SlideShare uma empresa Scribd logo
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
Prof. Me. Josivaldo Nascimento dos Passos
Medidas Separatrizes
UNIVERSIDADE ESTADUAL DO MARANH˜AO
17 de outubro de 2016
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
Sum´ario
MEDIDAS SEPARATRIZES
Conceitos;
C´alculo das Medidas separatrize;
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
Conceitos
S˜ao n´umeros reais que dividem a sequˆencia ordenada de dados em
partes que contˆem a mesma quantidade de elementos da s´erie.
Desta forma, a mediana que divide a sequˆencia ordenada em dois
grupos, cada um deles contendo 50% dos valores da sequˆencia, ´e
tamb´em uma medida separatriz.
Al´em da mediana, as outras medidas separatrizes que destacaremos
s˜ao: quartis, quintis, decis e percentis.
Se dividirmos a s´erie ordenada em quatro partes, cada uma ficar´a
com 25% de seus elementos.
Os elementos que separam estes grupos s˜ao chamados quartis.
Assim, o primeiio quartil, que indicaremos por Q1, separa a sequˆencia
ordenada deixando 25% de seus valores a esquerda e 75% de seus
valores a direita.
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
Conceitos
O segundo quartil, que indicaremos por Q2, separa a sequˆencia or-
denada, deixando 50% de seus valores a esquerda e 50% de seus
valores a direita.
Note que o Q2 ´e a mediana da s´erie.
O terceiro quartil, que indicaremos por Q3, separa a sequˆencia or-
denada deixando a sua esquerda 75% de seus elementos e 25% de
seus elementos a direita.
Se dividirmos a sequˆencia ordenada em cinco partes, cada uma ficar´a
com 20% de seus elementos.
Os elementos que separam estes grupos s˜ao chamados quintis.
Assim, o primeiro quintil, que indicaremos por K1, separa a sequˆencia
ordenada, deixando a sua esquerda 20% de seus valores e a sua
direita 80% de seus valores.
De modo an´alogo s˜ao definidos os outros quintis.
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
Conceitos
Se dividirmos a sequˆencia ordenada em dez partes, cada uma ficar´a
com 10% de seus valores.
Os elementos que separam estes grupos s˜ao chamados decis.
Assim, o primeiro decil, que indicaremos por D1 separa a sequˆencia
ordenada, deixando a sua esquerda 10% de seus valores e 90% de
seus valores a direita.
De modo an´alogo s˜ao definidos os outros decis.
Se dividirmos a sequˆencia ordenada em 100 partes, cada uma ficar´a
com 1% de seus elementos.
Os elementos que separam estes grupos s˜ao chamados centis ou
percentis.
Assim, o primeiro percentil, que indicaremos por P1, separa a sequˆencia
ordenada deixando a sua esquerda 1% de seus valores e 99% de seus
valores a direita.
De modo an´alogo s˜ao definidos os outros percentis.
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
Conceitos
Note que o Q4, K5, D10, P100 s˜ao elementos que deixam a sua es-
querda 100% dos valores da sequencia ordenada e correspondem
diretamente ao ´ultimo valor da sequˆencia.
Se observarmos que os quartis, quintis e decis s˜ao m´ultiplos dos
percentis, ent˜ao basta estabelecer a f´ormula de c´alculo de percentis.
Todas as outras medidas podem ser identificadas como percentis.
Desta forma:
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
1o
Caso - DADOS BRUTOS OU ROL
Devemos ordenar os elementos, caso sejam Dados Brutos obtendo
o Rol.
Identificamos a medida que queremos obter com o percentil corres-
pondente, Pi
Calculamos i% de n, ou seja,
i.n
100
para localizar a posi¸c˜ao do per-
centil i no Rol.
Em seguida, identificamos o elemento que ocupa esta posi¸c˜ao.
Note que se
i.n
100
for um n´umero inteiro, ent˜ao Pi que estamos
procurando identificar ´e um dos elementos da sequˆencia ordenada.
Se
i.n
100
n˜ao for um n´umero inteiro, isto significa que o Pi ´e um
elemento itermedi´ario entre os elementos que ocupam as posi¸c˜oes
aproximadas por falta e por excesso do valor
i.n
100
. Neste caso, o
Pi ´e definido como sendo a m´edia dos valores que ocupam estas
posi¸c˜oes aproximadas.
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
1o
Caso - DADOS BRUTOS OU ROL
Exemplo
