2 
< 0 resp: S = { xÎÂ/ 4/3 < x < 2} 
f) 
- - 
x 
( 2).(4 ) 
x x ³0 resp: S = { xÎÂ/x < -3 ou 2£ x £4} 
3 
+ 
15) (Unesp) A unidade usual de medida para a energia contida nos alimentos é kcal 
(quilocaloria). Uma fórmula aproximada para o consumo diário de energia (em kcal) 
para meninos entre 15 e 18 anos é dada pela função f(h) = 17.h, onde h indica a altura 
em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (15,3).h. Paulo, 
usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2.975 
kcal. Sabendo-se que Paulo é 5 cm mais alto que sua namorada Carla (e que ambos têm 
idade entre 15 e 18 anos), o consumo diário de energia para Carla, de acordo com a 
fórmula, em kcal, é 
a) 2501 b) 2601 c) 2770 d) 2875 e) 2970 resp: b 
16) (Puc-MG) A receita R, em reais, obtida por uma empresa com a venda de q 
unidades de certo produto, é dada por R(q) = 115q, e o custo C, em reais, para produzir 
q dessas unidades, satisfaz a equação C(q) = 90q + 760. Para que haja lucro, é
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
necessário que a receita R seja maior que o custo C. Então, para que essa empresa tenha 
lucro, o número mínimo de unidades desse produto que deverá vender é igual a: 
a) 28 b) 29 c) 30 d) 31 resp: d 
17) (Uel 2008) Um consumidor adquiriu um aparelho de telefonia celular que 
possibilita utilizar os serviços das operadoras de telefonia M e N. A operadora M cobra 
um valor fixo de R$ 0,06 quando iniciada a ligação e mais R$ 0,115 por minuto da 
mesma ligação. De modo análogo, a operadora N cobra um valor fixo de R$ 0,08 e mais 
R$ 0,11 por minuto na ligação. 
Considere as afirmativas a seguir: 
I. O custo de uma ligação de exatos 4 minutos é o mesmo, qualquer que seja a 
operadora. 
II. O custo da ligação pela operadora M será menor do que o custo da ligação pela 
operadora N, independentemente do tempo de duração da ligação. 
III. Uma ligação de 24 minutos efetuada pela operadora M custará R$ 0,10 a mais do 
que efetuada pela operadora N. 
IV. O custo da ligação pela operadora N será menor do que o custo da ligação pela 
operadora M, independentemente do tempo de duração da ligação. 
8 
Assinale a alternativa que contém todas as afirmativas corretas. 
a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV. resp: b 
18) Uma empresa de táxi E1 cobra R$ 2,00 a "bandeirada", que é o valor inicial da 
corrida, e R$ 2,00 por km rodado. Outra empresa E‚ fixa em R$ 3,00 o km rodado e não 
cobra a bandeirada. As duas tarifas estão melhor representadas, graficamente, em: 
resp: b 
19) (Puc_MG) Uma pessoa encontra-se no aeroporto (ponto A) e pretende ir para sua 
casa (ponto C), distante 20 km do aeroporto, utilizando um táxi cujo valor da corrida, 
em reais, é calculado pela expressão V(x) = 12 + 1,5 x, em que x é o número de 
quilômetros percorridos.
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
9 
Se B = 90°, C = 30° e o táxi fizer o percurso AB + BC, conforme indicado na figura, 
essa pessoa deverá pagar pela corrida: 
a) R$ 40,50 b) R$ 48,00 c) R$ 52,50 d) R$ 56,00 resp: c 
20) Sejam as funções f e g, definidas por f(x) = ax + b e g(x) = mx + n, representadas no 
gráfico. É correto afirmar que (a - m)/(b + n) é igual a 
a) -1/3 b) 0 c) 2/3 d) 1 resp: d 
Prof. Carlinhos 
Bibliografia: 
Curso de Matemática – Volume Único 
Autores: Bianchini&Paccola – Ed. Moderna 
Matemática Fundamental - Volume Único 
Autores: Giovanni/Bonjorno&Givanni Jr. – Ed. FTD 
Contexto&Aplicações – Volume Único 
Autor: Luiz Roberto Dante – Ed. Ática 
Apostila elaborada pelo : 
Prof. Luiz Carlos Souza Santos

