Conteúdo da Aula
Geometria analítica
1 – Equação da Reta
2 – Área do triângulo
3 – ponto Médio
4 – Distância entre dois pontos
Professor Gledson Guimarães
Estudo da reta
e
Área do triângulo
Geometria
Analítica
PLANOPLANO CARTESIANOCARTESIANO
Com o modo simples de se representar números
numa reta, visto acima, podemos estender a idéia
para o plano, basta que para isto consideremos
duas retas perpendiculares que se interceptem
num ponto O
Dizemos que a é a abscissa do ponto P e b é a ordenada do
ponto P
1.2 – COORDENADAS CARTESIANAS NO PLANO
1.1 – COORDENADAS CARTESIANAS NA RETA
É fácil concluir que existe uma correspondência um a um
(correspondência biunívoca) entre o conjunto dos pontos da
reta e o conjunto R dos números reais. Os números são
chamados abscissas dos pontos. Assim, a abscissa do ponto
A’ é -1, a abscissa da origem O é 0, a abscissa do ponto A é 1,
etc.
A reta r é chamada eixo das ABCISSAS.
Solução:
Se um ponto pertence ao eixo vertical
(eixo y) , então a sua abscissa é nula.
Logo, no caso teremos:
2m - 16 = 0,
de onde tiramos m = 8
o ponto ficaria P = ( 0, 8)
Se o ponto P(2m-16 , m) pertença ao eixo dos y , calcule o valor de m.
Solução:
Se um ponto pertence ao eixo horizontal
(eixo ox) , então a sua ordenada é nula.
Logo, no caso teremos:
m = 0,
o ponto ficaria P = ( -16, 0)
Se o ponto P(2m-16 , m) pertença ao eixo dos y , calcule o valor de m.
Fonte: http://www.somatematica.com.br
EQUAÇÃO GERAL DA RETA r:
A x + B y + C = 0A x + B y + C = 0
se am + bn + c = 0, P é o ponto da reta r
se am + bn + c ≠ 0, P não é um ponto da reta r
EXEMPLO: X - 3Y + 5 = 0
Onde o ponto P (1,2) ∈ r
Já o ponto P (2, -5) ∉ r
EQUAÇÃO REDUZIDA DA RETA:
y = ax + b onde,
a = coeficiente angular da reta
b = coeficiente linear da reta (ponto de
intersecção com o eixo Oy.
O coeficiente angular da reta a é numericamente igual a
tangente do ângulo formado com a reta e o eixo Ox.
a = tg α ( abertura ou inclinação da reta )
 Coeficiente angular =
1
 Em todas as retas o
coeficiente linear ( ponto
de intersecção com o
eixo das ordenadas -
eixo de y ) é zero b = 0.
 Coeficiente angular = 3
 Coeficiente angular =2
ÂNGULO: 71.56º
ÂNGULO:
63.43º
ÂNGULO: 45º
PODEMOS AINDA DIZER QUE f(0) = 0 para todas as três funções apresentadas
acima
Y = 4
x = 6
y = 2x – 3
y = – 3x + 6
OBS: as equações são exemplos de cada situação representada nos
gráficos
X Y
0 1
2 5
X Y
1.x + 0.5 + 2.y – 0.y – 2.1 – 5x = 0
–4x +2y –2 = 0  2y = 4x +2
Encontrar os coeficientes angular e linear da
reta r que passa por A(0, 1) e B(2, 5).
Considerando um ponto P(x, y) da reta, temos:
Ou y = 2x +1
RESOLUÇÃO:
COEFICIENTE ANGULAR = 2
COEFICIENTE LINEAR = 1
Veja o gráfico de y = 2x +1 a seguir.
EXEMPLO:
No sistema de coordenadas abaixo, está representada a
função f(x) = 2 x +1.
1
5
COEFICIENTE ANGULAR = 2
COEFICIENTE LINEAR = 1
Observe que o coeficiente angular é o
número que multiplica o x na equação
reduzida da reta (no caso 2 ).
O coeficiente linear é o número
que fica isolado (termo
independente) na equação
reduzida da reta (no caso 1) 
este é o ponto que o gráfico
intercepta (“corta”) o eixo Oy. O
ponto que “corta” o eixo de x é a
raiz da equação.
Veja o esboço do gráfico dessa
função...
01. Achar as equações geral e reduzida da reta determinada
pelos pontos A(3, 1) e B(4, -2)
X Y
3 1
4 -2
X Y
x.1 – 2.3 + 4y – 3y – 4.1 - x.(-2) = 0
x – 6 + 4y – 3y – 4 + 2x = 0
3x + y – 10 = 0
= 0
COEFICIENTE ANGULAR = – 3
COEFICIENTE LINEAR = 10
Questão 01
αβθ −=
msmr
msmr
tg
.1+
−
=θ
P9
) Se um ponto tem coordenadas iguais, ele
pertence à bissetriz dos quadrantes ímpares (1ª
bissetriz) y = x.
