SlideShare uma empresa Scribd logo
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
1 
ESCOLA DR. ALFREDO JOSÉ BALBI 
UNITAU 
APOSTILA 
FUNÇÃO DO 1º GRAU 
PROF. CARLINHOS 
NOME: NO:
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
2 
FUNÇÃO DO 1º GRAU 
DEFINIÇÃO 
Chama-se função do 1.° grau toda função definida de por f(x) = ax + b com a, b e a 0. 
Exemplos: 
f(x) = 5x – 3, onde a = 5 e b = – 3 (função afim) 
f(x) = 6x, onde a = 6 e b = 0 (função linear) 
f(x) = x, onde a = 1 e b = 0 (função identidade) 
GRÁFICO DA FUNÇÃO DO 1.º GRAU 
O gráfico de uma função do 1.º grau é uma reta não-paralela nem ao eixo x nem ao eixo y. Seu domínio é 
D(f) = e sua imagem é Im(f) = . 
1.º exemplo: Construir o gráfico da função y = 2x + 3 (a = 2 > 0) 
Resolução: Sabendo que o gráfico da função y = 2x + 3 é do 1.º grau, precisamos somente conhecer dois 
de seus pontos para traçá-lo. Esses dois pontos podem ser obtidos atribuindo-se dois valores arbitrários 
para x e determinando suas ../imagens (y). 
Para x = 0 y = 3 
Para x = – 2 y = -1 
Para x = – 1 y = 1 
2.º exemplo: Construir o gráfico da função 
f (x) = – 2x + 3 (a = – 2 < 0) 
Conclusão: 
Se a > 0, a função y = ax + b é crescente. 
Se a < 0, a função y = ax + b é decrescente. 
ZERO OU RAIZ DA FUNÇÃO DO 1.º GRAU 
Chama-se zero ou raiz da função do 1.º grau f(x) = ax + b o valor de x para o qual f(x) = 0, logo: 
ax + b = 0 ⇒ ax = -b ⇒ x = - 
b 
. 
a 
raiz ou zero 
f(x) 
x 
o x 
b 
- 
a 
Observação: geometricamente, o zero da função do 1.º grau é a abscissa do ponto em que a reta corta o 
eixo x. Então, no exemplo, temos:
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
3 
COEFICIENTES ANGULAR E LINEAR DA RETA: 
O coeficiente de x, a, é chamado coeficiente angular da reta, que é o valor da tangente do ângulo do a 
que reta forma com o eixo 0x, medido do eixo para reta no sentido anti-horário. 
O termo constante b, é, chamado coeficiente linear da reta, que é, o valor da ordenada do ponto em que a 
reta corta o eixo 0y. 
f(x) a = tg a 
a 
o 
x 
coeficiente linear (b) 
Observando os gráficos dos exemplos anteriores, podemos concluir que: 
1º) Quando o coeficiente angular é positivo, ou seja , a>0, a função é crescente. 
2º) Quando o coeficiente angular é negativo, ou seja , a<0, a função é decrescente. 
Exemplos 
1) Determinar a raiz e fazer a representação gráfica das funções: 
a) f(x) = 3x+6 
Resolução: 3x + 6 = 0 ⇒ 3x = -6 ⇒ x = -2(raiz) 
f(x) 
6 coeficiente 
linear 
raiz 
-2 o x 
b) f(x)= -x+3 
Resolução: -x+3=0 ⇒ -x = -3 (-1 ⇒ x = 3(raiz) 
f(x) 
3 (coef. Linear) 
raiz 
o 3 x 
2) Determine os coeficientes angular e linear das retas representadas pelas funções abaixo e classifique-as 
em crescente ou decrescente. 
a) f(x) = 5x+9
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
4 
Resolução: Coeficiente angular a=5, linear b=9. 
a = 5 > 0, logo, é crescente a função. 
b) f(x) = -4x+8 
Resolução: Coeficiente angular a = -4, linear b = 8. 
a = -4 < 0, logo, é decrescente a função. 
ESTUDO DO SINAL DA FUNÇÃO DE 1º GRAU 
Estudar o sinal da função de 1º grau y = ax + b significa determinar para quais valores de x a função é 
