SlideShare uma empresa Scribd logo
Funções cujos gráficos são rectas – Função Afim 
f(x) = a x + b 
Exemplos: 
1)f(x) = 2x – 1, onde a = 2 e b = – 1. 
2)y = – 3x + 4, onde a = – 3 e b = 4. 
3)g(x)= 2x, onde a = 2 e b = 0 (função linear) 
4)h(x) = 6, onde a =0 e b = 6. (função constante)
Por ser uma reta, necessitamos apenas de dois pontos para 
representar graficamente uma função afim. 
Vejamos: representar graficamente a função afim y = 2 x – 4 . 
Solução: 
Construindo uma tabela, onde atribuímos arbitrariamente dois 
valores para x, encontramos suas correspondentes imagens. 
x y 
• 
0 – 4 
3 2 
• 
3 
2 
– 4 
0
Representar graficamente a função afim f(x) = – x – 4. 
Solução: 
x f (x) 
– 1 – 3 
2 – 6 
• 
–1 
• 
–3 
2 x 
y 
0 
–6
EXERCÍCIO: 
Representa graficamente as funções: 
a) f1(x) = 2x + 1 
b) f2(x) =-3x + 2
Recta que contem o ponto ( 0, b ) 
b – valor da ordenada na origem
Função afim com f(x)= a x+b a , b diferentes de zero 
b b 
Recta que contem o ponto ( 0, b ) 
b – valor da ordenada na origem 
a – Declive da recta
Função afim com f(x)= a x+b a , b diferentes de zero 
a > 0 
a < 0 
Indica em cada gráfico o sinal de b (ordenada na origem) 
a -declive
Gráfico da Função LINEAR ou de 
Proporcionalidade Directa 
f(x) = a x , a diferente de zero 
EXERCÍCIO: 
Representa graficamente as funções: 
(cada alínea, no seu referencial) 
a) f1(x)= 3x e f2(x)= - 2x 
b) f3(x) = x e f4(x) = 2x 
c) f5(x) = - 2x e f6(x) = 0,5 x 
Que observas?
Gráfico da Função LINEAR 
f(x) = a x , a diferente de zero 
(1 , 3 ) 
(1 , - 2 ) 
a -declive 
Gráfico: sobre uma recta que passa na origem o no ponto ( 1 , a )
Gráfico da Função LINEAR 
f(x) = a x , a diferentes de zero 
Gráfico: sobre uma recta que passa na origem o no ponto ( 1 , a )
Gráfico da Função LINEAR 
f(x) = a x , a diferentes de zero 
y = x 
y = 2x 
y = -2x 
y = -0,5 x 
a -declive 
Que podemos concluir acerca da inclinação das rectas?
Gráfico da Função LINEAR 
Numa função do tipo f(x) = a x , a diferente de zero 
Se a > 0, quanto maior for o valor de a, maior é a inclinação da 
recta; 
 Se a < 0, quanto menor for o valor de a, maior é a inclinação 
da recta. 
OU 
 Quanto maior for o valor absoluto de a, mais inclinada 
(mais próxima do eixo dos yy) está a recta correspondente ao 
gráfico.
EXERCÍCIO: 
Representa graficamente,no mesmo referêncial, 
as funções: 
a) f1(x)= 2 f2(x)= - 3 f3(x)= 0 
Que observas?
Em f(x) = a x + b, se a = 0, chegamos à forma f(x) = b, ou como 
usualmente se emprega f(x) = k, onde k Î R. Esta é a função 
constante. Exemplo: f(x) = 5 é uma função constante. Todas as 
imagens são iguais. 
Veja suas possíveis representações gráficas. 
k > 0 
k = 0 
0 0 0 
k < 0 
Esta é a função nula.
5) Sendo a < 0 e b > 0, a única representação gráfica correta para a 
função f(x) = a x + b é: 
x 
y 
y 
y 
y 
y 
x 
x 
x 
x 
c) 
a) 
b) 
d) 
e) 
0 
0 
0 
0 
0

Mais conteúdo relacionado

Mais procurados

Função exponencial
Função exponencialFunção exponencial
Função exponencial
PROFESSOR GLEDSON GUIMARÃES
 
8 exercícios com escalas
8  exercícios com escalas8  exercícios com escalas
8 exercícios com escalas
Mayjö .
 
