O documento explica como construir gráficos de funções geometricamente no plano cartesiano, definindo pares ordenados, domínio, contradomínio e imagem. Ele fornece exemplos de como plotar gráficos de funções a partir de tabelas numéricas.
Os gráficos, demaneira geral,
permitem ver uma situação em
seu todo, o que facilita a análise
e o encontro de um “momento”
específico.
Usaremos esse recurso para
o estudo das funções.
Para exemplificar o gráfico,
vamos analisar a inflação em
país hipotético em um ano
qualquer.
4.
0
1
2
3
4
5
6
7
8
9
jan fev marabr mai jun jul ago set out nov dez
%
mês
Inflação do país em 2003
Fica fácil responder a pergunta:
Qual o mês de maior inflação no país em 2003?
5.
Um plano cartesianose compõe de duas
retas numéricas reais que se interceptam
formando um ângulo de 90º
..
Plano CartesianoPlano Cartesiano
-3
-2
-1
0
1
2
3
-3 -2 -1 1 2 3
6.
Plano Cartesiano –Definições:Plano Cartesiano – Definições:
-4
-3
-2
-1
0
1
2
3
4
-3 -2 -1 1 2 3
Origem
x (Eixo das abscissas)
(Eixo das ordenadas)y
(I)
quadrante1o
(II)
quadrante2o
(III)
quadrante3o
(IV)
quadrante4o
O plano cartesiano é
utilizado como sistema de
referência para localizar
pontos em um plano.
7.
O par ordenadoé um par de números na
forma (x, y) em que a ordem dos números é
importante.
A forma geral de um par ordenado é:
(abscissa, ordenada)
Cada par ordenado representa um ponto
no plano cartesiano e vice-versa.
Pares OrdenadosPares Ordenados
8.
-4 -3 -2-1 1 2 3 4
-4
-3
-2
-1
1
2
3
4
y
x
Exemplo:
Observe os seguintes pares ordenados no plano
cartesiano:
A (2, 3)
B (-2, 4)
C (-3, -2)
D (1, -3)
E (2, 0)
F (0, -1)
A (2, 3)
B (-2, 4)
C (-3, -2)
D (1, -3)
E (2, 0)
F (0, -1)
9.
Estudiosos, em especialRené
Descartes, concluíram que com as
funções formam-se pares
ordenados que se associam no
plano cartesiano.
Associando todos os pares
formados na função a respectivos
pontos do plano, obtemos a
representação gráfica da função.
10.
Exemplo :
A quantidade(em milhares)
de automóveis vendidos em
Campo Grande nos anos de
1988 a 1993 está representada
na tabela:
1988 1989 1990 1991 1992 1993
25 20 28 30 15 40
Ano
Carros
11.
Localizando os pontosno
plano cartesiano.
O gráfico será obtido unindo
os pontos com segmentos de
retas.
12.
1988 1989 19901991 1992 1993
25 20 28 30 15 40
A B C D E F
A
B
C
D
E
F
y
t
10
20
30
40
50
60
88 89 90 91 92 93 94
Anos
Quantidade
em milhares
A
B
C
D
E
F
13.
Relacionando domínio, imageme
contradomínio da função com o plano
cartesiano teremos:
-2 -1 0 1 2
6
5
4
3
2
1
(Contradomínio) y
x (Domínio)
(2, 5)
(1, 4)
eixo xDomínio
eixo yContradomínio
Imagem ordenada
do ponto
Imagem
Imagem
14.
Como verificar seum gráfico
representa uma função ou
não?
Lembrando conceito de
função:
Todos elementos do domínio estão associados a
um único elemento do contradomínio, ou seja,
cada elemento do domínio tem apenas uma
imagem.
15.
Iremos traçar retasparalelas
ao eixo y.
Caso essa reta corte o
gráfico em apenas um ponto é
função.
Caso essa reta corte o
gráfico em mais de um ponto
não é função.
16.
Exemplos:
É função, poisas retas verdes
cortam o gráfico em apenas um ponto.
Não é função, pois as retas
verdes cortam o gráfico em dois
pontos.
17.
Exemplos:
É função, poisas retas verdes
cortam o gráfico em apenas um ponto.
É função, pois as retas verdes
cortam o gráfico em apenas um ponto.
18.
Para esboçar ográfico de uma
função no plano cartesiano,
devemos atribuir valores a x,
determinando os respectivos valores
numéricos de y (fazendo uma
tabela).
Gráfico de uma funçãoGráfico de uma função
19.
Seja f umafunção definida por
y = 2x
Exemplo:
x y = 2x y (x, y)
-2 y = 2.(-2) -4 (-2, -4)
-1 y = 2.(-1) -2 (-1, -2)
0 y = 2.0 0 (0, 0)
1 y = 2.1 2 (1, 2)
2 y = 2.2 4 (2, 4)
1o
) Fazer uma tabela:
20.
-2 -1 01 2
4
3
2
1
-1
-2
-3
-4
x
y
2o
) Colocar os pontos num plano
cartesiano;
(x, y)
(-2, -4)
(-1, -2)
(0, 0)
(1, 2)
(2, 4)
3o
) Unir os pontos.
21.
DANTE, Luiz Roberto.Matemática. v. único. 1.ed. São Paulo: Ática, 2005.
p. 23-29.
PAIVA, Manoel Rodrigues. Matemática. v. 1. 1.ed. São Paulo: Moderna,
1995. p. 75-80, 113-119, 138-141.
Profª. Débora Reis