positiva , nula ou negativa. No estudo do sinal devemos considerar 2 casos: 
1º caso: a > 0 (função crescente) 
y 
y>0 
+ 
-b/a 
_ o x 
y<0 
· x > - 
b 
⇒ y > 0 · x = - 
a 
b 
a 
⇒ y = 0 · x < - 
b 
a 
⇒ y < 0 
y>0 
+ 
_ -b/a x 
y<0 
2º caso: a < 0 (função decrescente) 
y 
+ 
y>0 
-b/a 
o _ x 
y<0
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
5 
· x < - 
b 
⇒ y > 0 · x = - 
a 
b 
a 
⇒ y = 0 · x > - 
b 
a 
⇒ y < 0 
+ 
y>0 
-b/a 
_ x 
y<0 
Exemplo: Estudar o sinal das funções: 
a) y = x-4 
Resolução: x-4 = 0 ⇒ x = 4 
Como a =1> 0, a função é crescente, logo: 
y>0 
4 + 
_ x 
y<0 
· x > 4 ⇒ y > 0 
· x = 4 ⇒ y = 0 
· x < 4 ⇒ y < 0 
b) y = -2x + 5 
Resolução: -2x + 5 =0⇒ -2x = -5 (-1 ⇒ 2x = 5 ⇒ x = 
5 
2 
Como a = -2 < 0, a função é decrescente,logo: 
+ 
y>0 
x 
5 
2 
y<0 - 
· x < 5/2 ⇒ y > 0 
· x = 5/2 ⇒ y = 0 
· x > 5/2 ⇒ y < 0
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
6 
EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM 
1) Classifique as funções do 1º grau abaixo em afim(A), linear(L) e identidade(I); 
a) y = 3x resp: L b) f(x) = x resp: I c) f(x) = 4x - 7 resp: A d) y = =5x +9 resp: A 
2) Determine m, de modo que f(x) = (4m + 16)x - 6, seja uma função: 
a) constante resp: m = - 4 b) do 1º grau resp: m ¹ -4 
3) Determine p, de modo que f(x) = (5p + 15)x + 6, seja uma função do 1º grau: 
a) crescente resp: p > - 3 b) decrescente resp: p < - 3 
4) Determine o valor de m, de modo que a função f(x) = 5x + ( m - 5), intercepte o eixo 
x, no ponto de abscissa 1. resp: m = 0 
5) Determine o valor de m, de modo que o coeficiente angular da reta definida pela 
função f(x) = (m + 7)x - 8, seja igual a 10. resp: m = 3 
6) Determine o valor de p, de modo que o coeficiente linear da reta definida pela função 
f(x) = x - (p + 8), seja igual a -1. resp: m = - 7 
7) Determine o valor de m, de modo que a raiz da função f(x) = (2m + 7)x - 8, seja 
igual a 1. resp: m = 1/2 
8) Dada a função f(x)= 4x-8. Determine: 
a)Os coeficientes angular e linear da reta. resp: angular a = 4 linear b = -8 
b) Se ela é crescente ou decrescente. resp: crescente 
c) A raiz. resp: 2 
d) O gráfico. resp: y 
o 2 x 
8 
9) Dada a função f(x)= -3x-3. Determine: 
a)Os coeficientes angular e linear da reta. resp: angular a = -3 linear b = -3 
b) Se ela é crescente ou decrescente. resp: decrescente 
c) A raiz. resp: -1 
d) O gráfico. resp: y 
-1 
0 x 
-3
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
10) Determine a função do 1º grau cujo o gráfico passa pelos pontos A(0; -1) e B(1; 3). 
resp: f(x) = 4x - 1 
7 
11) O custo de produção de um determinado produto é dado pelo gráfico abaixo: 
y (reais) Determine o custo de produção de 15 produtos. 
20 
5 
0 5 x (unidades produzidas) resp: R$ 40,00 
12) Estude o sinal da função do 1º grau: 
a) y = 3x+9 resp. y>0 para x>-3, y=0 para x=-3 e y<0 para x<-3 
b) y = -4x+16 resp: resp. y>0 para x<4, y=0 para x=4 e y<0 para x>4 
c) y= 6x-30 resp: resp. y>0 para x>5, y=0 para x=5 e y<0 para x<5 
d) y= -2x+1 resp: resp. y>0 para x< 1/2, y=0 para x=1/2 e y<0 para x>1/2 
13) Resolva os sistemas: 
a) 
   
