SlideShare uma empresa Scribd logo
Estudo da reta
x
y
O (0, 0)
1º quadrante
2º quadrante
3º quadrante 4º quadrante
eixo das
abscissas
eixo das ordenadas
Origem
Plano cartesiano
P
x
y
O
4
3
P(3, 4)
Coordenadas no plano
 3 é a abscissa de P;
 4 é a ordenada de P;
 3 e 4 são as coordenadas
de P;
P(x, y)
 Em geral:
Sinais no plano
x
y
+
+
+
+
–
–
– –
y = 0
O( 0, 0)
x = 0
Bissetrizes no plano
x
y
y = x
y = –x
1ª bissetriz
2ª bissetriz
Equação da reta
Equação geral da reta
 A toda reta contida no sistema xOy de coordenadas
cartesianas está associada uma equação de 1.º grau, nas
variáveis x e y. Essa equação se verifica para todos os
pontos da reta, e só eles.
 Retas paralelas aos eixos;
 Retas não-paralelas aos eixos;
Retas paralelas aos eixos
 A figura mostra duas retas r e s, contidas no plano
cartesiano xOy.
x
y
O 4
2
r
s
 Equação da reta r: x = 4
 Equação da reta s: y = 2
Retas paralelas ao eixo y
 A figura mostra três retas r, s e t, contidas no plano
cartesiano xOy.
x
y
O 3
–2
r s  Equação de r: x = –2
1
t
 Equação de s: x = 1
 Equação de t: x = 3
 Geral: retas ∕∕ eixo y:
x = k
 k é a abscissa do ponto em que a reta intercepta o eixo x.
Retas paralelas ao eixo x
 A figura mostra três retas w, u e p, contidas no plano
cartesiano xOy.
x
y
O
3
–1 p
u
 Equação de w: y = 3
2
w  Equação de u: y = 2
 Equação de p: y = –1
 Geral: retas ∕∕ eixo x:
y = h
 h é a ordenada do ponto em que a reta intercepta o eixo y.
Retas não-paralelas aos eixos
 A figura mostra a reta r, contidas no plano cartesiano xOy,
determinada pelos pontos A(2, 1) e B(3, 3).
x
y
O 3
1
r
2
3
P(x, y) ∊ AB ⇒ A, B e P estão
alinhados
x y 1
1 2 1
3 3 1
= 0
x + 3y + 6 – 3 – 3x – 2y = 0
⇒ y – 2x + 3 = 0
A
B
P(x, y)
Equação geral da reta
 Toda reta do plano cartesiano xOy está associada a uma
equação de 1.º grau Ax + By + C = 0, com A, B e C reais,
sendo A ≠ 0 ou B ≠ 0.
 A equação de uma reta pode ser escrita de infinitas formas,
todas equivalentes.
 2x – y – 3 = 0
 4x – 2y – 6 = 0
 6x – 3y – 9 = 0 ... e assim por diante.
 Cada uma dessas igualdades é uma equação geral da reta.
Exemplos
 Traçar no plano cartesiano xOy, a reta r de equação geral
3x + 2y – 5 = 0.
x = 1 ⇒ 3.1 + 2y – 5 = 0 ⇒ 2y = 2 ⇒ y = 1
x = 3 ⇒ 3.3 + 2y – 5 = 0 ⇒ 2y = –4 ⇒ y = –2
x
y
O
3
1
r
–2
1
Exemplos
 Analisar se M(2, –1) e N(3, 5) são pontos da reta de
equação geral 5x + y – 9 = 0.
⇒ 5.2 + (–1) – 9 = 0
 Para que cada ponto pertença à reta, suas coordenadas devem
satisfazer a equação.
M(2, –1) ⇒ 10 –1 – 9 = 0 ⇒ 0 = 0
⇒ 5.3 + 5 – 9 = 0
N(3, 5) ⇒ 15 + 5 – 9 = 0 ⇒ 11 ≠ 0
 Concluímos que M é ponto da reta dada, mas N não é.
Inclinação de uma reta
40 m
Inclinação de uma reta
 Imagine um carro subindo uma rampa reta, conforme
figura. Suponha que para cada 40 m percorridos na
horizontal, a pista se eleve 6 m.
40 m
6 m