Mais conteúdo relacionado

Mais procurados

Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07
André Luís Nogueira
 
Exercícios monomios extra 8º ano
Exercícios monomios extra   8º anoExercícios monomios extra   8º ano
Exercícios monomios extra 8º ano
Adriano Capilupe
 
Equação de 1º grau
Equação de 1º grauEquação de 1º grau
Equação de 1º grau
leilamaluf
 
Lista de exercícios de porcentagem
Lista de exercícios de porcentagemLista de exercícios de porcentagem
Lista de exercícios de porcentagem
Priscila Lourenço
 
Lista de exercícios 8º ano - 3ª etapa
Lista de exercícios   8º ano - 3ª etapaLista de exercícios   8º ano - 3ª etapa
Lista de exercícios 8º ano - 3ª etapa
Alessandra Dias
 
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Olicio Silva
 
Avaliação parcial 7 ano - pdf
Avaliação parcial   7 ano - pdfAvaliação parcial   7 ano - pdf
Avaliação parcial 7 ano - pdf
jonihson
 

Mais procurados (20)

Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07
 
15 aula operacoes com conjuntos
15 aula   operacoes com conjuntos15 aula   operacoes com conjuntos
15 aula operacoes com conjuntos
 
Exercícios monomios extra 8º ano
Exercícios monomios extra   8º anoExercícios monomios extra   8º ano
Exercícios monomios extra 8º ano
 
Atividade resolvida teorema de tales
Atividade resolvida teorema de talesAtividade resolvida teorema de tales
Atividade resolvida teorema de tales
 
Grandezas Proporcionais
Grandezas ProporcionaisGrandezas Proporcionais
Grandezas Proporcionais
 
Expressões para os Alunos
Expressões para os AlunosExpressões para os Alunos
Expressões para os Alunos
 
Lista de Exercícios 3 – Números Inteiros
Lista de Exercícios 3 – Números InteirosLista de Exercícios 3 – Números Inteiros
Lista de Exercícios 3 – Números Inteiros
 
Equação de 1º grau
Equação de 1º grauEquação de 1º grau
Equação de 1º grau
 
Teorema de tales e situações problemas.docx gabarito
Teorema de tales e situações problemas.docx gabaritoTeorema de tales e situações problemas.docx gabarito
Teorema de tales e situações problemas.docx gabarito
 
Resumo função afim pdf
Resumo função afim pdfResumo função afim pdf
Resumo função afim pdf
 
Lista de exercícios de porcentagem
Lista de exercícios de porcentagemLista de exercícios de porcentagem
Lista de exercícios de porcentagem
 
Lista de exercícios 8º ano - 3ª etapa
Lista de exercícios   8º ano - 3ª etapaLista de exercícios   8º ano - 3ª etapa
Lista de exercícios 8º ano - 3ª etapa
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)
 
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
 
Análise combinatória I - exercícios - AP 19
Análise combinatória I - exercícios - AP 19Análise combinatória I - exercícios - AP 19
Análise combinatória I - exercícios - AP 19
 
Números inteiros relativos multiplicação e divisão
Números inteiros relativos multiplicação e divisãoNúmeros inteiros relativos multiplicação e divisão
Números inteiros relativos multiplicação e divisão
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Lista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauLista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grau
 
Lista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiLista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade ii
 
Avaliação parcial 7 ano - pdf
Avaliação parcial   7 ano - pdfAvaliação parcial   7 ano - pdf
Avaliação parcial 7 ano - pdf
 

Destaque (14)

Aulaemgrupo
AulaemgrupoAulaemgrupo
Aulaemgrupo
 
Apreprof
ApreprofApreprof
Apreprof
 
2mapres
2mapres2mapres
2mapres
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
 