- ³ 
6 10 
4 15 15 
x 
+ > 
x 
resp: S= { xÎÂ/ x³ 5} b) 
 
 
 
- > - 
5 10 
- < 
2 2 10 
- > 
2 0 
x 
x 
x 
resp: S= { xÎÂ/ 2<x<6} 
14) Resolva as inequações: 
a) 1<3x-2£10 resp: S = { xÎÂ/ 1<x£4} 
b) 2x-5<3x+4<6x+6 resp: S = { xÎÂ/ x > -2/3} 
c) (x+2).(-2x+3) ³0 resp: S = { xÎÂ/ -2£ x £ 3/2} 
d) (-x+1).( -2x+10).(x+3) >0 resp: S = { xÎÂ/ -3< x <1 ou x > 5} 
e) 
- 
x 
3 x 
4 
- 
2 
< 0 resp: S = { xÎÂ/ 4/3 < x < 2} 
f) 
- - 
x 
( 2).(4 ) 
x x ³0 resp: S = { xÎÂ/x < -3 ou 2£ x £4} 
3 
+ 
15) (Unesp) A unidade usual de medida para a energia contida nos alimentos é kcal 
(quilocaloria). Uma fórmula aproximada para o consumo diário de energia (em kcal) 
para meninos entre 15 e 18 anos é dada pela função f(h) = 17.h, onde h indica a altura 
em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (15,3).h. Paulo, 
usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2.975 
kcal. Sabendo-se que Paulo é 5 cm mais alto que sua namorada Carla (e que ambos têm 
idade entre 15 e 18 anos), o consumo diário de energia para Carla, de acordo com a 
fórmula, em kcal, é 
a) 2501 b) 2601 c) 2770 d) 2875 e) 2970 resp: b 
16) (Puc-MG) A receita R, em reais, obtida por uma empresa com a venda de q 
unidades de certo produto, é dada por R(q) = 115q, e o custo C, em reais, para produzir 
q dessas unidades, satisfaz a equação C(q) = 90q + 760. Para que haja lucro, é
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
necessário que a receita R seja maior que o custo C. Então, para que essa empresa tenha 
lucro, o número mínimo de unidades desse produto que deverá vender é igual a: 
a) 28 b) 29 c) 30 d) 31 resp: d 
17) (Uel 2008) Um consumidor adquiriu um aparelho de telefonia celular que 
possibilita utilizar os serviços das operadoras de telefonia M e N. A operadora M cobra 
um valor fixo de R$ 0,06 quando iniciada a ligação e mais R$ 0,115 por minuto da 
mesma ligação. De modo análogo, a operadora N cobra um valor fixo de R$ 0,08 e mais 
R$ 0,11 por minuto na ligação. 
Considere as afirmativas a seguir: 
I. O custo de uma ligação de exatos 4 minutos é o mesmo, qualquer que seja a 
operadora. 
II. O custo da ligação pela operadora M será menor do que o custo da ligação pela 
operadora N, independentemente do tempo de duração da ligação. 
III. Uma ligação de 24 minutos efetuada pela operadora M custará R$ 0,10 a mais do 
que efetuada pela operadora N. 
IV. O custo da ligação pela operadora N será menor do que o custo da ligação pela 
operadora M, independentemente do tempo de duração da ligação. 
8 
Assinale a alternativa que contém todas as afirmativas corretas. 
a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV. resp: b 
18) Uma empresa de táxi E1 cobra R$ 2,00 a "bandeirada", que é o valor inicial da 
corrida, e R$ 2,00 por km rodado. Outra empresa E‚ fixa em R$ 3,00 o km rodado e não 
cobra a bandeirada. As duas tarifas estão melhor representadas, graficamente, em: 
resp: b 
19) (Puc_MG) Uma pessoa encontra-se no aeroporto (ponto A) e pretende ir para sua 
casa (ponto C), distante 20 km do aeroporto, utilizando um táxi cujo valor da corrida, 
em reais, é calculado pela expressão V(x) = 12 + 1,5 x, em que x é o número de 
quilômetros percorridos.
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 
9 
Se B = 90°, C = 30° e o táxi fizer o percurso AB + BC, conforme indicado na figura, 
essa pessoa deverá pagar pela corrida: 
a) R$ 40,50 b) R$ 48,00 c) R$ 52,50 d) R$ 56,00 resp: c 
20) Sejam as funções f e g, definidas por f(x) = ax + b e g(x) = mx + n, representadas no 
gráfico. É correto afirmar que (a - m)/(b + n) é igual a 
a) -1/3 b) 0 c) 2/3 d) 1 resp: d 
Prof. Carlinhos 
Bibliografia: 
Curso de Matemática – Volume Único 
Autores: Bianchini&Paccola – Ed. Moderna 
Matemática Fundamental - Volume Único 
Autores: Giovanni/Bonjorno&Givanni Jr. – Ed. FTD 
Contexto&Aplicações – Volume Único 
Autor: Luiz Roberto Dante – Ed. Ática 
Apostila elaborada pelo : 
Prof. Luiz Carlos Souza Santos

Mais conteúdo relacionado

Mais procurados

Exercícios de regra de três simples e composta 5
Exercícios de regra de três simples e composta 5Exercícios de regra de três simples e composta 5
Exercícios de regra de três simples e composta 5
Alex Cleres
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
Adriano Souza
 
Regras de três simples
Regras de três simplesRegras de três simples
Regras de três simples
chico marmelo
 
Mat pa pg exercicios gabarito
Mat pa  pg exercicios gabaritoMat pa  pg exercicios gabarito
Mat pa pg exercicios gabarito
trigono_metrico
 
MAT 1ª Série 3º BimestreEstudante.pdf
MAT 1ª Série 3º BimestreEstudante.pdfMAT 1ª Série 3º BimestreEstudante.pdf
MAT 1ª Série 3º BimestreEstudante.pdf
GernciadeProduodeMat
 
Módulo, equações modulares e funções modulares 1º ano
 Módulo, equações modulares e funções modulares 1º ano Módulo, equações modulares e funções modulares 1º ano
Módulo, equações modulares e funções modulares 1º ano
Andréia Rodrigues
 
