SlideShare uma empresa Scribd logo
PA e PG
www.QuackAulas.com.br
Desenvolvido pelo Professor Leandro Barrada
Slide Show
Progressão Aritmética (PA)
www.QuackAulas.com.br
Toda seqüência numérica na qual, a partir do segundo, cada termo é
igual à soma do seu antecessor com uma constante chama-se
progressão aritmética.
Essa constante recebe o nome de razão da progressão aritmética.
Logo:
raaaaaa nn ...12312
P. A. (a1, a2, a3, a4, ..., an-1, an)
• Classificação de uma P.A.
P.A. Crescente: quando cada termo é maior que seu antecessor, ou seja r 0.
Ex: ( 1, 5, 9, 13, ...)
P.A constante: Quando todos os termos são iguais, ou seja r = 0.
Ex: ( 3, 3, 3, 3, ...)
P.A. decrescente: Quando cada termo é menor que seu antecessor, ou seja quando r
0.
Ex: ( 15, 11, 7, 3, -1, -5, ...)
Termo Geral de uma PA
www.QuackAulas.com.br
rnaan ).1(1
1a1a
an = último termo
a1 = 1º termo r = razão
n = número de termos
.... 1321 nnn aaaaaS
2
).( 1 naa
S n
n
Logo:
Soma dos termos de uma P.A. Finita
www.QuackAulas.com.br
Toda seqüência numérica na qual, a partir do segundo, cada termo é
igual ao produto de seu antecessor por uma constante chama-se
progressão geométrica.
P. G. (a1, a2, a3, a4, ..., an-1, an)
q
a
a
a
a
a
a
a
a
n
n
......
13
4
2
3
1
2
Ex: ( 2, 4, 8, 16, ...)
Progressão Geométrica (PG)
1
1. n
n qaa
Seja uma P.G. de n termos, onde sua soma é dada por:
1
)1.(1
q
qa
S
n
n
Termo Geral de uma PG
www.QuackAulas.com.br
Soma dos termos de uma P.G. Finita
www.QuackAulas.com.br
Exercício 1: (ITA/2000) O valor de n que torna a seqüência (2 + 3n; –5n;
1 – 4n) uma progressão aritmética pertence ao intervalo:
a) [– 2, –1]
b) [– 1, 0]
c) [0, 1]
d) [1, 2]
e) [2, 3]
Solução:
Para que a seqüência se torne uma PA de razão r é necessário que
seus três termos satisfaçam as igualdades (aplicação da definição
de PA):
(1) -5n = 2 + 3n + r (a2 = a1 + r)
(2) 1 - 4n = -5n + r (a3 = a2 + r)
Determinando o valor de r em (1) e substituindo em (2):
(1): r = -5n - 2 - 3n = -8n - 2
(2): 1 - 4n = -5n - 8n - 2 => 1 - 4n = -13n - 2
=> 13n - 4n = -2 - 1 => 9n = -3 => n = -3/9 = -1/3
Ou seja, -1 < n < 0 e, portanto, a resposta correta é a
b).
Exercício 2: (UFLA/99) A soma dos elementos da seqüência numérica
infinita (3; 0,9; 0,09; 0,009; …) é:
a) 3,1
b) 3,9
c) 3,99
d) 3,999
e) 4
Solução:
Sejam S a soma dos elementos da sequência e S1 a soma da PG
infinita (0,9; 0,09; 0,009; …) de razão q = 10-1 = 0,1.
Assim:
www.QuackAulas.com.br
S = 3 + S1
Como -1 < q < 1 podemos aplicar a fórmula da soma de uma PG
infinita para obter S1:
S1 = 0,9/(1 - 0,1) = 0,9/0,9 = 1
Portanto: S = 3 + 1 = 4
Exercício 3: (STA. CASA) A soma dos vinte primeiros termos de uma
progressão aritmética é -15. A soma do sexto termo dessa P.A., com o
décimo quinto termo, vale:
Solução:
Aplicando a fórmula da soma dos 20 primeiros termos da PA,
teremos:
www.QuackAulas.com.br
S20 = 20( a1 + a20)/2 = -15
Na PA finita de 20 termos, o sexto e o décimo quinto são
equidistantes dos extremos, uma vez que:
15 + 6 = 20 + 1 = 21
E, portanto:
a6 + a15 = a1 + a20
Substituindo este valor na primeira igualdade vem:
20(a6 + a15)/2 = -15 => 10(a6 + a15) = -15
a6 + a15 = -15/10 = -
1,5
www.QuackAulas.com.br
Exercício 4: (MACK) O sexto termo de uma PG, na qual dois meios
geométricos estão inseridos entre 3 e -24, tomados nessa ordem, é:
Solução:
Para determinar os dois meios geométricos da PG cujos extremos
são 3 e -24 precisamos calcular, primeiro, sua razão q, com n = 4.
Pela fórmula do termo geral temos que:
a4 = a1 .q4-1 → -24 = 3q3 → q3 = -24/3 = -8
Logo: q = -2
Portanto a PG é (3; -6; 12; -24; …) e seu sexto termo é obtido,
também, através da fórmula do termo geral:
a6 = a1. q6-1 → a6 = 3(-2)5 = -3.32
Finalmente: a6 = -96
www.QuackAulas.com.br
Exercício 5: Sendo Sn a soma dos termos de uma PA de razão 4, em
que a1 = 6, determine n tal que Sn é igual a 1456.
Solução:
Sabemos que:
(1) Sn = (a1 + an )n/2 = (6 + an )n/2 = 1456 → (6 + an )n = 2912
Para determinar n basta expressarmos an em função de n, o que é
feito através da fórmula do termo geral de uma PA:
(2) an = 6 + (n - 1).4 = 6 + 4n - 4 = 4n + 2
Substituindo (2) em (1):
(6 + 4n + 2)n = 2912 => 4n2 + 8n - 2912 = 0
www.QuackAulas.com.br
Resolvendo a equação do segundo grau obtemos:
n1 = 26 e n2 = -28
Exercício 6: A soma dos infinitos termos da P.G (x/2; x2/4; x3/8; …) é
igual a 1/10. Qual o valor de x?
Solução:
Note que, pela lei de formação da PG, a razão é q = x/2. Como uma
PG infinita converge somente se -1 < q < 1, o valor de x deve ser tal
que esta condição seja satisfeita. Aplicando, então, a fórmula da
soma vem que:
www.QuackAulas.com.br
Para que a solução esteja completa falta verificar se q satisfaz a
condição de convergência
Como -1 < q < 1 a solução está concluída e x = 2/11
www.QuackAulas.com.br
FIM
www.QuackAulas.com.br
Desenvolvido pelo Professor Leandro Barrada
Slide Show