 O ângulo α que a rampa forma com a horizontal é o ângulo
de inclinação da rampa. O valor de tg α é a inclinação da
rampa.
6 m
Inclinação = tg α = = 0,15 = 15 %
Inclinação de uma reta
 Vamos analisar agora duas situações extremas.
 Quando o carro percorre um trecho horizontal, dizemos que
a rampa tem inclinação 0 e que o ângulo de inclinação é 0º.
(tg 0o = 0).
α = 0o ⇒ Inclinação = tg α = tg 0o = 0
Inclinação de uma reta
 Vamos analisar agora duas situações extremas.
 O auto não sobe uma rampa vertical. Nesse
caso, não se define a inclinação da rampa e o
ângulo de inclinação é 90º. (tg 90º = Não é
definido).
α = 90o
⇓
Inclinação não se define.
Q
Inclinação de uma reta
 Considere uma reta r, não paralela aos eixos x e y, contida
no plano cartesiano xOy.
x
y
O
yQ
yP
xQ
xP
P

M
xQ – xP
yQ – yP
Inclinação = tg α

yQ– yP
xQ– xP
a = tg α =
x
y
a =
r
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 30º =
x
y
O
30º
M
3
√3
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 45º = 1
x
y
O
45º
M
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 60º = √3
x
y
O
60º
M
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
x
y
O
120º
M
a = tg 120º = – tg 60º = –√3
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 135º = – tg 45º = – 1
x
y
O
135º
M
Inclinação de uma reta
 Convém lembrar as tangentes de alguns ângulos
importante:
a = tg 150º = – tg 30º =
x
y
O
150º
M
3
–√3
Exemplos
 Em cada caso, obter a inclinação e classificar o ângulo α de
inclinação da reta MN.
x
y
O
α
M
N
–2 1
3
5
xN – xM
yN – yM
a = tg α =
1 – (–2)
5 – 3
a =
3
2
a =
a > 0 e α é agudo
(α < 90º)
a) M(–2, 3) e N(1, 5)
Exemplos
 Em cada caso, obter a inclinação e classificar o ângulo α de
inclinação da reta MN.
x
y
O
α
M
N
–2
3
3
xN – xM
yN – yM
a = tg α =
3 – (–2)
–1 – 3
a =
5
– 4
a =
a < 0 e α é obtuso
(90º < α < 180º)
b) M(–2, 3) e N(3, –1)
–1
Exemplos
 Em cada caso, obter a inclinação e classificar o ângulo α de
inclinação da reta MN.
x
y
O
M N
–1 3
3
xN – xM
yN – yM
a = tg α =
1 – (–1)
3 – 3
a =
a = 0
a = 0 ⇒ α = 0º (nulo)
c) M(–1, 3) e N(2, 3)
Exemplos
 Em cada caso, obter a inclinação e classificar o ângulo α de
inclinação da reta MN.
x
y
O
M
N
–1
2
3
xN – xM
yN – yM
a = tg α =
2 – 2
3 – (–1)
a =
a = não é definida
α = 90º (reto)
d) M(2, –1) e N(2, 3)
α
⇓
Inclinação de uma reta - resumo
 O ângulo de inclinação α de uma reta é tal que 0º ≤ α ≤ 180º.
 Sua inclinação a pode ser positiva, negativa ou nula,
conforme a medida do ângulo α (α ≠ 90º).
 α = 0º ⇔ a = 0.
 0º < α < 90º ⇔ a > 0.
 α = 90º ⇔ a inclinação a não é definida.
 90º < α < 180º ⇔ a < 0.
Exemplos
 Achar as inclinações das retas r, s e t da figura abaixo.
x
y
O
120º
45º 45º
r s
t
 ar = tg 45º = 1
 as = tg 45º = 1  at = tg 120º – √3
= – tg 60º =
Equação reduzida da reta
Equação reduzida da reta
 Uma reta é determinada, quando são dados sua inclinação e
um de seus pontos. Suponhamos no plano xOy, uma reta r