Calcule o Q1 da sequˆencia X : 2, 5, 8, 5, 5, 10, 1, 12, 12, 11, 13, 15.
Ordenando a seq¨uˆencia, obtemos o Rol:
X : 1, 2, 5, 5, 5, 8, 10, 11, 12, 12, 13, 15
Identificamos Q1 = P25. Calculamos 25% de 12 que ´e o n´umero de
elementos da s´erie obtendo 3.
Este valor indica a posi¸c˜ao do P25 no Rol, isto ´e, o P25 ´e o terceiro
elemento do Rol. Observando o terceiro elemento do Rol obt´em-se
5.
Portanto, Q1 = P25 = 5.
Interpreta¸c˜ao: 25% dos valores desta sequˆencia s˜ao valores menores
ou iguais a 5 e 75% dos valores desta sequˆencia s˜ao valores maiores
ou iguais a 5.
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
2o
Caso - VARI´AVEL DISCRETA
Se os dados est˜ao apresentados na forma de uma vari´avel discreta,
eles j´a est˜ao naturalmente ordenados.
Identifica-se a medida que queremos obter com o percentil corres-
pondente: Pi .
Calculamos i% de n, ou seja,
i.n
100
para localizar a posi¸c˜ao do per-
centil i na s´erie.
Em seguida utilizamos a frequˆencia acumulada da s´erie para localizar
o elemento que ocupa esta posi¸c˜ao.
O valor deste elemento ´e o Pi .
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
2o
Caso - VARI´AVEL DISCRETA
Exemplo
Calcule o D4 para a s´erie:
xi fi
2 3
4 5
5 8
7 6
10 2
O n´umero de elementos da s´erie ´e fi = 24
Temos que D4 = P40 e calculamos 40% de 24, obtendo 9,6.
Esta posi¸c˜ao n˜ao-inteira significa que o P40 ´e um valor compreendido
entre o nono e o d´ecimo elemento da s´erie.
Construindo a frequˆencia acumulada:
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
2o
Caso - VARI´AVEL DISCRETA
xi fi Fi
2 3 3
4 5 8
5 8 16
7 6 22
10 2 24
observamos que o nono elemento ´e 5, e o d´ecimo elemento tamb´em
´e 5.
Assim, D4 = P40 =
5 + 5
2
= 5.
Interpreta¸c˜ao: 40% dos valores desta s´erie s˜ao valores menores ou
guais a 5 e 60% dos valores desta s´erie s˜ao valores maiores ou iguais
a 5.
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
3o
Caso - VARI´AVEL CONT´INUA
Se os dados est˜ao apresentados na forma de uma vari´avel cont´ınua,
eles j´a est˜ao naturalmente ordenados e o n´umero de elementos da
s´erie ´e n = fi .
A f´ormula para o c´alculo dos percentis, fazemos uma generaliza¸c˜ao
da mediana, resultando em
Pi = li +
i.n
100
− Fant
fi
.h
Onde:
Pi - Percentil i(i = 1, 2, 3, . . . , 99)
li - limite inferior da classe que cont´em o percentil i.
n - n´umero de elementos da s´erie.
Fant - frequˆencia acumulada da classe anterior a classe que
cont´em o Pi .
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
3o
Caso - VARI´AVEL CONT´INUA
fi - frequˆencia simples da classe que cont´em o percentil i.
h - amplitude do intervalo de classe.
Exemplo
Calcule o Q3 da s´erie:
Classe Int. cl. fi
1 0 10 16
2 10 20 18
3 20 30 24
4 30 40 35
5 40 50 12
O n´umero de elementos da s´erie ´e dado por fi = 105. Identifica-
mos Q3 = P75
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
3o
Caso - VARI´AVEL CONT´INUA
Iniciamos o c´alculo do valor P75 lembrando que neste caso i = 75 e
que
i.n
100
=
75.105
100
= 78, 75
Isto nos d´a a posi¸c˜ao do P75 na s´erie.
Construindo a frequˆencia acumulada da s´erie obtemos:
Classe Int. cl. fi Fi
1 0 10 16 16
2 10 20 18 34
3 20 30 24 58
4 30 40 35 93
5 40 50 12 105
A classe que cont´em o elemento que ocupa a posi¸c˜ao 78,75 na s´erie
´e a quarta classe. Esta ´e a classe que cont´em o P75.
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
3o
Caso - VARI´AVEL CONT´INUA
Substituindo os valores indicados na f´ormula, obt´em-se:
P75 = 30 +
78, 75 − 58
35
.10
Portanto, Q3 = P75 = 35, 93
Interpreta¸c˜ao: 75% dos valores da s´erie s˜ao menores ou iguais a
35,93 e 25% dos valores da s´erie s˜ao maiores ou iguais a 35,93.
Estat´ıtica B´asica
MEDIDAS SEPARATRIZES
C´alculo das Medidas separatrize
MARTINS, Gilberto de Andrade Martins, Estat´ıstica Geral e
Aplicada, 4 ed. S˜ao Paulo: Editora Atlas S.A., 2011
SILVA, Ermes Medeiros da; SILVA, Elio Medeiros da;
GONC¸ALVES, Valter; MUROLO, Afrˆanio Carlos,
ESTAT´ISTICA Para os cursos de: Economia, Administra¸c˜ao e
Ciˆencias Contabeis 3 ed. S˜ao Paulo: Editora Atlas S.A., 1999
Estat´ıtica B´asica