Mais conteúdo relacionado

Mais procurados

Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
leilamaluf
 
âNgulos
âNgulosâNgulos
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
estrelaeia
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
demervalm
 
Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
Murilo Cretuchi de Oliveira
 
Produtos Notavéis 8º ano
Produtos Notavéis 8º ano Produtos Notavéis 8º ano
Produtos Notavéis 8º ano
Lucimeires Cabral Dias
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
Angela Costa
 
âNgulos na circunferência
âNgulos na circunferênciaâNgulos na circunferência
âNgulos na circunferência
Rodrigo Carvalho
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
jorgehenriqueangelim
 
Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)
SirlenedeAPFinotti
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
João Paulo Luna
 
Numeros racionais
Numeros racionaisNumeros racionais
Numeros racionais
Rosana.Parolisi
 
Logaritmos
LogaritmosLogaritmos
Funções
FunçõesFunções
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
Alexandre Cirqueira
 
Polígonos regulares
Polígonos regularesPolígonos regulares
Polígonos regulares
Murilo Cretuchi de Oliveira
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
ktorz
 
Função afim
Função afimFunção afim
Função afim
wfsousamatematica
 
Função logarítmica
Função logarítmicaFunção logarítmica
Função logarítmica
NathalyNara
 
AULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIAAULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIA
CECIERJ
 

Mais procurados (20)

Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
âNgulos
âNgulosâNgulos
âNgulos
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
 
Produtos Notavéis 8º ano
Produtos Notavéis 8º ano Produtos Notavéis 8º ano
Produtos Notavéis 8º ano
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
 
âNgulos na circunferência
âNgulos na circunferênciaâNgulos na circunferência
âNgulos na circunferência
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Numeros racionais
Numeros racionaisNumeros racionais
Numeros racionais
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Funções
FunçõesFunções
Funções
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Polígonos regulares
Polígonos regularesPolígonos regulares
Polígonos regulares
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
Função afim
Função afimFunção afim
Função afim
 
Função logarítmica
Função logarítmicaFunção logarítmica
Função logarítmica
 
AULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIAAULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIA
 

Destaque

Progressão aritmética e geométrica
Progressão aritmética e geométricaProgressão aritmética e geométrica
Progressão aritmética e geométrica
Geisla Maia Gomes
 
PA e PG
PA e PGPA e PG
Matematica: Progressao Aritmetica
Matematica: Progressao AritmeticaMatematica: Progressao Aritmetica
Matematica: Progressao Aritmetica
fa_miceli
 
Matemática - Progressão Aritmética - www.CentroApoio.com - Vídeo Aula
Matemática - Progressão Aritmética  - www.CentroApoio.com - Vídeo AulaMatemática - Progressão Aritmética  - www.CentroApoio.com - Vídeo Aula
Matemática - Progressão Aritmética - www.CentroApoio.com - Vídeo Aula
Vídeo Aulas Apoio
 
Matemática - PA e PG
Matemática - PA e PGMatemática - PA e PG
Matemática - PA e PG
Leandro Euler
 
A história da soma dos termos de uma P.A.
A história da soma dos termos de uma P.A.A história da soma dos termos de uma P.A.
A história da soma dos termos de uma P.A.
Lucas Azevedo
 
www.AulasDeMatematicApoio.com - Matemática - Progressão Aritmética
www.AulasDeMatematicApoio.com  - Matemática -  Progressão Aritméticawww.AulasDeMatematicApoio.com  - Matemática -  Progressão Aritmética
www.AulasDeMatematicApoio.com - Matemática - Progressão Aritmética
Aulas De Matemática Apoio
 
Pa E Pg Feito Por Min
Pa E Pg Feito Por MinPa E Pg Feito Por Min
Pa E Pg Feito Por Min
Antonio Carneiro
 
Estudo interdisciplinar da progressão geométrica
Estudo interdisciplinar da progressão geométricaEstudo interdisciplinar da progressão geométrica
Estudo interdisciplinar da progressão geométrica
Luciane Antoniolli
 
Progressão Aritmética
Progressão AritméticaProgressão Aritmética
Progressão Aritmética
lucienejade
 
ProgressãO AritméTica
ProgressãO AritméTicaProgressãO AritméTica
ProgressãO AritméTica
rosmari Freitas
 
A história da soma dos termos de uma P.A.
A história da soma dos termos de uma P.A.A história da soma dos termos de uma P.A.
A história da soma dos termos de uma P.A.
Lucas Azevedo
 
PA e PG 2015 termo geral e soma
PA e PG 2015 termo geral e somaPA e PG 2015 termo geral e soma
PA e PG 2015 termo geral e soma
José Junior Barreto
 
Mat progressoes aritmeticas 002
Mat progressoes aritmeticas  002Mat progressoes aritmeticas  002
Mat progressoes aritmeticas 002
trigono_metrico
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
Horacimar Cotrim
 
Progressão aritmética exercícios
Progressão aritmética exercíciosProgressão aritmética exercícios
Progressão aritmética exercícios
lucienejade
 
Progressaoaritmetica
ProgressaoaritmeticaProgressaoaritmetica
Progressaoaritmetica
Michele Boulanger
 
Progressões Aritméticas NTEM
Progressões Aritméticas NTEMProgressões Aritméticas NTEM
Progressões Aritméticas NTEM
Maria Angélica B. de S.
 
