SlideShare uma empresa Scribd logo
CENTRO DE ENSINO DIAS CARNEIRO 1a SERIE TURNO : NOTURNO
GOVERNANDOR EUGENIO BARROS - MA TURMA: "C"
PROFESSOR: JOSÉ SANTOS DA SILVA DATA: 27/04/2023
DISCIPLINA: MATEMÁTICA
Funções do 10
Grau Prof. José Santos da Silva 1
(-2, 0)
(0, 2)
FUNÇÃO DO 10
GRAU
1. Introdução
Uma conta telefônica apresenta apenas duas parcelas: a referente à assinatura, que custa
R$ 31,71 e a referente aos pulsos, que representam o tempo de uso da linha para fazer ligações locais ao custo
de R$ 0,08 cada. Qual o valor da conta para 120 pulsos? Como o valor da conta poderá ser escrita em função do
número de pulsos?
V(x) = assinatura + pulsos = R$ 31,17 + 120×R$ 0,08 = R$ 40,77
Podemos notar que, para cada número x de pulos, há um certo valor V(x) da conta telefônica.
Logo o valor de V(x) é uma função de x:
V(x) = 31,17 + 0,08×x
que é um exemplo de função polinomial do 10
grau.
2. Definição
Chama-se função polinomial do 10
grau (também chamada de Função Afim), qualquer
função f de  em  dada por uma lei da formação f(x) = ax + b, onde a e b são números reais dados e a ≠0.
Na função f(x) = ax + b, o número a é chamado de coeficiente angular e o número b é
chamado coeficiente linear.
Exemplos:
a) f(x) = 5x - 3, onde a = 5 e b = - 3
b) f(x) = -2x - 7, onde a = -2 e b = - 7
c) f(x) = 11x, onde a = 11 e b = 0
3. Gráfico
O gráfico de uma função do 10
grau, y = ax + b, com a≠0, é uma reta oblíqua aos eixos Ox e Oy.
O coeficiente angular “a” da reta está ligado à sua inclinação em relação ao eixo Ox. O coeficiente linear “b”
da reta é a ordenada do ponto em que a reta corta o eixo Oy.
Exemplo:
f(x) = y = x +2
Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:
Para x = 0, temos y = 0 + 2 = 2 ⇒ y = 2; portanto, um ponto é (0, 2).
Para y = 0, temos 0 = x + 2 ⇒ x = -2; portanto, o outro ponto é (-2, 0).
Marcamos os pontos (0, 2) e (-2, 0) no plano cartesiano e ligamos os dois com uma reta.
x y = 3x-1 (x, y)
0 2 (0, 2)
-2 0 (-2, 0)
CENTRO DE ENSINO DIAS CARNEIRO 1a SERIE TURNO : NOTURNO
GOVERNANDOR EUGENIO BARROS - MA TURMA: C
PROFESSOR: JOSÉ SANTOS DA SILVA DATA: 27/04/2023
DISCIPLINA: MATEMÁTICA
Funções do 10
Grau Prof. José Santos da Silva 2
(-1, 0)
(0, 2)
4. Zero da Função do 10
Grau
Chama-se zero ou raiz da função polinomial do 10
grau, f(x) = ax + b, a ≠0, o número real x tal
que f(x) = 0. Temos:
f(x) = 0 ⇒ ax + b = 0 ⇒
a
b
x
−
= ⇒