que passa por A(2, 3) e têm ângulo de inclinação α = 135º.
 Vamos obter a equação da reta r.
x
y
O
135º
A
2
3
M(x, y)
xM – xA
yM – yA
a = tg 135º = –1.
x – 2
y – 3
–1 =
a =
y – 3 = –1(x – 2)
y – 3 = –1x + 2
y = –1x + 5
⇒
y = –x + 5
Equação reduzida da reta – Caso Geral
 Suponhamos que uma reta r de inclinação a = tg α e que passe
pelo ponto P(xP, yP), como mostra a figura.
x
y
O
α
P
xP
yP
M (x, y)
xM – xA
yM – yA
x – xP
y – yP
a =
a =
y – yP = a(x – xP)
⇒
⇒ y – yP = ax – axP ⇒ y = ax + (–axP + yP)
⇒ y = ax + b  Equação reduzida da reta
Equação reduzida da reta
 Na equação reduzida y = ax + b, temos:
 Significa que a reta passa pelo ponto (0, b) → ponto do eixo y.
x = 0 ⇒ y = a.0 + b ⇒ y = b
 O coeficiente a é a inclinação da reta; ele é também chamado,
por isso, coeficiente angular da reta.
 O coeficiente b é a ordenada do ponto em que a reta corta o eixo
y; ele é chamado de coeficiente linear da reta.
Exemplos
 Uma equação geral da reta r é 2x – y + 4 = 0. Escrever a
equação na forma reduzida, indicar os coeficientes angular
e linear e representar a reta no plano cartesiano xOy.
O coeficiente angular a = 2 e o coeficiente linear é b = 4.
2x – y + 4 = 0 ⇒ –y = –2x – 4 ⇒ y = 2x + 4
 a = 2, o ângulo de inclinação α < 90º.
 b = 4, a reta intercepta o eixo y no ponto (0, 4).
Vamos obter o ponto em que a reta corta o eixo x. Para isso, vamos
fazer y = 0.
y = 0 ⇒ 2x – 0 + 4 = 0 ⇒ 2x = –4 ⇒ x = –2 ⇒ (–2, 0)
Exemplos
 Veja a representação da reta r: 2x – y + 4 = 0 no plano xOy.
x
y
O
r
–2
4
y = 2x + 4
Exemplos
 O gráfico a seguir mostra uma reta s. Encontrar a equação
reduzida e uma equação geral para essa reta.
x
y
O
s
45º
2
y = ax + b
 A reta corta o eixo y no ponto
de ordenada 2, ponto (0, 2),
logo b = 2.
 α = 180º – 45º = 135º
a = tg 135º = –1.
y = – x + 2
⇒ x + y – 2 = 0
α
Exemplos
 Achar a equação reduzida da reta r que passa pelos pontos
A(–2, 6) e B(1, –3).
xA – xB
yA – yB
–2 – 1
6 –(–3)
a =
x
y
= =
 Primeiro vamos calcular a inclinação da reta.
–3
9
= ⇒ a = –3
 Utilizando o ponto A(–2, 6), por exemplo, obtemos a equação
fundamental, em seguida a equação reduzida da reta.
y – yP = a(x – xP) ⇒ y – 6 = –3(x + 2)
⇒ y – 6 = –3x – 6 ⇒ y = –3x

Mais conteúdo relacionado

Semelhante a Estudo da reta.ppt - A função de primeir

EquaçãO+G[1] (Erlan)
EquaçãO+G[1] (Erlan)EquaçãO+G[1] (Erlan)
EquaçãO+G[1] (Erlan)
josivaldopassos
 
As equações do segundo grau são abordadas na história da matemática desde a é...
As equações do segundo grau são abordadas na história da matemática desde a é...As equações do segundo grau são abordadas na história da matemática desde a é...
As equações do segundo grau são abordadas na história da matemática desde a é...
leosilveira
 
Caderno de atividades terceirão ftd 04
Caderno de atividades terceirão ftd   04Caderno de atividades terceirão ftd   04
Caderno de atividades terceirão ftd 04
Oswaldo Stanziola
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
profluizgustavo
 