Mais conteúdo relacionado

Mais procurados

Distribuicaonormal
DistribuicaonormalDistribuicaonormal
Distribuicaonormalthiagoufal
 
Cap4 - Parte 7 - Distribuição Normal
Cap4 - Parte 7 - Distribuição NormalCap4 - Parte 7 - Distribuição Normal
Cap4 - Parte 7 - Distribuição NormalRegis Andrade
 
Aula 9-intervalo-de-confiança para a média
Aula 9-intervalo-de-confiança para a médiaAula 9-intervalo-de-confiança para a média
Aula 9-intervalo-de-confiança para a médiaCarlos Alberto Monteiro
 
Distribuicao de probabilidades
Distribuicao de probabilidadesDistribuicao de probabilidades
Distribuicao de probabilidadesvagnergeovani
 
Caderno - Estatítica Descritiva
Caderno - Estatítica DescritivaCaderno - Estatítica Descritiva
Caderno - Estatítica DescritivaCadernos PPT
 
A distribuição normal
A distribuição normalA distribuição normal
A distribuição normalLiliane Ennes
 
Estatística Descritiva - parte 2 (ISMT)
Estatística Descritiva - parte 2 (ISMT)Estatística Descritiva - parte 2 (ISMT)
Estatística Descritiva - parte 2 (ISMT)João Leal
 
Estatistica regular 4
Estatistica regular 4Estatistica regular 4
Estatistica regular 4J M
 
Apostila regressao linear
Apostila regressao linearApostila regressao linear
Apostila regressao linearcoelhojmm
 
Função de densidade normal bom
Função de densidade normal   bomFunção de densidade normal   bom
Função de densidade normal bomjon024
 
Estatistica regular 3
Estatistica regular 3Estatistica regular 3
Estatistica regular 3J M
 
3. medidas de posição e dispersão (1)
3. medidas de posição e dispersão (1)3. medidas de posição e dispersão (1)
3. medidas de posição e dispersão (1)Thiago Apolinário
 
Capitulo 8 gujarati resumo
Capitulo 8 gujarati resumoCapitulo 8 gujarati resumo
Capitulo 8 gujarati resumoMonica Barros
 
Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati
Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 GujaratiMonica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati
Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 GujaratiMonica Barros
 

Mais procurados (20)

Distribuicaonormal
DistribuicaonormalDistribuicaonormal
Distribuicaonormal
 
Distribuição Normal
Distribuição NormalDistribuição Normal
Distribuição Normal
 
Cap4 - Parte 7 - Distribuição Normal
Cap4 - Parte 7 - Distribuição NormalCap4 - Parte 7 - Distribuição Normal
Cap4 - Parte 7 - Distribuição Normal
 
distribuição-t-student
distribuição-t-studentdistribuição-t-student
distribuição-t-student
 
Aula 9-intervalo-de-confiança para a média
Aula 9-intervalo-de-confiança para a médiaAula 9-intervalo-de-confiança para a média
Aula 9-intervalo-de-confiança para a média
 
Distribuicao de probabilidades
Distribuicao de probabilidadesDistribuicao de probabilidades
Distribuicao de probabilidades
 
Caderno - Estatítica Descritiva
Caderno - Estatítica DescritivaCaderno - Estatítica Descritiva
Caderno - Estatítica Descritiva
 