−
=
a
b
S
Exemplo:
f(x) = -6x +12 ⇒ -6x + 12 = 0 ⇒ -6x = -12 ⇒ x = (-12)/(-6) ⇒ x = 2 ⇒ S = {2}
5. Crescimento e Decrescimento da Função do 10
Grau
Consideremos a função do 10
grau, f(x) = 2x + 2. Vamos atribuir valores cada vez maiores a x e
observar o que ocorre com y:
x -3 -2 -1 0 1 2 3
y -4 -2 0 2 4 6 8
Notemos que, quando aumentamos o valor de x, os correspondentes valores de y também
aumentam. Dizemos, então que a função y = 2x + 2 é crescente. Observamos o seu gráfico:
Regra geral:
 a função do 10
grau, f(x) = ax + b, é crescente quando o coeficiente de x é positivo (a  0);
 a função do 10
grau, f(x) = ax + b, é decrescente quando o coeficiente de x é negativo (a  0);
Justificativa:
 para a  0: se x1  x2, então ax1  ax2. Daí, ax1 + b  ax2 + b, de onde vem f(x1)  f(x2).
 para a  0: se x1  x2, então ax1  ax2. Daí, ax1 + b  ax2 + b, de onde vem f(x1)  f(x2).
Exemplo:
Seja f(x) = 3x –6
f(x) é uma função crescente pois a = 3  0. Se tomarmos x1 = 1 e x2 = 3 (x1  x2), e ao substituirmos x1 e
x2 em f(x), temos, 3×1 – 6  3×2 – 6 ⇒ -6  0, de onde vem f(1)  f(3) [f(x1)  f(x2)].
6. Sinal da Função do 10
Grau
Estudar o sinal de uma função y = f(x) significa determinar os valores de x para os quais y é
positivo, o valor de x para o qual y é zero e os valores de x para os quais y é negativo.
Vamos estudar o sinal da função y = f(x) = ax + b. Já vimos que essa função se anula pra raiz
a
b
x
−
= . Há dois casos possíveis:
10
) a  0 (a função é crescente)
y  0 ⇒ ax + b  0 ⇒
a
b
x
−

y  0 ⇒ ax + b  0 ⇒
a
b
x
−

Conclusão: y é positivo para valores de x maiores que a raiz; y é negativo para valores de x menores que a
raiz
CENTRO DE ENSINO DIAS CARNEIRO 1a SERIE TURNO : NOTURNO
GOVERNANDOR EUGENIO BARROS - MA TURMA: C
PROFESSOR: JOSÉ SANTOS DA SILVA DATA: 27/04/2023
DISCIPLINA: MATEMÁTICA
Funções do 10
Grau Prof. José Santos da Silva 3
20
) a  0 (a função é decrescente)
y  0 ⇒ ax + b  0 ⇒
a
b
x
−

y  0 ⇒ ax + b  0 ⇒
a
b
x
−

Conclusão: y é positivo para valores de x menores que a raiz; y é negativo para valores de x maiores que a
raiz
7. Tipos Particulares de Funções
7.1 Função Linear: Uma função é dita Linear , quando é do tipo f(x) = ax, com a ≠ 0. O gráfico de uma
função identidade é uma reta que passa pela origem.
Exemplo:
f(x) =
2
x
7.2 Função Identidade: Uma função é dita Identidade , quando é do tipo f(x) = x. O gráfico de uma
função identidade é uma reta que passa pela origem cortando os quadrantes I
e II ao meio, também chamada de bissetriz dos quadrantes ímpares.
Exemplo:
f(x) =
2
x
2
4
x
y
2
2
x
y
CENTRO DE ENSINO DIAS CARNEIRO 1a SERIE TURNO : NOTURNO
GOVERNANDOR EUGENIO BARROS - MA TURMA: C
PROFESSOR: JOSÉ SANTOS DA SILVA DATA: 27/04/2023
DISCIPLINA: MATEMÁTICA
Funções do 10
Grau Prof. José Santos da Silva 4
7.3 Função Constante: Uma função é dita constante quando é do tipo f(x) = b , onde b não depende de
x. O gráfico de uma função constante é uma reta paralela ao eixo dos x. Veja o
gráfico a seguir:
Exemplo:
f(x) = 3
8. Exercícios
1) Verifique quais das seguintes funções são do 10
grau:
a) )
1
(
4
)
1
(
3
)
( −
+
+
= x
x
x
f b) )
2
)(
2
(
)
2
(
)
( 2
+
−
+
+
= x
x
x
x
f
c) )
5
(
)
3
(
)
( 2
−
−
−
= x
x
x
x
f d) )
1
(
5
)
3
(
)
( −
−
−
= x
x
x
f
2) Escreva a função do 10
grau a) b
ax
x
f +
=
)
( , sabendo que:
a) 7
)
3
(
5
)
1
( −
=
−
= f
e
f b) 1
)
23
(
7
)
1
( =
=
− f
e
f
3) Um motorista de táxi cobra R$ 3,20 de bandeirada mais R$ 1,02 por quilometro rodado. Sabendo que o
preço a pagar é dado em função do número x de quilômetros rodados, responda:
a) Qual a lei da função representada por essa situação?
b) Qual o custo de uma corrida de 17 km?
4) O salário fixo mensal de um segurança é de R$ 650,00. Para aumentar sua receita, ele faz plantões noturnos
em uma boate, onde receber R$ 70,00 por noite de trabalho.
a) Se em um mês, o segurança faz 4 plantões, que salário receberá?
b) Qual o salário final y que o segurança receberá ele realiza x plantões?
c) Represente graficamente a função obtida no item anterior, lembrando que o seu domínio é o conjunto
dos números inteiros.
5) Determine a lei da função do 10
grau cuja reta passa pelos pontos A(-8,0) e B(0,4). Essa função é crescente
ou decrescente?
6) Construa o gráfico das seguintes funções, identificando se as mesmas são crescentes ou decrescentes:
a) 1
)
( +
= x
x
f b) 1
)
( +
−
= x
x
f c) x
x
f =
)
( d) x
x
f −
=
)
(
e) 1
2
)
( +
−
= x
x
f f) 1
2
)
( +
= x
x
f g) 2
)
( −
=
x
f h) 2
)
( =
x
f
i)