Zero da função do 1º grau
Zero da função do 1º grauZero da função do 1º grau
Zero da função do 1º grau
Newton Sérgio Lima
 
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEIDLISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
Criativa Niterói
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
cristina souzA
 
Lista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauLista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grau
Manoel Silva
 
Fisica exercicios resolvidos 005
Fisica exercicios resolvidos  005Fisica exercicios resolvidos  005
Fisica exercicios resolvidos 005
comentada
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
PROFESSOR GLEDSON GUIMARÃES
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
Ariosvaldo Carvalho
 
Aulão matemática
Aulão matemáticaAulão matemática
Aulão matemática
Anderson De Lima Pereira
 
Funcao exponencial
Funcao exponencialFuncao exponencial
Funcao exponencial
slidericardinho
 
Exercícios: reducao ao 1º quadrante
Exercícios: reducao ao 1º quadranteExercícios: reducao ao 1º quadrante
Exercícios: reducao ao 1º quadrante
Luciana Martino
 
Cálculo II - Aula 7: Teorema Fundamental do Cálculo
Cálculo II - Aula 7: Teorema Fundamental do CálculoCálculo II - Aula 7: Teorema Fundamental do Cálculo
Cálculo II - Aula 7: Teorema Fundamental do Cálculo
willianv
 
Exercicios de-semlhanca-e-teorema-de-tales
Exercicios de-semlhanca-e-teorema-de-talesExercicios de-semlhanca-e-teorema-de-tales
Exercicios de-semlhanca-e-teorema-de-tales
cleicia
 
Funções
FunçõesFunções
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
Larissa Souza
 

Mais procurados (20)

Exercícios de regra de três simples e composta 5
Exercícios de regra de três simples e composta 5Exercícios de regra de três simples e composta 5
Exercícios de regra de três simples e composta 5
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
 
Regras de três simples
Regras de três simplesRegras de três simples
Regras de três simples
 
Mat pa pg exercicios gabarito
Mat pa  pg exercicios gabaritoMat pa  pg exercicios gabarito
Mat pa pg exercicios gabarito
 
MAT 1ª Série 3º BimestreEstudante.pdf
MAT 1ª Série 3º BimestreEstudante.pdfMAT 1ª Série 3º BimestreEstudante.pdf
MAT 1ª Série 3º BimestreEstudante.pdf
 
Módulo, equações modulares e funções modulares 1º ano
 Módulo, equações modulares e funções modulares 1º ano Módulo, equações modulares e funções modulares 1º ano
Módulo, equações modulares e funções modulares 1º ano
 
Zero da função do 1º grau
Zero da função do 1º grauZero da função do 1º grau
Zero da função do 1º grau
 
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEIDLISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Lista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauLista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grau
 
Fisica exercicios resolvidos 005
Fisica exercicios resolvidos  005Fisica exercicios resolvidos  005
Fisica exercicios resolvidos 005
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
Aulão matemática
Aulão matemáticaAulão matemática
Aulão matemática
 
Funcao exponencial
Funcao exponencialFuncao exponencial
Funcao exponencial
 
Exercícios: reducao ao 1º quadrante
Exercícios: reducao ao 1º quadranteExercícios: reducao ao 1º quadrante
Exercícios: reducao ao 1º quadrante
 
Cálculo II - Aula 7: Teorema Fundamental do Cálculo
Cálculo II - Aula 7: Teorema Fundamental do CálculoCálculo II - Aula 7: Teorema Fundamental do Cálculo
Cálculo II - Aula 7: Teorema Fundamental do Cálculo
 
Exercicios de-semlhanca-e-teorema-de-tales
Exercicios de-semlhanca-e-teorema-de-talesExercicios de-semlhanca-e-teorema-de-tales
Exercicios de-semlhanca-e-teorema-de-tales
 
Funções
FunçõesFunções
Funções
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 

Destaque

Aulaemgrupo
AulaemgrupoAulaemgrupo
Apreprof
ApreprofApreprof
Apreprof
Rafargolo
 
2mapres
2mapres2mapres
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
Antonio Carneiro
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
Aulas De Matemática Apoio
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
texa0111
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
André Marchesini
 
Telecurso 2000 gabarito das questões
Telecurso 2000   gabarito das questõesTelecurso 2000   gabarito das questões
Telecurso 2000 gabarito das questões
netoalvirubro
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Andréia Rodrigues
 
Função afim-linear-constante-gráficos
Função  afim-linear-constante-gráficosFunção  afim-linear-constante-gráficos
Função afim-linear-constante-gráficos
marmorei
 
Mat 140 questoes resolvidas vol iii
Mat 140 questoes resolvidas vol iiiMat 140 questoes resolvidas vol iii
Mat 140 questoes resolvidas vol iii
trigono_metrico
 