P10
) Se um ponto tem coordenadas opostas, ele
pertence à bissetriz dos quadrantespares(2ª bissetriz)
y = - x.
.
Colinear (mesma reta)
Podemos escrever assim
Área do triângulo:
EXERCÍCIO DE REVISÃO 05
Qual a área do triângulo ABC de vértices A(2,5), B(0,3)
e C(1,1)?
2 5
0 3
1 1
2 5
2
1
A = 2.3 + 0.1 + 1.5 –0.5 – 1.3 – 2.1
A = 6/2 A = 3 u. a.
Resp: S = 3 u.a. (3 unidades de área)
Exercícios Resolvidos 01. Calcule a área do triângulo ABC formado
pelos pontos indicados na figura.
Maneira demonstrada no livro:
Exercícios Resolvidos
01. Calcule a área do triângulo ABC formado pelos pontos indicados na
figura.
4 6
2 -3
-3 1
4 6
-12
2
-18
-12
-9
-4
A = ½ |-53|
..
2
53
auA =
Forma abreviada mostrado pelo professor:
Equação Segmentária da Reta
Consideremos uma reta r que intercepta os eixos cartesianos
nos pontos P(p, 0) e Q(0, q), com p · q 0:
Dizemos que esta equação é a equação segmentária da reta r.
Observação – Os denominadores de x e y, na equação
segmentária, são, respectivamente, a abscissa do ponto onde r
intercepta o eixo x e a ordenada do ponto onde r intercepta o eixo
y.
05. Determine a equação segmentária da reta cuja equação
geral é 5x + 6 y – 30 = 0.
X Y
0 5
6 0
1
56
=+
yx
X Y
0 5
6 0
06. (MACKENZIE – SP ) A equação da reta r é:
a) y + 2x – 2 = 0
b) y – x – 2 = 0
c) y + 2x + 2 = 0
d) y –2x – 2 = 0
e) y – 2x + 2 = 0
1
21
=
−
+
−
yx
( Multiplicando toda a equação por –2 )
Fica:  2x + y = –2  2x + y +2 = 0
Consideremos dois pontos A e B tais que não
seja paralela ao eixo x, nem ao eixo y.
Traçando por A e B paralelas aos eixos
coordenados, obtemos o triângulo retângulo ABC.
2 – FÓRMULA DA DISTÂNCIA ENTRE DOIS PONTOS
EXERCÍCIO 03: Vamos determinar a distância entre
os pontos A(1, -1) e B(4, -5):
SOLUÇÃOSOLUÇÃO DADA QUESTÃOQUESTÃO
EXERCÍCIO 04: Calcule o ponto médio entre os
pontos A = ( 2,1) B = ( 6,4).
EXERCÍCIO 04: – PONTO MÉDIO DE SEGMENTO
Questão 05
As coordenadas do ponto médio do
segmento de extremidades (1, –2 ) e
( –1 – 4 ) são:
a) ( 3 , 1 )
b) ( 1 , 3 )
c) ( –2 , –3 )
d) ( 0 , –3 )
e) ( 3 , 3 )
Questão 05
As coordenadas do ponto médio do
segmento de extremidades (1, –2 ) e
( –1 – 4 ) são:
a) ( 3 , 1 )
b) ( 1 , 3 )
c) ( –2 , –3 )
d) ( 0 , –3 )
e) ( 3 , 3 )
Questão 06
Os pontos A (1, -7) e B ( – 4, 3)
pertencem à reta r. A equação dessa
reta é
a) y = 3x – 1
b) y + 2x – 5 = 0
c) y = 5 – 4x
d) 2x + y + 5 = 0
e) y = 5x + 24
X Y
1 -7
-4 3
X Y
-7x + 3 -4y –y -28 -3x = 0
– 10x – 5y – 25 = 0
Dividindo toda a equação por (-
5):
2x + y + 5 =
0
Questão 09 Qual a área do triângulo ABC de vértices A(-2,-1),
B(1,3) e C(4,1)?
XA YA
1/2 XB YB
XC YC
XA YA
-2 -1
½ 1 3
4 1
-2 -1
A = |1/2 [ -6 + 1 – 4 + 1 – 12 + 2 ] |
A = |1/2 [ – 18 ] |
A = | – 9 |
A = 9 u.a. (unidade de área)
observe que a área é
sempre positiva e que as
duas barrinhas | |
significam módulo

Geometria anatica retas exercicios by gledson

  • 1.