Ficha de trabalho numeros reais
Ficha de trabalho numeros reaisFicha de trabalho numeros reais
Ficha de trabalho numeros reais
Gisela Carvalho
 
Simetrias no plano e no Espaço
Simetrias no plano e no EspaçoSimetrias no plano e no Espaço
Simetrias no plano e no Espaço
Nome Sobrenome
 
Areas volumes
Areas volumesAreas volumes
Areas volumes
Professor
 
Relação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantesRelação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantes
aldaalves
 
Equações literais
Equações literaisEquações literais
Equações literais
aldaalves
 
Lugares geométricos
Lugares geométricosLugares geométricos
Lugares geométricos
saramramos
 
Função afim 2013-2014
Função afim 2013-2014Função afim 2013-2014
Função afim 2013-2014
Carla Rebolo
 
Sistemas de equações
 Sistemas de equações Sistemas de equações
Sistemas de equações
marilia65
 
Expressão analítica de uma função quadrática
Expressão analítica de uma função quadráticaExpressão analítica de uma função quadrática
Expressão analítica de uma função quadrática
Paulo Mutolo
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º graualdaalves
 
Aula - semelhança de figuras
Aula - semelhança de figurasAula - semelhança de figuras
Aula - semelhança de figuras
mmffg
 
Graficos de funcoes
Graficos de funcoesGraficos de funcoes
Graficos de funcoes
debyreis
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
demervalm
 
Formulas geral para geometria analitica
Formulas geral para geometria analiticaFormulas geral para geometria analitica
Formulas geral para geometria analitica
Elieser Júnio
 
Áreas e volumes de sólidos
Áreas e volumes de sólidosÁreas e volumes de sólidos
Áreas e volumes de sólidos
Joana Ferreira
 
Funções
FunçõesFunções
Lista de exercícios de expressões envolvendo frações
Lista de exercícios de expressões envolvendo fraçõesLista de exercícios de expressões envolvendo frações
Lista de exercícios de expressões envolvendo frações
Priscila Lourenço
 
Teoria como resolver um sistema de equações - graficamente
Teoria   como resolver um sistema de equações - graficamenteTeoria   como resolver um sistema de equações - graficamente
Teoria como resolver um sistema de equações - graficamente
tetsu
 

Mais procurados (20)

Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
8 exercícios com escalas
8  exercícios com escalas8  exercícios com escalas
8 exercícios com escalas
 
Ficha de trabalho numeros reais
Ficha de trabalho numeros reaisFicha de trabalho numeros reais
Ficha de trabalho numeros reais
 
Simetrias no plano e no Espaço
Simetrias no plano e no EspaçoSimetrias no plano e no Espaço
Simetrias no plano e no Espaço
 
Areas volumes
Areas volumesAreas volumes
Areas volumes
 
Relação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantesRelação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantes
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Lugares geométricos
Lugares geométricosLugares geométricos
Lugares geométricos
 
Função afim 2013-2014
Função afim 2013-2014Função afim 2013-2014
Função afim 2013-2014
 
Sistemas de equações
 Sistemas de equações Sistemas de equações
Sistemas de equações
 
Expressão analítica de uma função quadrática
Expressão analítica de uma função quadráticaExpressão analítica de uma função quadrática
Expressão analítica de uma função quadrática
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
 
Aula - semelhança de figuras
Aula - semelhança de figurasAula - semelhança de figuras
Aula - semelhança de figuras
 
Graficos de funcoes
Graficos de funcoesGraficos de funcoes
Graficos de funcoes
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Formulas geral para geometria analitica
Formulas geral para geometria analiticaFormulas geral para geometria analitica
Formulas geral para geometria analitica
 
Áreas e volumes de sólidos
Áreas e volumes de sólidosÁreas e volumes de sólidos
Áreas e volumes de sólidos
 