Mat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol iMat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol i
trigono_metrico
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
Antonio Carneiro
 

Destaque (13)

Aulaemgrupo
AulaemgrupoAulaemgrupo
Aulaemgrupo
 
Apreprof
ApreprofApreprof
Apreprof
 
2mapres
2mapres2mapres
2mapres
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
 
Telecurso 2000 gabarito das questões
Telecurso 2000   gabarito das questõesTelecurso 2000   gabarito das questões
Telecurso 2000 gabarito das questões
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
 
Função afim-linear-constante-gráficos
Função  afim-linear-constante-gráficosFunção  afim-linear-constante-gráficos
Função afim-linear-constante-gráficos
 
Mat 140 questoes resolvidas vol iii
Mat 140 questoes resolvidas vol iiiMat 140 questoes resolvidas vol iii
Mat 140 questoes resolvidas vol iii
 
Mat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol iMat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol i
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 

Semelhante a Função do 1º grau

Funcoes gaia
Funcoes gaiaFuncoes gaia
Funcoes gaia
slidericardinho
 
Função algébrica
Função algébricaFunção algébrica
Função algébrica
Cristiane Alcântara
 
Funcoes
FuncoesFuncoes
Funcoes parte1
Funcoes parte1Funcoes parte1
Funcoes parte1
slidericardinho
 
Funções parte i
Funções parte iFunções parte i
Funções parte i
slidericardinho
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FabiolaSouza36
 
Funcoes i
Funcoes iFuncoes i
Funcoes i
slidericardinho
 
Funcoes
FuncoesFuncoes
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Zaqueu Oliveira
 
Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
ZejucanaMatematica
 
(Apostila função)
(Apostila função)(Apostila função)
(Apostila função)
Paloma Morais Carvalho
 
(Apostila função)
(Apostila função)(Apostila função)
(Apostila função)
Edi F. de Souza
 
Apostila função do 1 grau
Apostila   função do 1 grauApostila   função do 1 grau
Apostila função do 1 grau
Celia Lana
 
Aula de funcao
Aula de funcaoAula de funcao
Aula de funcao
Gilson Silva
 
Slide - Função Afim/ Matemática Básica.pdf
Slide - Função Afim/ Matemática Básica.pdfSlide - Função Afim/ Matemática Básica.pdf
Slide - Função Afim/ Matemática Básica.pdf
JonathasAureliano1
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadrática
Josenildo Lima
 
Slide Função Afim.pptx
Slide Função Afim.pptxSlide Função Afim.pptx
Slide Função Afim.pptx
JonathasAureliano1
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
con_seguir
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
Magda Damião
 
Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
Magda Damião
 

Semelhante a Função do 1º grau (20)

Funcoes gaia
Funcoes gaiaFuncoes gaia
Funcoes gaia
 
Função algébrica
Função algébricaFunção algébrica
Função algébrica
 
Funcoes
FuncoesFuncoes
Funcoes
 
Funcoes parte1
Funcoes parte1Funcoes parte1
Funcoes parte1
 
Funções parte i
Funções parte iFunções parte i
Funções parte i
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
 
Funcoes i
Funcoes iFuncoes i
Funcoes i
 
Funcoes
FuncoesFuncoes
Funcoes
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Função do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdfFunção do 1º Grau 27-04-2023.pdf
Função do 1º Grau 27-04-2023.pdf
 
(Apostila função)
(Apostila função)(Apostila função)
(Apostila função)
 
(Apostila função)
(Apostila função)(Apostila função)
(Apostila função)
 
Apostila função do 1 grau
Apostila   função do 1 grauApostila   função do 1 grau
Apostila função do 1 grau
 
Aula de funcao
Aula de funcaoAula de funcao
Aula de funcao
 
Slide - Função Afim/ Matemática Básica.pdf
Slide - Função Afim/ Matemática Básica.pdfSlide - Função Afim/ Matemática Básica.pdf
Slide - Função Afim/ Matemática Básica.pdf
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadrática
 
Slide Função Afim.pptx
Slide Função Afim.pptxSlide Função Afim.pptx
Slide Função Afim.pptx
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
 
Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
 

Último

A Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdfA Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdf
Falcão Brasil
 
Escola de Comando e Estado-Maior da Aeronáutica (ECEMAR).pdf
Escola de Comando e Estado-Maior da Aeronáutica (ECEMAR).pdfEscola de Comando e Estado-Maior da Aeronáutica (ECEMAR).pdf
Escola de Comando e Estado-Maior da Aeronáutica (ECEMAR).pdf
Falcão Brasil
 
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Falcão Brasil
 
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Falcão Brasil
 
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
SheylaAlves6
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
Falcão Brasil
 
Fotossíntese e respiração: conceitos e trocas gasosas
Fotossíntese e respiração: conceitos e trocas gasosasFotossíntese e respiração: conceitos e trocas gasosas
Fotossíntese e respiração: conceitos e trocas gasosas
MariaJooSilva58
 
Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
Mary Alvarenga
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
Mary Alvarenga
 
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
Manuais Formação
 
Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024
Bibliotecas Escolares AEIDH
 
Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
Luiz C. da Silva
 
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdfO Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
Falcão Brasil
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
portaladministradores
 
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdfAviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Falcão Brasil
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Centro Jacques Delors
 
Relatório do Ministério da Defesa (MD) 2017.pdf
Relatório do Ministério da Defesa (MD) 2017.pdfRelatório do Ministério da Defesa (MD) 2017.pdf
Relatório do Ministério da Defesa (MD) 2017.pdf
Falcão Brasil
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 
UFCD_5673_Segurança nos transportes_índice.pdf
UFCD_5673_Segurança nos transportes_índice.pdfUFCD_5673_Segurança nos transportes_índice.pdf
UFCD_5673_Segurança nos transportes_índice.pdf
Manuais Formação
 

Último (20)

A Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdfA Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdf
 
Escola de Comando e Estado-Maior da Aeronáutica (ECEMAR).pdf
Escola de Comando e Estado-Maior da Aeronáutica (ECEMAR).pdfEscola de Comando e Estado-Maior da Aeronáutica (ECEMAR).pdf
Escola de Comando e Estado-Maior da Aeronáutica (ECEMAR).pdf
 
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
 
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
 
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
 
Fotossíntese e respiração: conceitos e trocas gasosas
Fotossíntese e respiração: conceitos e trocas gasosasFotossíntese e respiração: conceitos e trocas gasosas
Fotossíntese e respiração: conceitos e trocas gasosas
 
Festa dos Finalistas .
Festa dos Finalistas                    .Festa dos Finalistas                    .
Festa dos Finalistas .
 
Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
 
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
 
Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024
 
Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
 
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdfO Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
 
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdfAviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
 
Relatório do Ministério da Defesa (MD) 2017.pdf
Relatório do Ministério da Defesa (MD) 2017.pdfRelatório do Ministério da Defesa (MD) 2017.pdf
Relatório do Ministério da Defesa (MD) 2017.pdf
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 
UFCD_5673_Segurança nos transportes_índice.pdf
UFCD_5673_Segurança nos transportes_índice.pdfUFCD_5673_Segurança nos transportes_índice.pdf
UFCD_5673_Segurança nos transportes_índice.pdf
 