≥
−

=
0
,
1
0
,
2
)
(
x
se
x
se
x
f j)







≥


≤
≤
−
−
−

−
=
1
,
1
1
0
,
2
0
2
,
2
,
1
)
(
x
se
x
se
x
x
se
x
x
se
x
f k







≥
−


−
−
≤
≤
−
+
−

−
=
2
,
2
2
1
-
,
1
3
,
2
3
,
2
)
(
x
se
x
x
se
x
x
se
x
x
se
x
x
f
7) Determine o valor de m para que o gráfico da função 3
2
)
( −
+
= m
x
x
f :
a) Intercepte o eixo y no ponto (0,5);
b) Intercepte o eixo x no ponto (3,0).
8) Determine a raiz das seguintes funções:
a) 10
5
)
( −
= x
x
f b) 2
3
)
( +
−
=
x
x
f c) x
x
f 3
15
)
( −
= d) x
x
f −
=
)
(
9) Estude o sinal de cada uma das seguintes funções:
a) 4
2
)
( +
= x
x
f b) 1
2
)
( −
−
=
x
x
f c) x
x
f 4
8
)
( −
= d) x
x
f −
=
)
(
10) Discuta, em função do parâmetro m, a “variação” (crescente, decrescente ou constante) de cada uma das
funções:
a) 3
)
2
(
)
( −
+
= x
m
x
f b) 2
)
4
(
)
( +
−
= x
m
x
f
x
3
y

Mais conteúdo relacionado

Semelhante a Função do 1º Grau 27-04-2023.pdf

Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
Magda Damião
 
Aulaemgrupo
AulaemgrupoAulaemgrupo
Funções parte i
Funções parte iFunções parte i
Funções parte i
slidericardinho
 
Função do 1º grau
Função do 1º grau Função do 1º grau
Função do 1º grau
Leandro Montino
 
Aula de funcao
Aula de funcaoAula de funcao
Aula de funcao
Gilson Silva
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
texa0111
 
Função do 2 grau.ppt
Função do 2 grau.pptFunção do 2 grau.ppt
Função do 2 grau.ppt
LeticiaFrank
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
LSKY
 
Funcoes gaia
Funcoes gaiaFuncoes gaia
Funcoes gaia
slidericardinho
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
Nome Sobrenome
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
trigono_metria
 
Função de 1º grau
Função de 1º grauFunção de 1º grau
Função de 1º grau
Dinho Paulo Clakly
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
jwfb
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
Celia Lana
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
Ariosvaldo Carvalho
 
Funcoes
FuncoesFuncoes
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
Antonio Carneiro
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
Aab2507
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
Jean Silveira
 
Funca Afim
Funca AfimFunca Afim
Funca Afim
Emilene Loureiro
 

Semelhante a Função do 1º Grau 27-04-2023.pdf (20)

Funçao quadratica-revisao
Funçao quadratica-revisaoFunçao quadratica-revisao
Funçao quadratica-revisao
 
Aulaemgrupo
AulaemgrupoAulaemgrupo
Aulaemgrupo
 
Funções parte i
Funções parte iFunções parte i
Funções parte i
 
Função do 1º grau
Função do 1º grau Função do 1º grau
Função do 1º grau
 
Aula de funcao
Aula de funcaoAula de funcao
Aula de funcao
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Função do 2 grau.ppt
Função do 2 grau.pptFunção do 2 grau.ppt
Função do 2 grau.ppt
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
 