P.A.
P.A.P.A.
Ap matemática m2
Ap matemática m2Ap matemática m2
Ap matemática m2
trigono_metrico
 

Destaque (20)

Progressão aritmética e geométrica
Progressão aritmética e geométricaProgressão aritmética e geométrica
Progressão aritmética e geométrica
 
PA e PG
PA e PGPA e PG
PA e PG
 
Matematica: Progressao Aritmetica
Matematica: Progressao AritmeticaMatematica: Progressao Aritmetica
Matematica: Progressao Aritmetica
 
Matemática - Progressão Aritmética - www.CentroApoio.com - Vídeo Aula
Matemática - Progressão Aritmética  - www.CentroApoio.com - Vídeo AulaMatemática - Progressão Aritmética  - www.CentroApoio.com - Vídeo Aula
Matemática - Progressão Aritmética - www.CentroApoio.com - Vídeo Aula
 
Matemática - PA e PG
Matemática - PA e PGMatemática - PA e PG
Matemática - PA e PG
 
A história da soma dos termos de uma P.A.
A história da soma dos termos de uma P.A.A história da soma dos termos de uma P.A.
A história da soma dos termos de uma P.A.
 
www.AulasDeMatematicApoio.com - Matemática - Progressão Aritmética
www.AulasDeMatematicApoio.com  - Matemática -  Progressão Aritméticawww.AulasDeMatematicApoio.com  - Matemática -  Progressão Aritmética
www.AulasDeMatematicApoio.com - Matemática - Progressão Aritmética
 
Pa E Pg Feito Por Min
Pa E Pg Feito Por MinPa E Pg Feito Por Min
Pa E Pg Feito Por Min
 
Estudo interdisciplinar da progressão geométrica
Estudo interdisciplinar da progressão geométricaEstudo interdisciplinar da progressão geométrica
Estudo interdisciplinar da progressão geométrica
 
Progressão Aritmética
Progressão AritméticaProgressão Aritmética
Progressão Aritmética
 
ProgressãO AritméTica
ProgressãO AritméTicaProgressãO AritméTica
ProgressãO AritméTica
 
A história da soma dos termos de uma P.A.
A história da soma dos termos de uma P.A.A história da soma dos termos de uma P.A.
A história da soma dos termos de uma P.A.
 
PA e PG 2015 termo geral e soma
PA e PG 2015 termo geral e somaPA e PG 2015 termo geral e soma
PA e PG 2015 termo geral e soma
 
Mat progressoes aritmeticas 002
Mat progressoes aritmeticas  002Mat progressoes aritmeticas  002
Mat progressoes aritmeticas 002
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Progressão aritmética exercícios
Progressão aritmética exercíciosProgressão aritmética exercícios
Progressão aritmética exercícios
 
Progressaoaritmetica
ProgressaoaritmeticaProgressaoaritmetica
Progressaoaritmetica
 
Progressões Aritméticas NTEM
Progressões Aritméticas NTEMProgressões Aritméticas NTEM
Progressões Aritméticas NTEM
 
P.A.
P.A.P.A.
P.A.
 
Ap matemática m2
Ap matemática m2Ap matemática m2
Ap matemática m2
 

Semelhante a Matemática - PA e PG

P.a. e p.g.
P.a. e p.g.P.a. e p.g.
P.a. e p.g.
Nathan Medeiros
 
Mat progressao aritmetica ( pa ) i
Mat progressao aritmetica ( pa ) iMat progressao aritmetica ( pa ) i
Mat progressao aritmetica ( pa ) i
trigono_metrico
 
Exercicio de progresssao aritimetica
Exercicio de progresssao aritimeticaExercicio de progresssao aritimetica
Exercicio de progresssao aritimetica
Luiz Carlos Silva
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
leilamaluf
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
leilamaluf
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
leilamaluf
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
leilamaluf
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
leilamaluf
 
PDF PA e PG.pptx
PDF PA e PG.pptxPDF PA e PG.pptx
PDF PA e PG.pptx
RonaldoAlves153492
 