Ponto reta
Ponto retaPonto reta
Ponto reta
con_seguir
 
Slide de matemática Geometria analítica
Slide de matemática Geometria analítica Slide de matemática Geometria analítica
Slide de matemática Geometria analítica
DAIANEMARQUESDASILVA1
 
Exercicios de equação reduzida da recta
Exercicios de equação reduzida da rectaExercicios de equação reduzida da recta
Exercicios de equação reduzida da recta
euclidesgarcia
 
11 geometria i
11 geometria i11 geometria i
11 geometria i
NetCultus
 
Geometria analitica equacao da reta
Geometria analitica equacao da retaGeometria analitica equacao da reta
Geometria analitica equacao da reta
con_seguir
 
100 questc3b5es-de-circunferc3aancia1
100 questc3b5es-de-circunferc3aancia1100 questc3b5es-de-circunferc3aancia1
100 questc3b5es-de-circunferc3aancia1
Giorgianna Porcena
 
Matemática - Exercícios Resolvidos (Coeficiente Angular)
Matemática - Exercícios Resolvidos (Coeficiente Angular)Matemática - Exercícios Resolvidos (Coeficiente Angular)
Matemática - Exercícios Resolvidos (Coeficiente Angular)
Danielle Siqueira
 
Determinação de uma reta
Determinação de uma retaDeterminação de uma reta
Determinação de uma reta
colers
 
Geometria analitica-gaia
Geometria analitica-gaiaGeometria analitica-gaia
Geometria analitica-gaia
slidericardinho
 
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdfAula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
RafaelVictorMorenoPo
 
Ciclo trigo
Ciclo trigoCiclo trigo
Ciclo trigo
Charles Brown
 
Geometria Analitica.docx
Geometria Analitica.docxGeometria Analitica.docx
Geometria Analitica.docx
FrancinaldoDomingosP1
 
Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
P Valter De Almeida Gomes
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
Leandro Guedes
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
Emerson Fernando
 
Trigonometria básica
Trigonometria básicaTrigonometria básica
Trigonometria básica
André Luís Nogueira
 

Semelhante a Estudo da reta.ppt - A função de primeir (20)

EquaçãO+G[1] (Erlan)
EquaçãO+G[1] (Erlan)EquaçãO+G[1] (Erlan)
EquaçãO+G[1] (Erlan)
 
As equações do segundo grau são abordadas na história da matemática desde a é...
As equações do segundo grau são abordadas na história da matemática desde a é...As equações do segundo grau são abordadas na história da matemática desde a é...
As equações do segundo grau são abordadas na história da matemática desde a é...
 
Caderno de atividades terceirão ftd 04
Caderno de atividades terceirão ftd   04Caderno de atividades terceirão ftd   04
Caderno de atividades terceirão ftd 04
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
 
Ponto reta
Ponto retaPonto reta
Ponto reta
 
Slide de matemática Geometria analítica
Slide de matemática Geometria analítica Slide de matemática Geometria analítica
Slide de matemática Geometria analítica
 
Exercicios de equação reduzida da recta
Exercicios de equação reduzida da rectaExercicios de equação reduzida da recta
Exercicios de equação reduzida da recta
 
11 geometria i
11 geometria i11 geometria i
11 geometria i
 
Geometria analitica equacao da reta
Geometria analitica equacao da retaGeometria analitica equacao da reta
Geometria analitica equacao da reta
 
100 questc3b5es-de-circunferc3aancia1
100 questc3b5es-de-circunferc3aancia1100 questc3b5es-de-circunferc3aancia1
100 questc3b5es-de-circunferc3aancia1
 
Matemática - Exercícios Resolvidos (Coeficiente Angular)
Matemática - Exercícios Resolvidos (Coeficiente Angular)Matemática - Exercícios Resolvidos (Coeficiente Angular)
Matemática - Exercícios Resolvidos (Coeficiente Angular)
 
Determinação de uma reta
Determinação de uma retaDeterminação de uma reta
Determinação de uma reta
 
Geometria analitica-gaia
Geometria analitica-gaiaGeometria analitica-gaia
Geometria analitica-gaia
 
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdfAula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
 