Funcoes gaia
Funcoes gaiaFuncoes gaia
Funcoes gaia
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
 
Função de 1º grau
Função de 1º grauFunção de 1º grau
Função de 1º grau
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
Funcoes
FuncoesFuncoes
Funcoes
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
Função Quadrática
Função QuadráticaFunção Quadrática
Função Quadrática
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
 
Funca Afim
Funca AfimFunca Afim
Funca Afim
 

Último

EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
Sandra Pratas
 
Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24
DirceuSilva26
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 
reconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docxreconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docx
felipescherner
 
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTAEstudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
deboracorrea21
 
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
marcos oliveira
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
shirleisousa9166
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
Falcão Brasil
 
Mini livro sanfona - Minha Escola Tem História.
Mini livro  sanfona - Minha Escola Tem História. Mini livro  sanfona - Minha Escola Tem História.
Mini livro sanfona - Minha Escola Tem História.
Mary Alvarenga
 
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
Sandra Pratas
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
Mary Alvarenga
 
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdfRelatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Falcão Brasil
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
felipescherner
 
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsxOceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Luzia Gabriele
 
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdfHistória das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
LeideLauraCenturionL
 
IV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptxIV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptx
Ligia Galvão
 
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptxA perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
marcos oliveira
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
Mary Alvarenga
 

Último (20)

EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
 
Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 
reconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docxreconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docx
 
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTAEstudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
 
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
 
Mini livro sanfona - Minha Escola Tem História.
Mini livro  sanfona - Minha Escola Tem História. Mini livro  sanfona - Minha Escola Tem História.
Mini livro sanfona - Minha Escola Tem História.
 
RECORDANDO BONS MOMENTOS! _
RECORDANDO BONS MOMENTOS!               _RECORDANDO BONS MOMENTOS!               _
RECORDANDO BONS MOMENTOS! _
 
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
 
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdfRelatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdf
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
 
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsxOceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
 
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdfHistória das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
 
IV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptxIV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptx
 
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptxA perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
 
TALENTOS DA NOSSA ESCOLA .
TALENTOS DA NOSSA ESCOLA                .TALENTOS DA NOSSA ESCOLA                .
TALENTOS DA NOSSA ESCOLA .
 