Estatística distribuição normal (aula 2)
Estatística   distribuição normal (aula 2)Estatística   distribuição normal (aula 2)
Estatística distribuição normal (aula 2)
 
A distribuição normal
A distribuição normalA distribuição normal
A distribuição normal
 
Estatística Descritiva - parte 2 (ISMT)
Estatística Descritiva - parte 2 (ISMT)Estatística Descritiva - parte 2 (ISMT)
Estatística Descritiva - parte 2 (ISMT)
 
Distribuição normal
Distribuição normalDistribuição normal
Distribuição normal
 
Estatistica regular 4
Estatistica regular 4Estatistica regular 4
Estatistica regular 4
 
Apostila regressao linear
Apostila regressao linearApostila regressao linear
Apostila regressao linear
 
Atps estatistica
Atps estatisticaAtps estatistica
Atps estatistica
 
Função de densidade normal bom
Função de densidade normal   bomFunção de densidade normal   bom
Função de densidade normal bom
 
Aula 17 medidas separatrizes
Aula 17   medidas separatrizesAula 17   medidas separatrizes
Aula 17 medidas separatrizes
 
Estatistica regular 3
Estatistica regular 3Estatistica regular 3
Estatistica regular 3
 
3. medidas de posição e dispersão (1)
3. medidas de posição e dispersão (1)3. medidas de posição e dispersão (1)
3. medidas de posição e dispersão (1)
 
Capitulo 8 gujarati resumo
Capitulo 8 gujarati resumoCapitulo 8 gujarati resumo
Capitulo 8 gujarati resumo
 
Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati
Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 GujaratiMonica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati
Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati
 

Destaque

Cap2 - Parte 5 - Medidas Para Dados Agrupados
Cap2 - Parte 5 - Medidas Para Dados AgrupadosCap2 - Parte 5 - Medidas Para Dados Agrupados
Cap2 - Parte 5 - Medidas Para Dados AgrupadosRegis Andrade
 
Conceptual Framework on Technopreneurship
Conceptual Framework on TechnopreneurshipConceptual Framework on Technopreneurship
Conceptual Framework on TechnopreneurshipSelladurai Muthusamy
 
Acute Care Hospital Strategic Plan PowerPoint Presentation
Acute Care Hospital Strategic Plan PowerPoint PresentationAcute Care Hospital Strategic Plan PowerPoint Presentation
Acute Care Hospital Strategic Plan PowerPoint PresentationAndrea Ratz
 
Global Climate Change
Global Climate ChangeGlobal Climate Change
Global Climate ChangeSD Paul
 
Planificação em 1ºptagd 2013 14
Planificação em 1ºptagd 2013 14Planificação em 1ºptagd 2013 14
Planificação em 1ºptagd 2013 14Carlos Vieira
 
Plano de curso eja - 8° ano
Plano de curso   eja - 8° anoPlano de curso   eja - 8° ano
Plano de curso eja - 8° anonandatinoco
 
Subway: The Franchising Concept in India through Service Marketing
Subway: The Franchising Concept in India through Service MarketingSubway: The Franchising Concept in India through Service Marketing
Subway: The Franchising Concept in India through Service MarketingAsif Mahmood Abbas
 
Estatistica i aula 6 - medidas de posição - 2012
Estatistica i   aula 6 - medidas de posição - 2012Estatistica i   aula 6 - medidas de posição - 2012
Estatistica i aula 6 - medidas de posição - 2012IFMG
 
Um Estudo dos Provérbios e Seus Significados Textuais
Um Estudo dos Provérbios e Seus Significados TextuaisUm Estudo dos Provérbios e Seus Significados Textuais
Um Estudo dos Provérbios e Seus Significados TextuaisJoyce Gomes
 

Destaque (20)

Juros compostos1
Juros compostos1Juros compostos1
Juros compostos1
 
Cap2 - Parte 5 - Medidas Para Dados Agrupados
Cap2 - Parte 5 - Medidas Para Dados AgrupadosCap2 - Parte 5 - Medidas Para Dados Agrupados
Cap2 - Parte 5 - Medidas Para Dados Agrupados
 
4.medidas
4.medidas4.medidas
4.medidas
 
Como nace una idea de investigacion
Como nace una idea de investigacionComo nace una idea de investigacion
Como nace una idea de investigacion
 
χριστουγεννα αλεξανδρος
χριστουγεννα αλεξανδροςχριστουγεννα αλεξανδρος
χριστουγεννα αλεξανδρος
 