Bloco 04 - Sequência ou Sucessão de .pdf
Bloco 04 - Sequência ou Sucessão de .pdfBloco 04 - Sequência ou Sucessão de .pdf
Bloco 04 - Sequência ou Sucessão de .pdf
luismineiro
 
Conteúdo de Progressão Aritmética
Conteúdo de Progressão AritméticaConteúdo de Progressão Aritmética
Conteúdo de Progressão Aritmética
Ana Paula Silva
 
08 - Progressões
08 - Progressões08 - Progressões
08 - Progressões
IProfessor Jaison Lotério
 
Progressões
ProgressõesProgressões
Progressões
Romulo Garcia
 
Mat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) iiMat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) ii
trigono_metrico
 
Progressão.pdf
Progressão.pdfProgressão.pdf
Progressão.pdf
Gabriel927514
 
24052014
2405201424052014
Mat exercicios resolvidos 007
Mat exercicios resolvidos  007Mat exercicios resolvidos  007
Mat exercicios resolvidos 007
trigono_metrico
 
Mat sequencias e progressoes 005
Mat sequencias e progressoes  005Mat sequencias e progressoes  005
Mat sequencias e progressoes 005
trigono_metrico
 
Gabarito pa
Gabarito paGabarito pa
Gabarito pa
resolvidos
 
Progressão aritmética-prof-dalbello
Progressão aritmética-prof-dalbelloProgressão aritmética-prof-dalbello
Progressão aritmética-prof-dalbello
Secretaria de educação de Magé
 

Semelhante a Matemática - PA e PG (20)

P.a. e p.g.
P.a. e p.g.P.a. e p.g.
P.a. e p.g.
 
Mat progressao aritmetica ( pa ) i
Mat progressao aritmetica ( pa ) iMat progressao aritmetica ( pa ) i
Mat progressao aritmetica ( pa ) i
 
Exercicio de progresssao aritimetica
Exercicio de progresssao aritimeticaExercicio de progresssao aritimetica
Exercicio de progresssao aritimetica
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
PDF PA e PG.pptx
PDF PA e PG.pptxPDF PA e PG.pptx
PDF PA e PG.pptx
 
Bloco 04 - Sequência ou Sucessão de .pdf
Bloco 04 - Sequência ou Sucessão de .pdfBloco 04 - Sequência ou Sucessão de .pdf
Bloco 04 - Sequência ou Sucessão de .pdf
 
Conteúdo de Progressão Aritmética
Conteúdo de Progressão AritméticaConteúdo de Progressão Aritmética
Conteúdo de Progressão Aritmética
 
08 - Progressões
08 - Progressões08 - Progressões
08 - Progressões
 
Progressões
ProgressõesProgressões
Progressões
 
Mat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) iiMat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) ii
 
Progressão.pdf
Progressão.pdfProgressão.pdf
Progressão.pdf
 
24052014
2405201424052014
24052014
 
Mat exercicios resolvidos 007
Mat exercicios resolvidos  007Mat exercicios resolvidos  007
Mat exercicios resolvidos 007
 
Mat sequencias e progressoes 005
Mat sequencias e progressoes  005Mat sequencias e progressoes  005
Mat sequencias e progressoes 005
 
Gabarito pa
Gabarito paGabarito pa
Gabarito pa
 
Progressão aritmética-prof-dalbello
Progressão aritmética-prof-dalbelloProgressão aritmética-prof-dalbello
Progressão aritmética-prof-dalbello
 

Último

A Evolução da história da Física - Albert Einstein
A Evolução da história da Física - Albert EinsteinA Evolução da história da Física - Albert Einstein
A Evolução da história da Física - Albert Einstein
WelberMerlinCardoso
 
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
LeticiaRochaCupaiol
 
O Mito da Caverna de Platão_ Uma Jornada em Busca da Verdade.pdf
O Mito da Caverna de Platão_ Uma Jornada em Busca da Verdade.pdfO Mito da Caverna de Platão_ Uma Jornada em Busca da Verdade.pdf
O Mito da Caverna de Platão_ Uma Jornada em Busca da Verdade.pdf
silvamelosilva300
 