Ciclo trigo
Ciclo trigoCiclo trigo
Ciclo trigo
 
Geometria Analitica.docx
Geometria Analitica.docxGeometria Analitica.docx
Geometria Analitica.docx
 
Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Trigonometria básica
Trigonometria básicaTrigonometria básica
Trigonometria básica
 

Último

Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
vitorreissouzasilva
 
Caça-palavaras e cruzadinha - Dígrafos.
Caça-palavaras  e cruzadinha  - Dígrafos.Caça-palavaras  e cruzadinha  - Dígrafos.
Caça-palavaras e cruzadinha - Dígrafos.
Mary Alvarenga
 
Aula Aberta_Avaliação Digital no ensino basico e secundário.pdf
Aula Aberta_Avaliação Digital no ensino basico e secundário.pdfAula Aberta_Avaliação Digital no ensino basico e secundário.pdf
Aula Aberta_Avaliação Digital no ensino basico e secundário.pdf
Marília Pacheco
 
Aula 02 - Introducao a Algoritmos.pptx.pdf
Aula 02 - Introducao a Algoritmos.pptx.pdfAula 02 - Introducao a Algoritmos.pptx.pdf
Aula 02 - Introducao a Algoritmos.pptx.pdf
AntonioAngeloNeves
 
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptxTREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
erssstcontato
 
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.pptFUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
MarceloMonteiro213738
 
Exercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica BasicaExercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica Basica
ElinarioCosta
 
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptxSlides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptxSlides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptxAtpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
joaresmonte3
 
As sequências didáticas: práticas educativas
As sequências didáticas: práticas educativasAs sequências didáticas: práticas educativas
As sequências didáticas: práticas educativas
rloureiro1
 
Aula de fundamentos de Programação Orientada a Objeto na linguagem de program...
Aula de fundamentos de Programação Orientada a Objeto na linguagem de program...Aula de fundamentos de Programação Orientada a Objeto na linguagem de program...
Aula de fundamentos de Programação Orientada a Objeto na linguagem de program...
samucajaime015
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
Zenir Carmen Bez Trombeta
 
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdfConcurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
TathyLopes1
 
filosofia e Direito- É a teoria que explica como a sociedade se organizou co...
filosofia e Direito- É a teoria que explica como a sociedade se organizou  co...filosofia e Direito- É a teoria que explica como a sociedade se organizou  co...
filosofia e Direito- É a teoria que explica como a sociedade se organizou co...
SidneySilva523387
 
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdfUFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
Manuais Formação
 
A importância das conjunções- Ensino Médio
A importância das conjunções- Ensino MédioA importância das conjunções- Ensino Médio
A importância das conjunções- Ensino Médio
nunesly
 
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasnTabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
CarlosJean21
 
Como montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdfComo montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdf
AlineOliveira625820
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
LuizHenriquedeAlmeid6
 

Último (20)

Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
 
Caça-palavaras e cruzadinha - Dígrafos.
Caça-palavaras  e cruzadinha  - Dígrafos.Caça-palavaras  e cruzadinha  - Dígrafos.
Caça-palavaras e cruzadinha - Dígrafos.
 
Aula Aberta_Avaliação Digital no ensino basico e secundário.pdf
Aula Aberta_Avaliação Digital no ensino basico e secundário.pdfAula Aberta_Avaliação Digital no ensino basico e secundário.pdf
Aula Aberta_Avaliação Digital no ensino basico e secundário.pdf
 
Aula 02 - Introducao a Algoritmos.pptx.pdf
Aula 02 - Introducao a Algoritmos.pptx.pdfAula 02 - Introducao a Algoritmos.pptx.pdf
Aula 02 - Introducao a Algoritmos.pptx.pdf
 
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptxTREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
TREINAMENTO DE BRIGADA DE INCENDIO BRIGADA CCB 2023.pptx
 
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.pptFUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
 
Exercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica BasicaExercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica Basica
 
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptxSlides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
 
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptxSlides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
 
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptxAtpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
Atpcg PEI Rev Irineu GESTÃO DE SALA DE AULA.pptx
 