Conceptual Framework on Technopreneurship
Conceptual Framework on TechnopreneurshipConceptual Framework on Technopreneurship
Conceptual Framework on Technopreneurship
 
Acute Care Hospital Strategic Plan PowerPoint Presentation
Acute Care Hospital Strategic Plan PowerPoint PresentationAcute Care Hospital Strategic Plan PowerPoint Presentation
Acute Care Hospital Strategic Plan PowerPoint Presentation
 
Global Climate Change
Global Climate ChangeGlobal Climate Change
Global Climate Change
 
Planificação em 1ºptagd 2013 14
Planificação em 1ºptagd 2013 14Planificação em 1ºptagd 2013 14
Planificação em 1ºptagd 2013 14
 
Alt pirineu
Alt pirineuAlt pirineu
Alt pirineu
 
PLANO ANUAL DE ATIVIDADES ESAG 2015/2016 AO LONGO DO ANO
PLANO ANUAL DE ATIVIDADES ESAG 2015/2016 AO LONGO DO ANOPLANO ANUAL DE ATIVIDADES ESAG 2015/2016 AO LONGO DO ANO
PLANO ANUAL DE ATIVIDADES ESAG 2015/2016 AO LONGO DO ANO
 
Ditados populares
Ditados popularesDitados populares
Ditados populares
 
Plano de curso eja - 8° ano
Plano de curso   eja - 8° anoPlano de curso   eja - 8° ano
Plano de curso eja - 8° ano
 
Subway: The Franchising Concept in India through Service Marketing
Subway: The Franchising Concept in India through Service MarketingSubway: The Franchising Concept in India through Service Marketing
Subway: The Franchising Concept in India through Service Marketing
 
Aula 12 medidas de dispersão
Aula 12   medidas de dispersãoAula 12   medidas de dispersão
Aula 12 medidas de dispersão
 
Estatistica i aula 6 - medidas de posição - 2012
Estatistica i   aula 6 - medidas de posição - 2012Estatistica i   aula 6 - medidas de posição - 2012
Estatistica i aula 6 - medidas de posição - 2012
 
Aula 20 medidas de assimetria
Aula 20   medidas de assimetriaAula 20   medidas de assimetria
Aula 20 medidas de assimetria
 
8º ANO
8º ANO8º ANO
8º ANO
 
Um Estudo dos Provérbios e Seus Significados Textuais
Um Estudo dos Provérbios e Seus Significados TextuaisUm Estudo dos Provérbios e Seus Significados Textuais
Um Estudo dos Provérbios e Seus Significados Textuais
 
Ciências anual 5º ano
Ciências anual 5º anoCiências anual 5º ano
Ciências anual 5º ano
 

Semelhante a Aula 06 de estatística

4426477 matematica-e-realidade-aula-08-551
4426477 matematica-e-realidade-aula-08-5514426477 matematica-e-realidade-aula-08-551
4426477 matematica-e-realidade-aula-08-551Jenifer Ferreira
 
Estatística 8.º ano
Estatística 8.º anoEstatística 8.º ano
Estatística 8.º anoaldaalves
 
Estatística 8.º ano
Estatística 8.º anoEstatística 8.º ano
Estatística 8.º anoaldaalves
 
72370870 matematica-etapa-3
72370870 matematica-etapa-372370870 matematica-etapa-3
72370870 matematica-etapa-3Rone carvalho
 
Raciocinio logico.pptx
Raciocinio logico.pptxRaciocinio logico.pptx
Raciocinio logico.pptxIagoBernard1
 
Gabriel estatistica - aula 2
Gabriel   estatistica - aula 2Gabriel   estatistica - aula 2
Gabriel estatistica - aula 2bioinformatica
 
Números racionais representação fracionária e decimal - operações e proprie...
Números racionais   representação fracionária e decimal - operações e proprie...Números racionais   representação fracionária e decimal - operações e proprie...
Números racionais representação fracionária e decimal - operações e proprie...Camila Rodrigues
 
Apostila matematica fundamental
Apostila matematica fundamentalApostila matematica fundamental
Apostila matematica fundamentalMaryana Moreira
 
Operacoes numeros decimais
Operacoes numeros decimaisOperacoes numeros decimais
Operacoes numeros decimaisEquipe_FAETEC
 
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio CarlosOperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio CarlosAntonio Carneiro
 