Telecurso 2000 gabarito das questões
Telecurso 2000   gabarito das questõesTelecurso 2000   gabarito das questões
Telecurso 2000 gabarito das questões
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
 
Função afim-linear-constante-gráficos
Função  afim-linear-constante-gráficosFunção  afim-linear-constante-gráficos
Função afim-linear-constante-gráficos
 
Mat 140 questoes resolvidas vol iii
Mat 140 questoes resolvidas vol iiiMat 140 questoes resolvidas vol iii
Mat 140 questoes resolvidas vol iii
 
Matematica questões resolvidas i
Matematica questões resolvidas iMatematica questões resolvidas i
Matematica questões resolvidas i
 
Mat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol iMat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol i
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 

Semelhante a Função do 1º grau

Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
ZejucanaMatematica
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
con_seguir
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
Magda Damião
 
Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
Magda Damião
 

Semelhante a Função do 1º grau (20)

Funcoes gaia
Funcoes gaiaFuncoes gaia
Funcoes gaia
 
Função algébrica
Função algébricaFunção algébrica
Função algébrica
 
Funcoes
FuncoesFuncoes
Funcoes
 
Funcoes parte1
Funcoes parte1Funcoes parte1
Funcoes parte1
 
Funções parte i
Funções parte iFunções parte i
Funções parte i
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
 
Funcoes i
Funcoes iFuncoes i
Funcoes i
 
Funcoes
FuncoesFuncoes
Funcoes
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
 
(Apostila função)
(Apostila função)(Apostila função)
(Apostila função)
 
(Apostila função)
(Apostila função)(Apostila função)
(Apostila função)
 
Apostila função do 1 grau
Apostila   função do 1 grauApostila   função do 1 grau
Apostila função do 1 grau
 
Aula de funcao
Aula de funcaoAula de funcao
Aula de funcao
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadrática
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
Slide Função Afim.pptx
Slide Função Afim.pptxSlide Função Afim.pptx
Slide Função Afim.pptx
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
 
Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
 

Último

PPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalPPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 final
carlaOliveira438
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
ssuserbb4ac2
 
O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhoso
VALMIRARIBEIRO1
 
clubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaclubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importância
LuanaAlves940822
 

Último (20)

Trabalho sobre as diferenças demograficas entre EUA e Senegal
Trabalho sobre as diferenças demograficas entre EUA e SenegalTrabalho sobre as diferenças demograficas entre EUA e Senegal
Trabalho sobre as diferenças demograficas entre EUA e Senegal
 
Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
 
APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.
 
Slide - HIV (1) edit.pptx hiv em crianças
Slide - HIV (1) edit.pptx hiv em criançasSlide - HIV (1) edit.pptx hiv em crianças
Slide - HIV (1) edit.pptx hiv em crianças
 
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptxSlides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
 
Descrever e planear atividades imersivas estruturadamente
Descrever e planear atividades imersivas estruturadamenteDescrever e planear atividades imersivas estruturadamente
Descrever e planear atividades imersivas estruturadamente
 
Nós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaNós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-Nova
 
Apresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativosApresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativos
 
PPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalPPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 final
 
bem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animalbem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animal
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
 
Enunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdf
Enunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdfEnunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdf
Enunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdf
 
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
 
O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhoso
 
livro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensoriallivro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensorial
 
análise obra Nós matamos o cão Tinhoso.pdf
análise obra Nós matamos o cão Tinhoso.pdfanálise obra Nós matamos o cão Tinhoso.pdf
análise obra Nós matamos o cão Tinhoso.pdf
 
clubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaclubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importância
 
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdfRespostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
 