As sequências didáticas: práticas educativas
As sequências didáticas: práticas educativasAs sequências didáticas: práticas educativas
As sequências didáticas: práticas educativas
 
Aula de fundamentos de Programação Orientada a Objeto na linguagem de program...
Aula de fundamentos de Programação Orientada a Objeto na linguagem de program...Aula de fundamentos de Programação Orientada a Objeto na linguagem de program...
Aula de fundamentos de Programação Orientada a Objeto na linguagem de program...
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
 
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdfConcurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
 
filosofia e Direito- É a teoria que explica como a sociedade se organizou co...
filosofia e Direito- É a teoria que explica como a sociedade se organizou  co...filosofia e Direito- É a teoria que explica como a sociedade se organizou  co...
filosofia e Direito- É a teoria que explica como a sociedade se organizou co...
 
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdfUFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
 
A importância das conjunções- Ensino Médio
A importância das conjunções- Ensino MédioA importância das conjunções- Ensino Médio
A importância das conjunções- Ensino Médio
 
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasnTabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
 
Como montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdfComo montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdf
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
 

Estudo da reta.ppt - A função de primeir

  • 2. x y O (0, 0) 1º quadrante 2º quadrante 3º quadrante 4º quadrante eixo das abscissas eixo das ordenadas Origem Plano cartesiano
  • 3. P x y O 4 3 P(3, 4) Coordenadas no plano  3 é a abscissa de P;  4 é a ordenada de P;  3 e 4 são as coordenadas de P; P(x, y)  Em geral:
  • 4. Sinais no plano x y + + + + – – – – y = 0 O( 0, 0) x = 0
  • 5. Bissetrizes no plano x y y = x y = –x 1ª bissetriz 2ª bissetriz
  • 7. Equação geral da reta  A toda reta contida no sistema xOy de coordenadas cartesianas está associada uma equação de 1.º grau, nas variáveis x e y. Essa equação se verifica para todos os pontos da reta, e só eles.  Retas paralelas aos eixos;  Retas não-paralelas aos eixos;
  • 8. Retas paralelas aos eixos  A figura mostra duas retas r e s, contidas no plano cartesiano xOy. x y O 4 2 r s  Equação da reta r: x = 4  Equação da reta s: y = 2
  • 9. Retas paralelas ao eixo y  A figura mostra três retas r, s e t, contidas no plano cartesiano xOy. x y O 3 –2 r s  Equação de r: x = –2 1 t  Equação de s: x = 1  Equação de t: x = 3  Geral: retas ∕∕ eixo y: x = k  k é a abscissa do ponto em que a reta intercepta o eixo x.
  • 10. Retas paralelas ao eixo x  A figura mostra três retas w, u e p, contidas no plano cartesiano xOy. x y O 3 –1 p u  Equação de w: y = 3 2 w  Equação de u: y = 2  Equação de p: y = –1  Geral: retas ∕∕ eixo x: y = h  h é a ordenada do ponto em que a reta intercepta o eixo y.
  • 11. Retas não-paralelas aos eixos  A figura mostra a reta r, contidas no plano cartesiano xOy, determinada pelos pontos A(2, 1) e B(3, 3). x y O 3 1 r 2 3 P(x, y) ∊ AB ⇒ A, B e P estão alinhados x y 1 1 2 1 3 3 1 = 0 x + 3y + 6 – 3 – 3x – 2y = 0 ⇒ y – 2x + 3 = 0 A B P(x, y)