Função do 1º grau

  • 1. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 1 ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: NO:
  • 2. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 2 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1.° grau toda função definida de por f(x) = ax + b com a, b e a 0. Exemplos: f(x) = 5x – 3, onde a = 5 e b = – 3 (função afim) f(x) = 6x, onde a = 6 e b = 0 (função linear) f(x) = x, onde a = 1 e b = 0 (função identidade) GRÁFICO DA FUNÇÃO DO 1.º GRAU O gráfico de uma função do 1.º grau é uma reta não-paralela nem ao eixo x nem ao eixo y. Seu domínio é D(f) = e sua imagem é Im(f) = . 1.º exemplo: Construir o gráfico da função y = 2x + 3 (a = 2 > 0) Resolução: Sabendo que o gráfico da função y = 2x + 3 é do 1.º grau, precisamos somente conhecer dois de seus pontos para traçá-lo. Esses dois pontos podem ser obtidos atribuindo-se dois valores arbitrários para x e determinando suas ../imagens (y). Para x = 0 y = 3 Para x = – 2 y = -1 Para x = – 1 y = 1 2.º exemplo: Construir o gráfico da função f (x) = – 2x + 3 (a = – 2 < 0) Conclusão: Se a > 0, a função y = ax + b é crescente. Se a < 0, a função y = ax + b é decrescente. ZERO OU RAIZ DA FUNÇÃO DO 1.º GRAU Chama-se zero ou raiz da função do 1.º grau f(x) = ax + b o valor de x para o qual f(x) = 0, logo: ax + b = 0 ⇒ ax = -b ⇒ x = - b . a raiz ou zero f(x) x o x b - a Observação: geometricamente, o zero da função do 1.º grau é a abscissa do ponto em que a reta corta o eixo x. Então, no exemplo, temos:
  • 3. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 3 COEFICIENTES ANGULAR E LINEAR DA RETA: O coeficiente de x, a, é chamado coeficiente angular da reta, que é o valor da tangente do ângulo do a que reta forma com o eixo 0x, medido do eixo para reta no sentido anti-horário. O termo constante b, é, chamado coeficiente linear da reta, que é, o valor da ordenada do ponto em que a reta corta o eixo 0y. f(x) a = tg a a o x coeficiente linear (b) Observando os gráficos dos exemplos anteriores, podemos concluir que: 1º) Quando o coeficiente angular é positivo, ou seja , a>0, a função é crescente. 2º) Quando o coeficiente angular é negativo, ou seja , a<0, a função é decrescente. Exemplos 1) Determinar a raiz e fazer a representação gráfica das funções: a) f(x) = 3x+6 Resolução: 3x + 6 = 0 ⇒ 3x = -6 ⇒ x = -2(raiz) f(x) 6 coeficiente linear raiz -2 o x b) f(x)= -x+3 Resolução: -x+3=0 ⇒ -x = -3 (-1 ⇒ x = 3(raiz) f(x) 3 (coef. Linear) raiz o 3 x 2) Determine os coeficientes angular e linear das retas representadas pelas funções abaixo e classifique-as em crescente ou decrescente. a) f(x) = 5x+9
  • 4. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 4 Resolução: Coeficiente angular a=5, linear b=9. a = 5 > 0, logo, é crescente a função. b) f(x) = -4x+8 Resolução: Coeficiente angular a = -4, linear b = 8. a = -4 < 0, logo, é decrescente a função. ESTUDO DO SINAL DA FUNÇÃO DE 1º GRAU Estudar o sinal da função de 1º grau y = ax + b significa determinar para quais valores de x a função é positiva , nula ou negativa. No estudo do sinal devemos considerar 2 casos: 1º caso: a > 0 (função crescente) y y>0 + -b/a _ o x y<0 · x > - b ⇒ y > 0 · x = - a b a ⇒ y = 0 · x < - b a ⇒ y < 0 y>0 + _ -b/a x y<0 2º caso: a < 0 (função decrescente) y + y>0 -b/a o _ x y<0
  • 5. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 5 · x < - b ⇒ y > 0 · x = - a b a ⇒ y = 0 · x > - b a ⇒ y < 0 + y>0 -b/a _ x y<0 Exemplo: Estudar o sinal das funções: a) y = x-4 Resolução: x-4 = 0 ⇒ x = 4 Como a =1> 0, a função é crescente, logo: y>0 4 + _ x y<0 · x > 4 ⇒ y > 0 · x = 4 ⇒ y = 0 · x < 4 ⇒ y < 0 b) y = -2x + 5 Resolução: -2x + 5 =0⇒ -2x = -5 (-1 ⇒ 2x = 5 ⇒ x = 5 2 Como a = -2 < 0, a função é decrescente,logo: + y>0 x 5 2 y<0 - · x < 5/2 ⇒ y > 0 · x = 5/2 ⇒ y = 0 · x > 5/2 ⇒ y < 0
  • 6. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 6 EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM 1) Classifique as funções do 1º grau abaixo em afim(A), linear(L) e identidade(I); a) y = 3x resp: L b) f(x) = x resp: I c) f(x) = 4x - 7 resp: A d) y = =5x +9 resp: A 2) Determine m, de modo que f(x) = (4m + 16)x - 6, seja uma função: a) constante resp: m = - 4 b) do 1º grau resp: m ¹ -4 3) Determine p, de modo que f(x) = (5p + 15)x + 6, seja uma função do 1º grau: a) crescente resp: p > - 3 b) decrescente resp: p < - 3 4) Determine o valor de m, de modo que a função f(x) = 5x + ( m - 5), intercepte o eixo x, no ponto de abscissa 1. resp: m = 0 5) Determine o valor de m, de modo que o coeficiente angular da reta definida pela função f(x) = (m + 7)x - 8, seja igual a 10. resp: m = 3 6) Determine o valor de p, de modo que o coeficiente linear da reta definida pela função f(x) = x - (p + 8), seja igual a -1. resp: m = - 7 7) Determine o valor de m, de modo que a raiz da função f(x) = (2m + 7)x - 8, seja igual a 1. resp: m = 1/2 8) Dada a função f(x)= 4x-8. Determine: a)Os coeficientes angular e linear da reta. resp: angular a = 4 linear b = -8 b) Se ela é crescente ou decrescente. resp: crescente c) A raiz. resp: 2 d) O gráfico. resp: y o 2 x 8 9) Dada a função f(x)= -3x-3. Determine: a)Os coeficientes angular e linear da reta. resp: angular a = -3 linear b = -3 b) Se ela é crescente ou decrescente. resp: decrescente c) A raiz. resp: -1 d) O gráfico. resp: y -1 0 x -3