Função do 1º grau

  • 1. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 1 ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: NO:
  • 2. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 2 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1.° grau toda função definida de por f(x) = ax + b com a, b e a 0. Exemplos: f(x) = 5x – 3, onde a = 5 e b = – 3 (função afim) f(x) = 6x, onde a = 6 e b = 0 (função linear) f(x) = x, onde a = 1 e b = 0 (função identidade) GRÁFICO DA FUNÇÃO DO 1.º GRAU O gráfico de uma função do 1.º grau é uma reta não-paralela nem ao eixo x nem ao eixo y. Seu domínio é D(f) = e sua imagem é Im(f) = . 1.º exemplo: Construir o gráfico da função y = 2x + 3 (a = 2 > 0) Resolução: Sabendo que o gráfico da função y = 2x + 3 é do 1.º grau, precisamos somente conhecer dois de seus pontos para traçá-lo. Esses dois pontos podem ser obtidos atribuindo-se dois valores arbitrários para x e determinando suas ../imagens (y). Para x = 0 y = 3 Para x = – 2 y = -1 Para x = – 1 y = 1 2.º exemplo: Construir o gráfico da função f (x) = – 2x + 3 (a = – 2 < 0) Conclusão: Se a > 0, a função y = ax + b é crescente. Se a < 0, a função y = ax + b é decrescente. ZERO OU RAIZ DA FUNÇÃO DO 1.º GRAU Chama-se zero ou raiz da função do 1.º grau f(x) = ax + b o valor de x para o qual f(x) = 0, logo: ax + b = 0 ⇒ ax = -b ⇒ x = - b . a raiz ou zero f(x) x o x b - a Observação: geometricamente, o zero da função do 1.º grau é a abscissa do ponto em que a reta corta o eixo x. Então, no exemplo, temos:
  • 3. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 3 COEFICIENTES ANGULAR E LINEAR DA RETA: O coeficiente de x, a, é chamado coeficiente angular da reta, que é o valor da tangente do ângulo do a que reta forma com o eixo 0x, medido do eixo para reta no sentido anti-horário. O termo constante b, é, chamado coeficiente linear da reta, que é, o valor da ordenada do ponto em que a reta corta o eixo 0y. f(x) a = tg a a o x coeficiente linear (b) Observando os gráficos dos exemplos anteriores, podemos concluir que: 1º) Quando o coeficiente angular é positivo, ou seja , a>0, a função é crescente. 2º) Quando o coeficiente angular é negativo, ou seja , a<0, a função é decrescente. Exemplos 1) Determinar a raiz e fazer a representação gráfica das funções: a) f(x) = 3x+6 Resolução: 3x + 6 = 0 ⇒ 3x = -6 ⇒ x = -2(raiz) f(x) 6 coeficiente linear raiz -2 o x b) f(x)= -x+3 Resolução: -x+3=0 ⇒ -x = -3 (-1 ⇒ x = 3(raiz) f(x) 3 (coef. Linear) raiz o 3 x 2) Determine os coeficientes angular e linear das retas representadas pelas funções abaixo e classifique-as em crescente ou decrescente. a) f(x) = 5x+9
  • 4. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 4 Resolução: Coeficiente angular a=5, linear b=9. a = 5 > 0, logo, é crescente a função. b) f(x) = -4x+8 Resolução: Coeficiente angular a = -4, linear b = 8. a = -4 < 0, logo, é decrescente a função. ESTUDO DO SINAL DA FUNÇÃO DE 1º GRAU Estudar o sinal da função de 1º grau y = ax + b significa determinar para quais valores de x a função é positiva , nula ou negativa. No estudo do sinal devemos considerar 2 casos: 1º caso: a > 0 (função crescente) y y>0 + -b/a _ o x y<0 · x > - b ⇒ y > 0 · x = - a b a ⇒ y = 0 · x < - b a ⇒ y < 0 y>0 + _ -b/a x y<0 2º caso: a < 0 (função decrescente) y + y>0 -b/a o _ x y<0