Função do 1º Grau 27-04-2023.pdf

  • 1. CENTRO DE ENSINO DIAS CARNEIRO 1a SERIE TURNO : NOTURNO GOVERNANDOR EUGENIO BARROS - MA TURMA: "C" PROFESSOR: JOSÉ SANTOS DA SILVA DATA: 27/04/2023 DISCIPLINA: MATEMÁTICA Funções do 10 Grau Prof. José Santos da Silva 1 (-2, 0) (0, 2) FUNÇÃO DO 10 GRAU 1. Introdução Uma conta telefônica apresenta apenas duas parcelas: a referente à assinatura, que custa R$ 31,71 e a referente aos pulsos, que representam o tempo de uso da linha para fazer ligações locais ao custo de R$ 0,08 cada. Qual o valor da conta para 120 pulsos? Como o valor da conta poderá ser escrita em função do número de pulsos? V(x) = assinatura + pulsos = R$ 31,17 + 120×R$ 0,08 = R$ 40,77 Podemos notar que, para cada número x de pulos, há um certo valor V(x) da conta telefônica. Logo o valor de V(x) é uma função de x: V(x) = 31,17 + 0,08×x que é um exemplo de função polinomial do 10 grau. 2. Definição Chama-se função polinomial do 10 grau (também chamada de Função Afim), qualquer função f de em dada por uma lei da formação f(x) = ax + b, onde a e b são números reais dados e a ≠0. Na função f(x) = ax + b, o número a é chamado de coeficiente angular e o número b é chamado coeficiente linear. Exemplos: a) f(x) = 5x - 3, onde a = 5 e b = - 3 b) f(x) = -2x - 7, onde a = -2 e b = - 7 c) f(x) = 11x, onde a = 11 e b = 0 3. Gráfico O gráfico de uma função do 10 grau, y = ax + b, com a≠0, é uma reta oblíqua aos eixos Ox e Oy. O coeficiente angular “a” da reta está ligado à sua inclinação em relação ao eixo Ox. O coeficiente linear “b” da reta é a ordenada do ponto em que a reta corta o eixo Oy. Exemplo: f(x) = y = x +2 Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua: Para x = 0, temos y = 0 + 2 = 2 ⇒ y = 2; portanto, um ponto é (0, 2). Para y = 0, temos 0 = x + 2 ⇒ x = -2; portanto, o outro ponto é (-2, 0). Marcamos os pontos (0, 2) e (-2, 0) no plano cartesiano e ligamos os dois com uma reta. x y = 3x-1 (x, y) 0 2 (0, 2) -2 0 (-2, 0)
  • 2. CENTRO DE ENSINO DIAS CARNEIRO 1a SERIE TURNO : NOTURNO GOVERNANDOR EUGENIO BARROS - MA TURMA: C PROFESSOR: JOSÉ SANTOS DA SILVA DATA: 27/04/2023 DISCIPLINA: MATEMÁTICA Funções do 10 Grau Prof. José Santos da Silva 2 (-1, 0) (0, 2) 4. Zero da Função do 10 Grau Chama-se zero ou raiz da função polinomial do 10 grau, f(x) = ax + b, a ≠0, o número real x tal que f(x) = 0. Temos: f(x) = 0 ⇒ ax + b = 0 ⇒ a b x − = ⇒      − = a b S Exemplo: f(x) = -6x +12 ⇒ -6x + 12 = 0 ⇒ -6x = -12 ⇒ x = (-12)/(-6) ⇒ x = 2 ⇒ S = {2} 5. Crescimento e Decrescimento da Função do 10 Grau Consideremos a função do 10 grau, f(x) = 2x + 2. Vamos atribuir valores cada vez maiores a x e observar o que ocorre com y: x -3 -2 -1 0 1 2 3 y -4 -2 0 2 4 6 8 Notemos que, quando aumentamos o valor de x, os correspondentes valores de y também aumentam. Dizemos, então que a função y = 2x + 2 é crescente. Observamos o seu gráfico: Regra geral: a função do 10 grau, f(x) = ax + b, é crescente quando o coeficiente de x é positivo (a 0); a função do 10 grau, f(x) = ax + b, é decrescente quando o coeficiente de x é negativo (a 0); Justificativa: para a 0: se x1 x2, então ax1 ax2. Daí, ax1 + b ax2 + b, de onde vem f(x1) f(x2). para a 0: se x1 x2, então ax1 ax2. Daí, ax1 + b ax2 + b, de onde vem f(x1) f(x2). Exemplo: Seja f(x) = 3x –6 f(x) é uma função crescente pois a = 3 0. Se tomarmos x1 = 1 e x2 = 3 (x1 x2), e ao substituirmos x1 e x2 em f(x), temos, 3×1 – 6 3×2 – 6 ⇒ -6 0, de onde vem f(1) f(3) [f(x1) f(x2)]. 6. Sinal da Função do 10 Grau Estudar o sinal de uma função y = f(x) significa determinar os valores de x para os quais y é positivo, o valor de x para o qual y é zero e os valores de x para os quais y é negativo. Vamos estudar o sinal da função y = f(x) = ax + b. Já vimos que essa função se anula pra raiz a b x − = . Há dois casos possíveis: 10 ) a 0 (a função é crescente) y 0 ⇒ ax + b 0 ⇒ a b x − y 0 ⇒ ax + b 0 ⇒ a b x − Conclusão: y é positivo para valores de x maiores que a raiz; y é negativo para valores de x menores que a raiz