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptxSlides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
2020_09_17 - Biomas Mundiais [Salvo automaticamente].pptx
2020_09_17 - Biomas Mundiais [Salvo automaticamente].pptx2020_09_17 - Biomas Mundiais [Salvo automaticamente].pptx
2020_09_17 - Biomas Mundiais [Salvo automaticamente].pptx
PatriciaZanoli
 
Rimas, Luís Vaz de Camões. pptx
Rimas, Luís Vaz de Camões.          pptxRimas, Luís Vaz de Camões.          pptx
Rimas, Luís Vaz de Camões. pptx
TomasSousa7
 
Introdução à Sociologia: caça-palavras na escola
Introdução à Sociologia: caça-palavras na escolaIntrodução à Sociologia: caça-palavras na escola
Introdução à Sociologia: caça-palavras na escola
Professor Belinaso
 
Atividade letra da música - Espalhe Amor, Anavitória.
Atividade letra da música - Espalhe  Amor, Anavitória.Atividade letra da música - Espalhe  Amor, Anavitória.
Atividade letra da música - Espalhe Amor, Anavitória.
Mary Alvarenga
 
slides de Didática 2.pdf para apresentar
slides de Didática 2.pdf para apresentarslides de Didática 2.pdf para apresentar
slides de Didática 2.pdf para apresentar
JoeteCarvalho
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Leonardo da Vinci .pptx
Leonardo da Vinci                  .pptxLeonardo da Vinci                  .pptx
Leonardo da Vinci .pptx
TomasSousa7
 
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptxSlides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
OS elementos de uma boa Redação para o ENEM.pdf
OS elementos de uma boa Redação para o ENEM.pdfOS elementos de uma boa Redação para o ENEM.pdf
OS elementos de uma boa Redação para o ENEM.pdf
AmiltonAparecido1
 
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
LucianaCristina58
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
TomasSousa7
 
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.pptLeis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
PatriciaZanoli
 
Vogais Ilustrados para alfabetização infantil
Vogais Ilustrados para alfabetização infantilVogais Ilustrados para alfabetização infantil
Vogais Ilustrados para alfabetização infantil
mamaeieby
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
Zenir Carmen Bez Trombeta
 
Famílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do AssaréFamílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do Assaré
profesfrancleite
 
Aula 2 - Revisando o significado de fração - Parte 2.pptx
Aula 2 - Revisando o significado de fração - Parte 2.pptxAula 2 - Revisando o significado de fração - Parte 2.pptx
Aula 2 - Revisando o significado de fração - Parte 2.pptx
LILIANPRESTESSCUDELE
 

Último (20)

A Evolução da história da Física - Albert Einstein
A Evolução da história da Física - Albert EinsteinA Evolução da história da Física - Albert Einstein
A Evolução da história da Física - Albert Einstein
 
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
1ª LEI DE OHN, CARACTERISTICAS IMPORTANTES.
 
O Mito da Caverna de Platão_ Uma Jornada em Busca da Verdade.pdf
O Mito da Caverna de Platão_ Uma Jornada em Busca da Verdade.pdfO Mito da Caverna de Platão_ Uma Jornada em Busca da Verdade.pdf
O Mito da Caverna de Platão_ Uma Jornada em Busca da Verdade.pdf
 
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptxSlides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
 
2020_09_17 - Biomas Mundiais [Salvo automaticamente].pptx
2020_09_17 - Biomas Mundiais [Salvo automaticamente].pptx2020_09_17 - Biomas Mundiais [Salvo automaticamente].pptx
2020_09_17 - Biomas Mundiais [Salvo automaticamente].pptx
 
Rimas, Luís Vaz de Camões. pptx
Rimas, Luís Vaz de Camões.          pptxRimas, Luís Vaz de Camões.          pptx
Rimas, Luís Vaz de Camões. pptx
 
Introdução à Sociologia: caça-palavras na escola
Introdução à Sociologia: caça-palavras na escolaIntrodução à Sociologia: caça-palavras na escola
Introdução à Sociologia: caça-palavras na escola
 