  • 12. Equação geral da reta  Toda reta do plano cartesiano xOy está associada a uma equação de 1.º grau Ax + By + C = 0, com A, B e C reais, sendo A ≠ 0 ou B ≠ 0.  A equação de uma reta pode ser escrita de infinitas formas, todas equivalentes.  2x – y – 3 = 0  4x – 2y – 6 = 0  6x – 3y – 9 = 0 ... e assim por diante.  Cada uma dessas igualdades é uma equação geral da reta.
  • 13. Exemplos  Traçar no plano cartesiano xOy, a reta r de equação geral 3x + 2y – 5 = 0. x = 1 ⇒ 3.1 + 2y – 5 = 0 ⇒ 2y = 2 ⇒ y = 1 x = 3 ⇒ 3.3 + 2y – 5 = 0 ⇒ 2y = –4 ⇒ y = –2 x y O 3 1 r –2 1
  • 14. Exemplos  Analisar se M(2, –1) e N(3, 5) são pontos da reta de equação geral 5x + y – 9 = 0. ⇒ 5.2 + (–1) – 9 = 0  Para que cada ponto pertença à reta, suas coordenadas devem satisfazer a equação. M(2, –1) ⇒ 10 –1 – 9 = 0 ⇒ 0 = 0 ⇒ 5.3 + 5 – 9 = 0 N(3, 5) ⇒ 15 + 5 – 9 = 0 ⇒ 11 ≠ 0  Concluímos que M é ponto da reta dada, mas N não é.
  • 16. 40 m Inclinação de uma reta  Imagine um carro subindo uma rampa reta, conforme figura. Suponha que para cada 40 m percorridos na horizontal, a pista se eleve 6 m. 40 m 6 m   O ângulo α que a rampa forma com a horizontal é o ângulo de inclinação da rampa. O valor de tg α é a inclinação da rampa. 6 m Inclinação = tg α = = 0,15 = 15 %
  • 17. Inclinação de uma reta  Vamos analisar agora duas situações extremas.  Quando o carro percorre um trecho horizontal, dizemos que a rampa tem inclinação 0 e que o ângulo de inclinação é 0º. (tg 0o = 0). α = 0o ⇒ Inclinação = tg α = tg 0o = 0
  • 18. Inclinação de uma reta  Vamos analisar agora duas situações extremas.  O auto não sobe uma rampa vertical. Nesse caso, não se define a inclinação da rampa e o ângulo de inclinação é 90º. (tg 90º = Não é definido). α = 90o ⇓ Inclinação não se define.
  • 19. Q Inclinação de uma reta  Considere uma reta r, não paralela aos eixos x e y, contida no plano cartesiano xOy. x y O yQ yP xQ xP P  M xQ – xP yQ – yP Inclinação = tg α  yQ– yP xQ– xP a = tg α = x y a = r
  • 20. Inclinação de uma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 30º = x y O 30º M 3 √3
  • 21. Inclinação de uma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 45º = 1 x y O 45º M
  • 22. Inclinação de uma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 60º = √3 x y O 60º M
  • 23. Inclinação de uma reta  Convém lembrar as tangentes de alguns ângulos importante: x y O 120º M a = tg 120º = – tg 60º = –√3
  • 24. Inclinação de uma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 135º = – tg 45º = – 1 x y O 135º M
  • 25. Inclinação de uma reta  Convém lembrar as tangentes de alguns ângulos importante: a = tg 150º = – tg 30º = x y O 150º M 3 –√3
  • 26. Exemplos  Em cada caso, obter a inclinação e classificar o ângulo α de inclinação da reta MN. x y O α M N –2 1 3 5 xN – xM yN – yM a = tg α = 1 – (–2) 5 – 3 a = 3 2 a = a > 0 e α é agudo (α < 90º) a) M(–2, 3) e N(1, 5)
  • 27. Exemplos  Em cada caso, obter a inclinação e classificar o ângulo α de inclinação da reta MN. x y O α M N –2 3 3 xN – xM yN – yM a = tg α = 3 – (–2) –1 – 3 a = 5 – 4 a = a < 0 e α é obtuso (90º < α < 180º) b) M(–2, 3) e N(3, –1) –1