  • 3. CENTRO DE ENSINO DIAS CARNEIRO 1a SERIE TURNO : NOTURNO GOVERNANDOR EUGENIO BARROS - MA TURMA: C PROFESSOR: JOSÉ SANTOS DA SILVA DATA: 27/04/2023 DISCIPLINA: MATEMÁTICA Funções do 10 Grau Prof. José Santos da Silva 3 20 ) a 0 (a função é decrescente) y 0 ⇒ ax + b 0 ⇒ a b x − y 0 ⇒ ax + b 0 ⇒ a b x − Conclusão: y é positivo para valores de x menores que a raiz; y é negativo para valores de x maiores que a raiz 7. Tipos Particulares de Funções 7.1 Função Linear: Uma função é dita Linear , quando é do tipo f(x) = ax, com a ≠ 0. O gráfico de uma função identidade é uma reta que passa pela origem. Exemplo: f(x) = 2 x 7.2 Função Identidade: Uma função é dita Identidade , quando é do tipo f(x) = x. O gráfico de uma função identidade é uma reta que passa pela origem cortando os quadrantes I e II ao meio, também chamada de bissetriz dos quadrantes ímpares. Exemplo: f(x) = 2 x 2 4 x y 2 2 x y
  • 4. CENTRO DE ENSINO DIAS CARNEIRO 1a SERIE TURNO : NOTURNO GOVERNANDOR EUGENIO BARROS - MA TURMA: C PROFESSOR: JOSÉ SANTOS DA SILVA DATA: 27/04/2023 DISCIPLINA: MATEMÁTICA Funções do 10 Grau Prof. José Santos da Silva 4 7.3 Função Constante: Uma função é dita constante quando é do tipo f(x) = b , onde b não depende de x. O gráfico de uma função constante é uma reta paralela ao eixo dos x. Veja o gráfico a seguir: Exemplo: f(x) = 3 8. Exercícios 1) Verifique quais das seguintes funções são do 10 grau: a) ) 1 ( 4 ) 1 ( 3 ) ( − + + = x x x f b) ) 2 )( 2 ( ) 2 ( ) ( 2 + − + + = x x x x f c) ) 5 ( ) 3 ( ) ( 2 − − − = x x x x f d) ) 1 ( 5 ) 3 ( ) ( − − − = x x x f 2) Escreva a função do 10 grau a) b ax x f + = ) ( , sabendo que: a) 7 ) 3 ( 5 ) 1 ( − = − = f e f b) 1 ) 23 ( 7 ) 1 ( = = − f e f 3) Um motorista de táxi cobra R$ 3,20 de bandeirada mais R$ 1,02 por quilometro rodado. Sabendo que o preço a pagar é dado em função do número x de quilômetros rodados, responda: a) Qual a lei da função representada por essa situação? b) Qual o custo de uma corrida de 17 km? 4) O salário fixo mensal de um segurança é de R$ 650,00. Para aumentar sua receita, ele faz plantões noturnos em uma boate, onde receber R$ 70,00 por noite de trabalho. a) Se em um mês, o segurança faz 4 plantões, que salário receberá? b) Qual o salário final y que o segurança receberá ele realiza x plantões? c) Represente graficamente a função obtida no item anterior, lembrando que o seu domínio é o conjunto dos números inteiros. 5) Determine a lei da função do 10 grau cuja reta passa pelos pontos A(-8,0) e B(0,4). Essa função é crescente ou decrescente? 6) Construa o gráfico das seguintes funções, identificando se as mesmas são crescentes ou decrescentes: a) 1 ) ( + = x x f b) 1 ) ( + − = x x f c) x x f = ) ( d) x x f − = ) ( e) 1 2 ) ( + − = x x f f) 1 2 ) ( + = x x f g) 2 ) ( − = x f h) 2 ) ( = x f i)    ≥ − = 0 , 1 0 , 2 ) ( x se x se x f j)        ≥ ≤ ≤ − − − − = 1 , 1 1 0 , 2 0 2 , 2 , 1 ) ( x se x se x x se x x se x f k        ≥ − − − ≤ ≤ − + − − = 2 , 2 2 1 - , 1 3 , 2 3 , 2 ) ( x se x x se x x se x x se x x f 7) Determine o valor de m para que o gráfico da função 3 2 ) ( − + = m x x f : a) Intercepte o eixo y no ponto (0,5); b) Intercepte o eixo x no ponto (3,0). 8) Determine a raiz das seguintes funções: a) 10 5 ) ( − = x x f b) 2 3 ) ( + − = x x f c) x x f 3 15 ) ( − = d) x x f − = ) ( 9) Estude o sinal de cada uma das seguintes funções: a) 4 2 ) ( + = x x f b) 1 2 ) ( − − = x x f c) x x f 4 8 ) ( − = d) x x f − = ) ( 10) Discuta, em função do parâmetro m, a “variação” (crescente, decrescente ou constante) de cada uma das funções: a) 3 ) 2 ( ) ( − + = x m x f b) 2 ) 4 ( ) ( + − = x m x f x 3 y