Atividade letra da música - Espalhe Amor, Anavitória.
Atividade letra da música - Espalhe  Amor, Anavitória.Atividade letra da música - Espalhe  Amor, Anavitória.
Atividade letra da música - Espalhe Amor, Anavitória.
 
slides de Didática 2.pdf para apresentar
slides de Didática 2.pdf para apresentarslides de Didática 2.pdf para apresentar
slides de Didática 2.pdf para apresentar
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
 
Leonardo da Vinci .pptx
Leonardo da Vinci                  .pptxLeonardo da Vinci                  .pptx
Leonardo da Vinci .pptx
 
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptxSlides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
 
OS elementos de uma boa Redação para o ENEM.pdf
OS elementos de uma boa Redação para o ENEM.pdfOS elementos de uma boa Redação para o ENEM.pdf
OS elementos de uma boa Redação para o ENEM.pdf
 
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx- TEMPLATE DA PRATICA - Psicomotricidade.pptx
- TEMPLATE DA PRATICA - Psicomotricidade.pptx
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
 
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.pptLeis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
 
Vogais Ilustrados para alfabetização infantil
Vogais Ilustrados para alfabetização infantilVogais Ilustrados para alfabetização infantil
Vogais Ilustrados para alfabetização infantil
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
 
Famílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do AssaréFamílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do Assaré
 
Aula 2 - Revisando o significado de fração - Parte 2.pptx
Aula 2 - Revisando o significado de fração - Parte 2.pptxAula 2 - Revisando o significado de fração - Parte 2.pptx
Aula 2 - Revisando o significado de fração - Parte 2.pptx
 