  • 5. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 5 · x < - b ⇒ y > 0 · x = - a b a ⇒ y = 0 · x > - b a ⇒ y < 0 + y>0 -b/a _ x y<0 Exemplo: Estudar o sinal das funções: a) y = x-4 Resolução: x-4 = 0 ⇒ x = 4 Como a =1> 0, a função é crescente, logo: y>0 4 + _ x y<0 · x > 4 ⇒ y > 0 · x = 4 ⇒ y = 0 · x < 4 ⇒ y < 0 b) y = -2x + 5 Resolução: -2x + 5 =0⇒ -2x = -5 (-1 ⇒ 2x = 5 ⇒ x = 5 2 Como a = -2 < 0, a função é decrescente,logo: + y>0 x 5 2 y<0 - · x < 5/2 ⇒ y > 0 · x = 5/2 ⇒ y = 0 · x > 5/2 ⇒ y < 0
  • 6. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 6 EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM 1) Classifique as funções do 1º grau abaixo em afim(A), linear(L) e identidade(I); a) y = 3x resp: L b) f(x) = x resp: I c) f(x) = 4x - 7 resp: A d) y = =5x +9 resp: A 2) Determine m, de modo que f(x) = (4m + 16)x - 6, seja uma função: a) constante resp: m = - 4 b) do 1º grau resp: m ¹ -4 3) Determine p, de modo que f(x) = (5p + 15)x + 6, seja uma função do 1º grau: a) crescente resp: p > - 3 b) decrescente resp: p < - 3 4) Determine o valor de m, de modo que a função f(x) = 5x + ( m - 5), intercepte o eixo x, no ponto de abscissa 1. resp: m = 0 5) Determine o valor de m, de modo que o coeficiente angular da reta definida pela função f(x) = (m + 7)x - 8, seja igual a 10. resp: m = 3 6) Determine o valor de p, de modo que o coeficiente linear da reta definida pela função f(x) = x - (p + 8), seja igual a -1. resp: m = - 7 7) Determine o valor de m, de modo que a raiz da função f(x) = (2m + 7)x - 8, seja igual a 1. resp: m = 1/2 8) Dada a função f(x)= 4x-8. Determine: a)Os coeficientes angular e linear da reta. resp: angular a = 4 linear b = -8 b) Se ela é crescente ou decrescente. resp: crescente c) A raiz. resp: 2 d) O gráfico. resp: y o 2 x 8 9) Dada a função f(x)= -3x-3. Determine: a)Os coeficientes angular e linear da reta. resp: angular a = -3 linear b = -3 b) Se ela é crescente ou decrescente. resp: decrescente c) A raiz. resp: -1 d) O gráfico. resp: y -1 0 x -3
  • 7. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 10) Determine a função do 1º grau cujo o gráfico passa pelos pontos A(0; -1) e B(1; 3). resp: f(x) = 4x - 1 7 11) O custo de produção de um determinado produto é dado pelo gráfico abaixo: y (reais) Determine o custo de produção de 15 produtos. 20 5 0 5 x (unidades produzidas) resp: R$ 40,00 12) Estude o sinal da função do 1º grau: a) y = 3x+9 resp. y>0 para x>-3, y=0 para x=-3 e y<0 para x<-3 b) y = -4x+16 resp: resp. y>0 para x<4, y=0 para x=4 e y<0 para x>4 c) y= 6x-30 resp: resp. y>0 para x>5, y=0 para x=5 e y<0 para x<5 d) y= -2x+1 resp: resp. y>0 para x< 1/2, y=0 para x=1/2 e y<0 para x>1/2 13) Resolva os sistemas: a)    - ³ 6 10 4 15 15 x + > x resp: S= { xÎÂ/ x³ 5} b)    - > - 5 10 - < 2 2 10 - > 2 0 x x x resp: S= { xÎÂ/ 2<x<6} 14) Resolva as inequações: a) 1<3x-2£10 resp: S = { xÎÂ/ 1<x£4} b) 2x-5<3x+4<6x+6 resp: S = { xÎÂ/ x > -2/3} c) (x+2).(-2x+3) ³0 resp: S = { xÎÂ/ -2£ x £ 3/2} d) (-x+1).( -2x+10).(x+3) >0 resp: S = { xÎÂ/ -3< x <1 ou x > 5} e) - x 3 x 4 - 2 < 0 resp: S = { xÎÂ/ 4/3 < x < 2} f) - - x ( 2).