Funções
FunçõesFunções
Funções
 
Lista de exercícios de expressões envolvendo frações
Lista de exercícios de expressões envolvendo fraçõesLista de exercícios de expressões envolvendo frações
Lista de exercícios de expressões envolvendo frações
 
Teoria como resolver um sistema de equações - graficamente
Teoria   como resolver um sistema de equações - graficamenteTeoria   como resolver um sistema de equações - graficamente
Teoria como resolver um sistema de equações - graficamente
 

Destaque

Funções
FunçõesFunções
Funções
bethbal
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
Herlan Ribeiro de Souza
 
Domínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma funçãoDomínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma função
Dosvaldo Alves
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
betontem
 
Funções
FunçõesFunções
Funções
Gabriele Veleda
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
Adriano Souza
 
Aula sobre funções
Aula sobre funçõesAula sobre funções
Aula sobre funções
josivaldopassos
 
MatemáTica Intro FunçõEs
MatemáTica Intro FunçõEsMatemáTica Intro FunçõEs
MatemáTica Intro FunçõEs
educacao f
 
Funções Do 1ºGrau
Funções Do 1ºGrauFunções Do 1ºGrau
Funções Do 1ºGrau
profmarcialucas
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
André Marchesini
 
Funções do 1º e 2º grau
Funções do 1º e 2º grauFunções do 1º e 2º grau
Funções do 1º e 2º grau
Zaqueu Oliveira
 
Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° graus
Daniel Muniz
 
Introdução ao estudo das funções
Introdução ao estudo das funçõesIntrodução ao estudo das funções
Introdução ao estudo das funções
lilianamcvieira1986
 
Resumo do 7º e 8º ano
Resumo do 7º e 8º anoResumo do 7º e 8º ano
Resumo do 7º e 8º ano
Tiiagu
 

Destaque (14)

Funções
FunçõesFunções
Funções
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Domínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma funçãoDomínio, contradomínio e imagem de uma função
Domínio, contradomínio e imagem de uma função
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Funções
FunçõesFunções
Funções
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
 
Aula sobre funções
Aula sobre funçõesAula sobre funções
Aula sobre funções
 
MatemáTica Intro FunçõEs
MatemáTica Intro FunçõEsMatemáTica Intro FunçõEs
MatemáTica Intro FunçõEs
 
Funções Do 1ºGrau
Funções Do 1ºGrauFunções Do 1ºGrau
Funções Do 1ºGrau
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
 
Funções do 1º e 2º grau
Funções do 1º e 2º grauFunções do 1º e 2º grau
Funções do 1º e 2º grau
 
Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° graus
 
Introdução ao estudo das funções
Introdução ao estudo das funçõesIntrodução ao estudo das funções
Introdução ao estudo das funções
 
Resumo do 7º e 8º ano
Resumo do 7º e 8º anoResumo do 7º e 8º ano
Resumo do 7º e 8º ano
 

Semelhante a Função afim-linear-constante-gráficos

A Função Seno
A Função SenoA Função Seno
A Função Seno
guest9bcf
 
A Função Seno
A Função SenoA Função Seno
A Função Seno
guest9bcf
 
Aula gaba
Aula gabaAula gaba
Aula gaba
Jean Heisenberg
 
Função Seno
Função SenoFunção Seno
Função Seno
guest9bcf
 
Função Afim - Introdução.pptx
Função Afim - Introdução.pptxFunção Afim - Introdução.pptx
Função Afim - Introdução.pptx
NatanaelOliveira56
 
Apresentação-Função-Afim.pptx
Apresentação-Função-Afim.pptxApresentação-Função-Afim.pptx
Apresentação-Função-Afim.pptx
Alex871219
 
Aula de funcao
Aula de funcaoAula de funcao
Aula de funcao
Gilson Silva
 
Slide Função Afim.pptx
Slide Função Afim.pptxSlide Função Afim.pptx
Slide Função Afim.pptx
JonathasAureliano1
 
Aula no
Aula noAula no
Funções - Teoria II
Funções - Teoria II Funções - Teoria II
Funções - Teoria II
numerosnamente
 
Identificar uma função
Identificar uma funçãoIdentificar uma função
Identificar uma função
Paulo Mutolo
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
Jean Silveira
 