  • 28. Exemplos  Em cada caso, obter a inclinação e classificar o ângulo α de inclinação da reta MN. x y O M N –1 3 3 xN – xM yN – yM a = tg α = 1 – (–1) 3 – 3 a = a = 0 a = 0 ⇒ α = 0º (nulo) c) M(–1, 3) e N(2, 3)
  • 29. Exemplos  Em cada caso, obter a inclinação e classificar o ângulo α de inclinação da reta MN. x y O M N –1 2 3 xN – xM yN – yM a = tg α = 2 – 2 3 – (–1) a = a = não é definida α = 90º (reto) d) M(2, –1) e N(2, 3) α ⇓
  • 30. Inclinação de uma reta - resumo  O ângulo de inclinação α de uma reta é tal que 0º ≤ α ≤ 180º.  Sua inclinação a pode ser positiva, negativa ou nula, conforme a medida do ângulo α (α ≠ 90º).  α = 0º ⇔ a = 0.  0º < α < 90º ⇔ a > 0.  α = 90º ⇔ a inclinação a não é definida.  90º < α < 180º ⇔ a < 0.
  • 31. Exemplos  Achar as inclinações das retas r, s e t da figura abaixo. x y O 120º 45º 45º r s t  ar = tg 45º = 1  as = tg 45º = 1  at = tg 120º – √3 = – tg 60º =
  • 33. Equação reduzida da reta  Uma reta é determinada, quando são dados sua inclinação e um de seus pontos. Suponhamos no plano xOy, uma reta r que passa por A(2, 3) e têm ângulo de inclinação α = 135º.  Vamos obter a equação da reta r. x y O 135º A 2 3 M(x, y) xM – xA yM – yA a = tg 135º = –1. x – 2 y – 3 –1 = a = y – 3 = –1(x – 2) y – 3 = –1x + 2 y = –1x + 5 ⇒ y = –x + 5
  • 34. Equação reduzida da reta – Caso Geral  Suponhamos que uma reta r de inclinação a = tg α e que passe pelo ponto P(xP, yP), como mostra a figura. x y O α P xP yP M (x, y) xM – xA yM – yA x – xP y – yP a = a = y – yP = a(x – xP) ⇒ ⇒ y – yP = ax – axP ⇒ y = ax + (–axP + yP) ⇒ y = ax + b  Equação reduzida da reta
  • 35. Equação reduzida da reta  Na equação reduzida y = ax + b, temos:  Significa que a reta passa pelo ponto (0, b) → ponto do eixo y. x = 0 ⇒ y = a.0 + b ⇒ y = b  O coeficiente a é a inclinação da reta; ele é também chamado, por isso, coeficiente angular da reta.  O coeficiente b é a ordenada do ponto em que a reta corta o eixo y; ele é chamado de coeficiente linear da reta.
  • 36. Exemplos  Uma equação geral da reta r é 2x – y + 4 = 0. Escrever a equação na forma reduzida, indicar os coeficientes angular e linear e representar a reta no plano cartesiano xOy. O coeficiente angular a = 2 e o coeficiente linear é b = 4. 2x – y + 4 = 0 ⇒ –y = –2x – 4 ⇒ y = 2x + 4  a = 2, o ângulo de inclinação α < 90º.  b = 4, a reta intercepta o eixo y no ponto (0, 4). Vamos obter o ponto em que a reta corta o eixo x. Para isso, vamos fazer y = 0. y = 0 ⇒ 2x – 0 + 4 = 0 ⇒ 2x = –4 ⇒ x = –2 ⇒ (–2, 0)
  • 37. Exemplos  Veja a representação da reta r: 2x – y + 4 = 0 no plano xOy. x y O r –2 4 y = 2x + 4
  • 38. Exemplos  O gráfico a seguir mostra uma reta s. Encontrar a equação reduzida e uma equação geral para essa reta. x y O s 45º 2 y = ax + b  A reta corta o eixo y no ponto de ordenada 2, ponto (0, 2), logo b = 2.  α = 180º – 45º = 135º a = tg 135º = –1. y = – x + 2 ⇒ x + y – 2 = 0 α
  • 39. Exemplos  Achar a equação reduzida da reta r que passa pelos pontos A(–2, 6) e B(1, –3). xA – xB yA – yB –2 – 1 6 –(–3) a = x y = =  Primeiro vamos calcular a inclinação da reta. –3 9 = ⇒ a = –3  Utilizando o ponto A(–2, 6), por exemplo, obtemos a equação fundamental, em seguida a equação reduzida da reta. y – yP = a(x – xP) ⇒ y – 6 = –3(x + 2) ⇒ y – 6 = –3x – 6 ⇒ y = –3x