    Conteúdo da Aula Geometriaanalítica 1 – Equação da Reta 2 – Área do triângulo 3 – ponto Médio 4 – Distância entre dois pontos Professor Gledson Guimarães
  • 2.
    Estudo da reta e Áreado triângulo Geometria Analítica
  • 3.
  • 4.
    Com o modosimples de se representar números numa reta, visto acima, podemos estender a idéia para o plano, basta que para isto consideremos duas retas perpendiculares que se interceptem num ponto O Dizemos que a é a abscissa do ponto P e b é a ordenada do ponto P 1.2 – COORDENADAS CARTESIANAS NO PLANO
  • 5.
    1.1 – COORDENADASCARTESIANAS NA RETA É fácil concluir que existe uma correspondência um a um (correspondência biunívoca) entre o conjunto dos pontos da reta e o conjunto R dos números reais. Os números são chamados abscissas dos pontos. Assim, a abscissa do ponto A’ é -1, a abscissa da origem O é 0, a abscissa do ponto A é 1, etc. A reta r é chamada eixo das ABCISSAS.
  • 6.
    Solução: Se um pontopertence ao eixo vertical (eixo y) , então a sua abscissa é nula. Logo, no caso teremos: 2m - 16 = 0, de onde tiramos m = 8 o ponto ficaria P = ( 0, 8) Se o ponto P(2m-16 , m) pertença ao eixo dos y , calcule o valor de m.
  • 7.
    Solução: Se um pontopertence ao eixo horizontal (eixo ox) , então a sua ordenada é nula. Logo, no caso teremos: m = 0, o ponto ficaria P = ( -16, 0) Se o ponto P(2m-16 , m) pertença ao eixo dos y , calcule o valor de m.
  • 8.
  • 9.
    EQUAÇÃO GERAL DARETA r: A x + B y + C = 0A x + B y + C = 0 se am + bn + c = 0, P é o ponto da reta r se am + bn + c ≠ 0, P não é um ponto da reta r EXEMPLO: X - 3Y + 5 = 0 Onde o ponto P (1,2) ∈ r Já o ponto P (2, -5) ∉ r
  • 10.
    EQUAÇÃO REDUZIDA DARETA: y = ax + b onde, a = coeficiente angular da reta b = coeficiente linear da reta (ponto de intersecção com o eixo Oy. O coeficiente angular da reta a é numericamente igual a tangente do ângulo formado com a reta e o eixo Ox. a = tg α ( abertura ou inclinação da reta )
  • 11.
     Coeficiente angular= 1  Em todas as retas o coeficiente linear ( ponto de intersecção com o eixo das ordenadas - eixo de y ) é zero b = 0.  Coeficiente angular = 3  Coeficiente angular =2 ÂNGULO: 71.56º ÂNGULO: 63.43º ÂNGULO: 45º PODEMOS AINDA DIZER QUE f(0) = 0 para todas as três funções apresentadas acima
  • 14.
    Y = 4 x= 6 y = 2x – 3 y = – 3x + 6 OBS: as equações são exemplos de cada situação representada nos gráficos
  • 19.
    X Y 0 1 25 X Y 1.x + 0.5 + 2.y – 0.y – 2.1 – 5x = 0 –4x +2y –2 = 0  2y = 4x +2 Encontrar os coeficientes angular e linear da reta r que passa por A(0, 1) e B(2, 5). Considerando um ponto P(x, y) da reta, temos: Ou y = 2x +1 RESOLUÇÃO: COEFICIENTE ANGULAR = 2 COEFICIENTE LINEAR = 1 Veja o gráfico de y = 2x +1 a seguir. EXEMPLO:
  • 20.
    No sistema decoordenadas abaixo, está representada a função f(x) = 2 x +1. 1 5 COEFICIENTE ANGULAR = 2 COEFICIENTE LINEAR = 1 Observe que o coeficiente angular é o número que multiplica o x na equação reduzida da reta (no caso 2 ). O coeficiente linear é o número que fica isolado (termo independente) na equação reduzida da reta (no caso 1)  este é o ponto que o gráfico intercepta (“corta”) o eixo Oy. O ponto que “corta” o eixo de x é a raiz da equação. Veja o esboço do gráfico dessa função...
  • 21.
    01. Achar asequações geral e reduzida da reta determinada pelos pontos A(3, 1) e B(4, -2) X Y 3 1 4 -2 X Y x.1 – 2.3 + 4y – 3y – 4.1 - x.(-2) = 0 x – 6 + 4y – 3y – 4 + 2x = 0 3x + y – 10 = 0 = 0 COEFICIENTE ANGULAR = – 3 COEFICIENTE LINEAR = 10
  • 22.