Derivadas
DerivadasDerivadas
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
LSKY
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
Antonio Carneiro
 
Funca Afim
Funca AfimFunca Afim
Funca Afim
Emilene Loureiro
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
con_seguir
 
Objeto de aprendizagem funcao afim
Objeto de aprendizagem  funcao afimObjeto de aprendizagem  funcao afim
Objeto de aprendizagem funcao afim
Washington Damasceno
 
Apostilha
ApostilhaApostilha
Apostilha
Matheus Brasil
 
Material b61331521e
Material b61331521eMaterial b61331521e
Material b61331521e
Ronoaldo Cavalcante
 

Semelhante a Função afim-linear-constante-gráficos (20)

A Função Seno
A Função SenoA Função Seno
A Função Seno
 
A Função Seno
A Função SenoA Função Seno
A Função Seno
 
Aula gaba
Aula gabaAula gaba
Aula gaba
 
Função Seno
Função SenoFunção Seno
Função Seno
 
Função Afim - Introdução.pptx
Função Afim - Introdução.pptxFunção Afim - Introdução.pptx
Função Afim - Introdução.pptx
 
Apresentação-Função-Afim.pptx
Apresentação-Função-Afim.pptxApresentação-Função-Afim.pptx
Apresentação-Função-Afim.pptx
 
Aula de funcao
Aula de funcaoAula de funcao
Aula de funcao
 
Slide Função Afim.pptx
Slide Função Afim.pptxSlide Função Afim.pptx
Slide Função Afim.pptx
 
Aula no
Aula noAula no
Aula no
 
Funções - Teoria II
Funções - Teoria II Funções - Teoria II
Funções - Teoria II
 
Identificar uma função
Identificar uma funçãoIdentificar uma função
Identificar uma função
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
 
Derivadas
DerivadasDerivadas
Derivadas
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 
Funca Afim
Funca AfimFunca Afim
Funca Afim
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
 
Objeto de aprendizagem funcao afim
Objeto de aprendizagem  funcao afimObjeto de aprendizagem  funcao afim
Objeto de aprendizagem funcao afim
 
Apostilha
ApostilhaApostilha
Apostilha
 
Material b61331521e
Material b61331521eMaterial b61331521e
Material b61331521e
 

Último

Pintura Romana .pptx
Pintura Romana                     .pptxPintura Romana                     .pptx
Pintura Romana .pptx
TomasSousa7
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Biologia - Jogos da memória genetico.pdf
Biologia - Jogos da memória genetico.pdfBiologia - Jogos da memória genetico.pdf
Biologia - Jogos da memória genetico.pdf
Ana Da Silva Ponce
 
os-lusiadas-resumo-os-lusiadas-10-ano.pdf
os-lusiadas-resumo-os-lusiadas-10-ano.pdfos-lusiadas-resumo-os-lusiadas-10-ano.pdf
os-lusiadas-resumo-os-lusiadas-10-ano.pdf
GiselaAlves15
 
LIÇÃO 9 - ORDENANÇAS PARA UMA VIDA DE SANTIFICAÇÃO.pptx
LIÇÃO 9 - ORDENANÇAS PARA UMA VIDA DE SANTIFICAÇÃO.pptxLIÇÃO 9 - ORDENANÇAS PARA UMA VIDA DE SANTIFICAÇÃO.pptx
LIÇÃO 9 - ORDENANÇAS PARA UMA VIDA DE SANTIFICAÇÃO.pptx
WelidaFreitas1
 
Especialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdfEspecialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdf
DanielCastro80471
 
Unificação da Itália e a formação da Alemanha
Unificação da Itália e a formação da AlemanhaUnificação da Itália e a formação da Alemanha
Unificação da Itália e a formação da Alemanha
Acrópole - História & Educação
 
Fato X Opinião (Língua Portuguesa 9º Ano).pptx
Fato X Opinião (Língua Portuguesa 9º Ano).pptxFato X Opinião (Língua Portuguesa 9º Ano).pptx
Fato X Opinião (Língua Portuguesa 9º Ano).pptx
MariaFatima425285
 