  • 7. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 10) Determine a função do 1º grau cujo o gráfico passa pelos pontos A(0; -1) e B(1; 3). resp: f(x) = 4x - 1 7 11) O custo de produção de um determinado produto é dado pelo gráfico abaixo: y (reais) Determine o custo de produção de 15 produtos. 20 5 0 5 x (unidades produzidas) resp: R$ 40,00 12) Estude o sinal da função do 1º grau: a) y = 3x+9 resp. y>0 para x>-3, y=0 para x=-3 e y<0 para x<-3 b) y = -4x+16 resp: resp. y>0 para x<4, y=0 para x=4 e y<0 para x>4 c) y= 6x-30 resp: resp. y>0 para x>5, y=0 para x=5 e y<0 para x<5 d) y= -2x+1 resp: resp. y>0 para x< 1/2, y=0 para x=1/2 e y<0 para x>1/2 13) Resolva os sistemas: a)    - ³ 6 10 4 15 15 x + > x resp: S= { xÎÂ/ x³ 5} b)    - > - 5 10 - < 2 2 10 - > 2 0 x x x resp: S= { xÎÂ/ 2<x<6} 14) Resolva as inequações: a) 1<3x-2£10 resp: S = { xÎÂ/ 1<x£4} b) 2x-5<3x+4<6x+6 resp: S = { xÎÂ/ x > -2/3} c) (x+2).(-2x+3) ³0 resp: S = { xÎÂ/ -2£ x £ 3/2} d) (-x+1).( -2x+10).(x+3) >0 resp: S = { xÎÂ/ -3< x <1 ou x > 5} e) - x 3 x 4 - 2 < 0 resp: S = { xÎÂ/ 4/3 < x < 2} f) - - x ( 2).(4 ) x x ³0 resp: S = { xÎÂ/x < -3 ou 2£ x £4} 3 + 15) (Unesp) A unidade usual de medida para a energia contida nos alimentos é kcal (quilocaloria). Uma fórmula aproximada para o consumo diário de energia (em kcal) para meninos entre 15 e 18 anos é dada pela função f(h) = 17.h, onde h indica a altura em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (15,3).h. Paulo, usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2.975 kcal. Sabendo-se que Paulo é 5 cm mais alto que sua namorada Carla (e que ambos têm idade entre 15 e 18 anos), o consumo diário de energia para Carla, de acordo com a fórmula, em kcal, é a) 2501 b) 2601 c) 2770 d) 2875 e) 2970 resp: b 16) (Puc-MG) A receita R, em reais, obtida por uma empresa com a venda de q unidades de certo produto, é dada por R(q) = 115q, e o custo C, em reais, para produzir q dessas unidades, satisfaz a equação C(q) = 90q + 760. Para que haja lucro, é
  • 8. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS necessário que a receita R seja maior que o custo C. Então, para que essa empresa tenha lucro, o número mínimo de unidades desse produto que deverá vender é igual a: a) 28 b) 29 c) 30 d) 31 resp: d 17) (Uel 2008) Um consumidor adquiriu um aparelho de telefonia celular que possibilita utilizar os serviços das operadoras de telefonia M e N. A operadora M cobra um valor fixo de R$ 0,06 quando iniciada a ligação e mais R$ 0,115 por minuto da mesma ligação. De modo análogo, a operadora N cobra um valor fixo de R$ 0,08 e mais R$ 0,11 por minuto na ligação. Considere as afirmativas a seguir: I. O custo de uma ligação de exatos 4 minutos é o mesmo, qualquer que seja a operadora. II. O custo da ligação pela operadora M será menor do que o custo da ligação pela operadora N, independentemente do tempo de duração da ligação. III. Uma ligação de 24 minutos efetuada pela operadora M custará R$ 0,10 a mais do que efetuada pela operadora N. IV. O custo da ligação pela operadora N será menor do que o custo da ligação pela operadora M, independentemente do tempo de duração da ligação. 8 Assinale a alternativa que contém todas as afirmativas corretas. a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV. resp: b 18) Uma empresa de táxi E1 cobra R$ 2,00 a "bandeirada", que é o valor inicial da corrida, e R$ 2,00 por km rodado. Outra empresa E‚ fixa em R$ 3,00 o km rodado e não cobra a bandeirada. As duas tarifas estão melhor representadas, graficamente, em: resp: b 19) (Puc_MG) Uma pessoa encontra-se no aeroporto (ponto A) e pretende ir para sua casa (ponto C), distante 20 km do aeroporto, utilizando um táxi cujo valor da corrida, em reais, é calculado pela expressão V(x) = 12 + 1,5 x, em que x é o número de quilômetros percorridos.
  • 9. APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 9 Se B = 90°, C = 30° e o táxi fizer o percurso AB + BC, conforme indicado na figura, essa pessoa deverá pagar pela corrida: a) R$ 40,50 b) R$ 48,00 c) R$ 52,50 d) R$ 56,00 resp: c 20) Sejam as funções f e g, definidas por f(x) = ax + b e g(x) = mx + n, representadas no gráfico. É correto afirmar que (a - m)/(b + n) é igual a a) -1/3 b) 0 c) 2/3 d) 1 resp: d Prof. Carlinhos Bibliografia: Curso de Matemática – Volume Único Autores: Bianchini&Paccola – Ed. Moderna Matemática Fundamental - Volume Único Autores: Giovanni/Bonjorno&Givanni Jr. – Ed. FTD Contexto&Aplicações – Volume Único Autor: Luiz Roberto Dante – Ed. Ática Apostila elaborada pelo : Prof. Luiz Carlos Souza Santos