  • 25.
  • 26.
    P9 ) Se umponto tem coordenadas iguais, ele pertence à bissetriz dos quadrantes ímpares (1ª bissetriz) y = x.
  • 27.
    P10 ) Se umponto tem coordenadas opostas, ele pertence à bissetriz dos quadrantespares(2ª bissetriz) y = - x. .
  • 28.
  • 29.
  • 30.
    EXERCÍCIO DE REVISÃO05 Qual a área do triângulo ABC de vértices A(2,5), B(0,3) e C(1,1)? 2 5 0 3 1 1 2 5 2 1 A = 2.3 + 0.1 + 1.5 –0.5 – 1.3 – 2.1 A = 6/2 A = 3 u. a. Resp: S = 3 u.a. (3 unidades de área)
  • 31.
    Exercícios Resolvidos 01.Calcule a área do triângulo ABC formado pelos pontos indicados na figura. Maneira demonstrada no livro:
  • 32.
    Exercícios Resolvidos 01. Calculea área do triângulo ABC formado pelos pontos indicados na figura. 4 6 2 -3 -3 1 4 6 -12 2 -18 -12 -9 -4 A = ½ |-53| .. 2 53 auA = Forma abreviada mostrado pelo professor:
  • 33.
    Equação Segmentária daReta Consideremos uma reta r que intercepta os eixos cartesianos nos pontos P(p, 0) e Q(0, q), com p · q 0: Dizemos que esta equação é a equação segmentária da reta r. Observação – Os denominadores de x e y, na equação segmentária, são, respectivamente, a abscissa do ponto onde r intercepta o eixo x e a ordenada do ponto onde r intercepta o eixo y.
  • 35.
    05. Determine aequação segmentária da reta cuja equação geral é 5x + 6 y – 30 = 0. X Y 0 5 6 0
  • 36.
  • 37.
    06. (MACKENZIE –SP ) A equação da reta r é: a) y + 2x – 2 = 0 b) y – x – 2 = 0 c) y + 2x + 2 = 0 d) y –2x – 2 = 0 e) y – 2x + 2 = 0 1 21 = − + − yx ( Multiplicando toda a equação por –2 ) Fica:  2x + y = –2  2x + y +2 = 0
  • 38.
    Consideremos dois pontosA e B tais que não seja paralela ao eixo x, nem ao eixo y. Traçando por A e B paralelas aos eixos coordenados, obtemos o triângulo retângulo ABC.
  • 40.
    2 – FÓRMULADA DISTÂNCIA ENTRE DOIS PONTOS
  • 41.
    EXERCÍCIO 03: Vamosdeterminar a distância entre os pontos A(1, -1) e B(4, -5):
  • 42.
    SOLUÇÃOSOLUÇÃO DADA QUESTÃOQUESTÃO EXERCÍCIO04: Calcule o ponto médio entre os pontos A = ( 2,1) B = ( 6,4).
  • 44.
    EXERCÍCIO 04: –PONTO MÉDIO DE SEGMENTO
  • 45.
    Questão 05 As coordenadasdo ponto médio do segmento de extremidades (1, –2 ) e ( –1 – 4 ) são: a) ( 3 , 1 ) b) ( 1 , 3 ) c) ( –2 , –3 ) d) ( 0 , –3 ) e) ( 3 , 3 )
  • 46.
    Questão 05 As coordenadasdo ponto médio do segmento de extremidades (1, –2 ) e ( –1 – 4 ) são: a) ( 3 , 1 ) b) ( 1 , 3 ) c) ( –2 , –3 ) d) ( 0 , –3 ) e) ( 3 , 3 )
  • 47.
    Questão 06 Os pontosA (1, -7) e B ( – 4, 3) pertencem à reta r. A equação dessa reta é a) y = 3x – 1 b) y + 2x – 5 = 0 c) y = 5 – 4x d) 2x + y + 5 = 0 e) y = 5x + 24 X Y 1 -7 -4 3 X Y -7x + 3 -4y –y -28 -3x = 0 – 10x – 5y – 25 = 0 Dividindo toda a equação por (- 5): 2x + y + 5 = 0
  • 48.
    Questão 09 Quala área do triângulo ABC de vértices A(-2,-1), B(1,3) e C(4,1)? XA YA 1/2 XB YB XC YC XA YA -2 -1 ½ 1 3 4 1 -2 -1 A = |1/2 [ -6 + 1 – 4 + 1 – 12 + 2 ] | A = |1/2 [ – 18 ] | A = | – 9 | A = 9 u.a. (unidade de área) observe que a área é sempre positiva e que as duas barrinhas | | significam módulo