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdfEJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
Escola Municipal Jesus Cristo
 
Atividades de Inglês e Espanhol para Imprimir - Alfabetinho
Atividades de Inglês e Espanhol para Imprimir - AlfabetinhoAtividades de Inglês e Espanhol para Imprimir - Alfabetinho
Atividades de Inglês e Espanhol para Imprimir - Alfabetinho
MateusTavares54
 
educação inclusiva na atualidade como ela se estabelece atualmente
educação inclusiva na atualidade como ela se estabelece atualmenteeducação inclusiva na atualidade como ela se estabelece atualmente
educação inclusiva na atualidade como ela se estabelece atualmente
DeuzinhaAzevedo
 
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdfArundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Ana Da Silva Ponce
 
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdfAPOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
RenanSilva991968
 
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptxSlides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
LuizHenriquedeAlmeid6
 
Famílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do AssaréFamílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do Assaré
profesfrancleite
 
Caça-palavras - ortografia S, SS, X, C e Z
Caça-palavras - ortografia  S, SS, X, C e ZCaça-palavras - ortografia  S, SS, X, C e Z
Caça-palavras - ortografia S, SS, X, C e Z
Mary Alvarenga
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
TomasSousa7
 
Aula01 - ensino médio - (Filosofia).pptx
Aula01 - ensino médio - (Filosofia).pptxAula01 - ensino médio - (Filosofia).pptx
Aula01 - ensino médio - (Filosofia).pptx
kdn15710
 
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Biblioteca UCS
 
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
LucianaCristina58
 

Último (20)

Pintura Romana .pptx
Pintura Romana                     .pptxPintura Romana                     .pptx
Pintura Romana .pptx
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
 
Biologia - Jogos da memória genetico.pdf
Biologia - Jogos da memória genetico.pdfBiologia - Jogos da memória genetico.pdf
Biologia - Jogos da memória genetico.pdf
 
os-lusiadas-resumo-os-lusiadas-10-ano.pdf
os-lusiadas-resumo-os-lusiadas-10-ano.pdfos-lusiadas-resumo-os-lusiadas-10-ano.pdf
os-lusiadas-resumo-os-lusiadas-10-ano.pdf
 
LIÇÃO 9 - ORDENANÇAS PARA UMA VIDA DE SANTIFICAÇÃO.pptx
LIÇÃO 9 - ORDENANÇAS PARA UMA VIDA DE SANTIFICAÇÃO.pptxLIÇÃO 9 - ORDENANÇAS PARA UMA VIDA DE SANTIFICAÇÃO.pptx
LIÇÃO 9 - ORDENANÇAS PARA UMA VIDA DE SANTIFICAÇÃO.pptx
 
Especialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdfEspecialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdf
 
Unificação da Itália e a formação da Alemanha
Unificação da Itália e a formação da AlemanhaUnificação da Itália e a formação da Alemanha
Unificação da Itália e a formação da Alemanha
 
Fato X Opinião (Língua Portuguesa 9º Ano).pptx
Fato X Opinião (Língua Portuguesa 9º Ano).pptxFato X Opinião (Língua Portuguesa 9º Ano).pptx
Fato X Opinião (Língua Portuguesa 9º Ano).pptx
 
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdfEJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
 
Atividades de Inglês e Espanhol para Imprimir - Alfabetinho
Atividades de Inglês e Espanhol para Imprimir - AlfabetinhoAtividades de Inglês e Espanhol para Imprimir - Alfabetinho
Atividades de Inglês e Espanhol para Imprimir - Alfabetinho
 
educação inclusiva na atualidade como ela se estabelece atualmente
educação inclusiva na atualidade como ela se estabelece atualmenteeducação inclusiva na atualidade como ela se estabelece atualmente
educação inclusiva na atualidade como ela se estabelece atualmente
 
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdfArundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
 
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdfAPOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
 
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptxSlides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
 
Famílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do AssaréFamílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do Assaré
 
Caça-palavras - ortografia S, SS, X, C e Z
Caça-palavras - ortografia  S, SS, X, C e ZCaça-palavras - ortografia  S, SS, X, C e Z
Caça-palavras - ortografia S, SS, X, C e Z
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
 