(4 ) x x ³0 resp: S = { xÎÂ/x < -3 ou 2£ x £4} 3 + 15) (Unesp) A unidade usual de medida para a energia contida nos alimentos é kcal (quilocaloria). Uma fórmula aproximada para o consumo diário de energia (em kcal) para meninos entre 15 e 18 anos é dada pela função f(h) = 17.h, onde h indica a altura em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (15,3).h. Paulo, usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2.975 kcal. Sabendo-se que Paulo é 5 cm mais alto que sua namorada Carla (e que ambos têm idade entre 15 e 18 anos), o consumo diário de energia para Carla, de acordo com a fórmula, em kcal, é a) 2501 b) 2601 c) 2770 d) 2875 e) 2970 resp: b 16) (Puc-MG) A receita R, em reais, obtida por uma empresa com a venda de q unidades de certo produto, é dada por R(q) = 115q, e o custo C, em reais, para produzir q dessas unidades, satisfaz a equação C(q) = 90q + 760. Para que haja lucro, é
  • 8. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS necessário que a receita R seja maior que o custo C. Então, para que essa empresa tenha lucro, o número mínimo de unidades desse produto que deverá vender é igual a: a) 28 b) 29 c) 30 d) 31 resp: d 17) (Uel 2008) Um consumidor adquiriu um aparelho de telefonia celular que possibilita utilizar os serviços das operadoras de telefonia M e N. A operadora M cobra um valor fixo de R$ 0,06 quando iniciada a ligação e mais R$ 0,115 por minuto da mesma ligação. De modo análogo, a operadora N cobra um valor fixo de R$ 0,08 e mais R$ 0,11 por minuto na ligação. Considere as afirmativas a seguir: I. O custo de uma ligação de exatos 4 minutos é o mesmo, qualquer que seja a operadora. II. O custo da ligação pela operadora M será menor do que o custo da ligação pela operadora N, independentemente do tempo de duração da ligação. III. Uma ligação de 24 minutos efetuada pela operadora M custará R$ 0,10 a mais do que efetuada pela operadora N. IV. O custo da ligação pela operadora N será menor do que o custo da ligação pela operadora M, independentemente do tempo de duração da ligação. 8 Assinale a alternativa que contém todas as afirmativas corretas. a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV. resp: b 18) Uma empresa de táxi E1 cobra R$ 2,00 a "bandeirada", que é o valor inicial da corrida, e R$ 2,00 por km rodado. Outra empresa E‚ fixa em R$ 3,00 o km rodado e não cobra a bandeirada. As duas tarifas estão melhor representadas, graficamente, em: resp: b 19) (Puc_MG) Uma pessoa encontra-se no aeroporto (ponto A) e pretende ir para sua casa (ponto C), distante 20 km do aeroporto, utilizando um táxi cujo valor da corrida, em reais, é calculado pela expressão V(x) = 12 + 1,5 x, em que x é o número de quilômetros percorridos.
  • 9. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 9 Se B = 90°, C = 30° e o táxi fizer o percurso AB + BC, conforme indicado na figura, essa pessoa deverá pagar pela corrida: a) R$ 40,50 b) R$ 48,00 c) R$ 52,50 d) R$ 56,00 resp: c 20) Sejam as funções f e g, definidas por f(x) = ax + b e g(x) = mx + n, representadas no gráfico. É correto afirmar que (a - m)/(b + n) é igual a a) -1/3 b) 0 c) 2/3 d) 1 resp: d Prof. Carlinhos Bibliografia: Curso de Matemática – Volume Único Autores: Bianchini&Paccola – Ed. Moderna Matemática Fundamental - Volume Único Autores: Giovanni/Bonjorno&Givanni Jr. – Ed. FTD Contexto&Aplicações – Volume Único Autor: Luiz Roberto Dante – Ed. Ática Apostila elaborada pelo : Prof. Luiz Carlos Souza Santos