Matemática - PA e PG

  • 1. PA e PG www.QuackAulas.com.br Desenvolvido pelo Professor Leandro Barrada Slide Show
  • 2. Progressão Aritmética (PA) www.QuackAulas.com.br Toda seqüência numérica na qual, a partir do segundo, cada termo é igual à soma do seu antecessor com uma constante chama-se progressão aritmética. Essa constante recebe o nome de razão da progressão aritmética. Logo: raaaaaa nn ...12312 P. A. (a1, a2, a3, a4, ..., an-1, an) • Classificação de uma P.A. P.A. Crescente: quando cada termo é maior que seu antecessor, ou seja r 0. Ex: ( 1, 5, 9, 13, ...) P.A constante: Quando todos os termos são iguais, ou seja r = 0. Ex: ( 3, 3, 3, 3, ...) P.A. decrescente: Quando cada termo é menor que seu antecessor, ou seja quando r 0. Ex: ( 15, 11, 7, 3, -1, -5, ...)
  • 3. Termo Geral de uma PA www.QuackAulas.com.br rnaan ).1(1 1a1a an = último termo a1 = 1º termo r = razão n = número de termos .... 1321 nnn aaaaaS 2 ).( 1 naa S n n Logo: Soma dos termos de uma P.A. Finita
  • 4. www.QuackAulas.com.br Toda seqüência numérica na qual, a partir do segundo, cada termo é igual ao produto de seu antecessor por uma constante chama-se progressão geométrica. P. G. (a1, a2, a3, a4, ..., an-1, an) q a a a a a a a a n n ...... 13 4 2 3 1 2 Ex: ( 2, 4, 8, 16, ...) Progressão Geométrica (PG)
  • 5. 1 1. n n qaa Seja uma P.G. de n termos, onde sua soma é dada por: 1 )1.(1 q qa S n n Termo Geral de uma PG www.QuackAulas.com.br Soma dos termos de uma P.G. Finita
  • 6. www.QuackAulas.com.br Exercício 1: (ITA/2000) O valor de n que torna a seqüência (2 + 3n; –5n; 1 – 4n) uma progressão aritmética pertence ao intervalo: a) [– 2, –1] b) [– 1, 0] c) [0, 1] d) [1, 2] e) [2, 3] Solução: Para que a seqüência se torne uma PA de razão r é necessário que seus três termos satisfaçam as igualdades (aplicação da definição de PA): (1) -5n = 2 + 3n + r (a2 = a1 + r) (2) 1 - 4n = -5n + r (a3 = a2 + r) Determinando o valor de r em (1) e substituindo em (2):
  • 7. (1): r = -5n - 2 - 3n = -8n - 2 (2): 1 - 4n = -5n - 8n - 2 => 1 - 4n = -13n - 2 => 13n - 4n = -2 - 1 => 9n = -3 => n = -3/9 = -1/3 Ou seja, -1 < n < 0 e, portanto, a resposta correta é a b). Exercício 2: (UFLA/99) A soma dos elementos da seqüência numérica infinita (3; 0,9; 0,09; 0,009; …) é: a) 3,1 b) 3,9 c) 3,99 d) 3,999 e) 4 Solução: Sejam S a soma dos elementos da sequência e S1 a soma da PG infinita (0,9; 0,09; 0,009; …) de razão q = 10-1 = 0,1. Assim: www.QuackAulas.com.br
  • 8. S = 3 + S1 Como -1 < q < 1 podemos aplicar a fórmula da soma de uma PG infinita para obter S1: S1 = 0,9/(1 - 0,1) = 0,9/0,9 = 1 Portanto: S = 3 + 1 = 4 Exercício 3: (STA. CASA) A soma dos vinte primeiros termos de uma progressão aritmética é -15. A soma do sexto termo dessa P.A., com o décimo quinto termo, vale: Solução: Aplicando a fórmula da soma dos 20 primeiros termos da PA, teremos: www.QuackAulas.com.br
  • 9. S20 = 20( a1 + a20)/2 = -15 Na PA finita de 20 termos, o sexto e o décimo quinto são equidistantes dos extremos, uma vez que: 15 + 6 = 20 + 1 = 21 E, portanto: a6 + a15 = a1 + a20 Substituindo este valor na primeira igualdade vem: 20(a6 + a15)/2 = -15 => 10(a6 + a15) = -15 a6 + a15 = -15/10 = - 1,5 www.QuackAulas.com.br
  • 10. Exercício 4: (MACK) O sexto termo de uma PG, na qual dois meios geométricos estão inseridos entre 3 e -24, tomados nessa ordem, é: Solução: Para determinar os dois meios geométricos da PG cujos extremos são 3 e -24 precisamos calcular, primeiro, sua razão q, com n = 4. Pela fórmula do termo geral temos que: a4 = a1 .q4-1 → -24 = 3q3 → q3 = -24/3 = -8 Logo: q = -2 Portanto a PG é (3; -6; 12; -24; …) e seu sexto termo é obtido, também, através da fórmula do termo geral: a6 = a1. q6-1 → a6 = 3(-2)5 = -3.32 Finalmente: a6 = -96 www.QuackAulas.com.br
  • 11. Exercício 5: Sendo Sn a soma dos termos de uma PA de razão 4, em que a1 = 6, determine n tal que Sn é igual a 1456. Solução: Sabemos que: (1) Sn = (a1 + an )n/2 = (6 + an )n/2 = 1456 → (6 + an )n = 2912 Para determinar n basta expressarmos an em função de n, o que é feito através da fórmula do termo geral de uma PA: (2) an = 6 + (n - 1).4 = 6 + 4n - 4 = 4n + 2 Substituindo (2) em (1): (6 + 4n + 2)n = 2912 => 4n2 + 8n - 2912 = 0 www.QuackAulas.com.br
  • 12. Resolvendo a equação do segundo grau obtemos: n1 = 26 e n2 = -28 Exercício 6: A soma dos infinitos termos da P.G (x/2; x2/4; x3/8; …) é igual a 1/10. Qual o valor de x? Solução: Note que, pela lei de formação da PG, a razão é q = x/2. Como uma PG infinita converge somente se -1 < q < 1, o valor de x deve ser tal que esta condição seja satisfeita. Aplicando, então, a fórmula da soma vem que: www.QuackAulas.com.br
  • 13. Para que a solução esteja completa falta verificar se q satisfaz a condição de convergência Como -1 < q < 1 a solução está concluída e x = 2/11 www.QuackAulas.com.br