Aula01 - ensino médio - (Filosofia).pptx
Aula01 - ensino médio - (Filosofia).pptxAula01 - ensino médio - (Filosofia).pptx
Aula01 - ensino médio - (Filosofia).pptx
 
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
 
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
 

Função afim-linear-constante-gráficos

  • 1.
  • 2. Funções cujos gráficos são rectas – Função Afim f(x) = a x + b Exemplos: 1)f(x) = 2x – 1, onde a = 2 e b = – 1. 2)y = – 3x + 4, onde a = – 3 e b = 4. 3)g(x)= 2x, onde a = 2 e b = 0 (função linear) 4)h(x) = 6, onde a =0 e b = 6. (função constante)
  • 3. Por ser uma reta, necessitamos apenas de dois pontos para representar graficamente uma função afim. Vejamos: representar graficamente a função afim y = 2 x – 4 . Solução: Construindo uma tabela, onde atribuímos arbitrariamente dois valores para x, encontramos suas correspondentes imagens. x y • 0 – 4 3 2 • 3 2 – 4 0
  • 4. Representar graficamente a função afim f(x) = – x – 4. Solução: x f (x) – 1 – 3 2 – 6 • –1 • –3 2 x y 0 –6
  • 5. EXERCÍCIO: Representa graficamente as funções: a) f1(x) = 2x + 1 b) f2(x) =-3x + 2
  • 6. Recta que contem o ponto ( 0, b ) b – valor da ordenada na origem
  • 7. Função afim com f(x)= a x+b a , b diferentes de zero b b Recta que contem o ponto ( 0, b ) b – valor da ordenada na origem a – Declive da recta
  • 8. Função afim com f(x)= a x+b a , b diferentes de zero a > 0 a < 0 Indica em cada gráfico o sinal de b (ordenada na origem) a -declive
  • 9. Gráfico da Função LINEAR ou de Proporcionalidade Directa f(x) = a x , a diferente de zero EXERCÍCIO: Representa graficamente as funções: (cada alínea, no seu referencial) a) f1(x)= 3x e f2(x)= - 2x b) f3(x) = x e f4(x) = 2x c) f5(x) = - 2x e f6(x) = 0,5 x Que observas?
  • 10. Gráfico da Função LINEAR f(x) = a x , a diferente de zero (1 , 3 ) (1 , - 2 ) a -declive Gráfico: sobre uma recta que passa na origem o no ponto ( 1 , a )
  • 11. Gráfico da Função LINEAR f(x) = a x , a diferentes de zero Gráfico: sobre uma recta que passa na origem o no ponto ( 1 , a )
  • 12. Gráfico da Função LINEAR f(x) = a x , a diferentes de zero y = x y = 2x y = -2x y = -0,5 x a -declive Que podemos concluir acerca da inclinação das rectas?
  • 13. Gráfico da Função LINEAR Numa função do tipo f(x) = a x , a diferente de zero Se a > 0, quanto maior for o valor de a, maior é a inclinação da recta;  Se a < 0, quanto menor for o valor de a, maior é a inclinação da recta. OU  Quanto maior for o valor absoluto de a, mais inclinada (mais próxima do eixo dos yy) está a recta correspondente ao gráfico.
  • 14. EXERCÍCIO: Representa graficamente,no mesmo referêncial, as funções: a) f1(x)= 2 f2(x)= - 3 f3(x)= 0 Que observas?
  • 15.
  • 16. Em f(x) = a x + b, se a = 0, chegamos à forma f(x) = b, ou como usualmente se emprega f(x) = k, onde k Î R. Esta é a função constante. Exemplo: f(x) = 5 é uma função constante. Todas as imagens são iguais. Veja suas possíveis representações gráficas. k > 0 k = 0 0 0 0 k < 0 Esta é a função nula.
  • 17. 5) Sendo a < 0 e b > 0, a única representação gráfica correta para a função f(x) = a x + b é: x y y y y y x x x x c) a) b) d) e) 0 0 0 0 0