Cálculo Numérico
Cálculo NuméricoCálculo Numérico
Cálculo NuméricoSandro Lima
 
Ap mat em questoes gabarito 001 resolvidos
Ap mat em questoes gabarito  001 resolvidosAp mat em questoes gabarito  001 resolvidos
Ap mat em questoes gabarito 001 resolvidostrigono_metrico
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptssuser2b53fe
 
Tratamento e Organização de Dados
Tratamento e Organização de DadosTratamento e Organização de Dados
Tratamento e Organização de Dadosestudamatematica
 

Semelhante a Aula 06 de estatística (20)

4426477 matematica-e-realidade-aula-08-551
4426477 matematica-e-realidade-aula-08-5514426477 matematica-e-realidade-aula-08-551
4426477 matematica-e-realidade-aula-08-551
 
Apostila teoria - 2013 - 60
Apostila   teoria - 2013 - 60Apostila   teoria - 2013 - 60
Apostila teoria - 2013 - 60
 
Estatística 8.º ano
Estatística 8.º anoEstatística 8.º ano
Estatística 8.º ano
 
Estatística 8.º ano
Estatística 8.º anoEstatística 8.º ano
Estatística 8.º ano
 
72370870 matematica-etapa-3
72370870 matematica-etapa-372370870 matematica-etapa-3
72370870 matematica-etapa-3
 
Matemática – notação científica 01 – 2014
Matemática – notação científica 01 – 2014Matemática – notação científica 01 – 2014
Matemática – notação científica 01 – 2014
 
Raciocinio logico.pptx
Raciocinio logico.pptxRaciocinio logico.pptx
Raciocinio logico.pptx
 
Aula 06 p&e
Aula 06 p&eAula 06 p&e
Aula 06 p&e
 
Estatística Descritiva
Estatística DescritivaEstatística Descritiva
Estatística Descritiva
 
Gabriel estatistica - aula 2
Gabriel   estatistica - aula 2Gabriel   estatistica - aula 2
Gabriel estatistica - aula 2
 
Aula 00
Aula 00Aula 00
Aula 00
 
Números racionais representação fracionária e decimal - operações e proprie...
Números racionais   representação fracionária e decimal - operações e proprie...Números racionais   representação fracionária e decimal - operações e proprie...
Números racionais representação fracionária e decimal - operações e proprie...
 
Apostila matematica fundamental
Apostila matematica fundamentalApostila matematica fundamental
Apostila matematica fundamental
 
Operacoes numeros decimais
Operacoes numeros decimaisOperacoes numeros decimais
Operacoes numeros decimais
 
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio CarlosOperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
 
Cálculo Numérico
Cálculo NuméricoCálculo Numérico
Cálculo Numérico
 
Aula 2 mat ef
Aula 2   mat efAula 2   mat ef
Aula 2 mat ef
 
Ap mat em questoes gabarito 001 resolvidos
Ap mat em questoes gabarito  001 resolvidosAp mat em questoes gabarito  001 resolvidos
Ap mat em questoes gabarito 001 resolvidos
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
 
Tratamento e Organização de Dados
Tratamento e Organização de DadosTratamento e Organização de Dados
Tratamento e Organização de Dados
 

Mais de josivaldopassos

Mais de josivaldopassos (20)

Medidas de tendencia central continuação
Medidas de tendencia central continuaçãoMedidas de tendencia central continuação
Medidas de tendencia central continuação
 
Aula 08 de estatística
Aula 08 de estatísticaAula 08 de estatística
Aula 08 de estatística
 
Aula 08 de estatística
Aula 08 de estatísticaAula 08 de estatística
Aula 08 de estatística
 
Aula 06 de estatística
Aula 06 de estatísticaAula 06 de estatística
Aula 06 de estatística
 
Congruências
CongruênciasCongruências
Congruências
 
Sequências
SequênciasSequências
Sequências
 
Atividades de funções modulares
Atividades de funções modularesAtividades de funções modulares
Atividades de funções modulares
 
Exercícios de geometria espacial
Exercícios de geometria espacialExercícios de geometria espacial
Exercícios de geometria espacial
 
Jogo dos palitos
Jogo dos palitosJogo dos palitos
Jogo dos palitos
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
Agenda de moblização
Agenda de moblizaçãoAgenda de moblização
Agenda de moblização
 
Agenda de moblização
Agenda de moblizaçãoAgenda de moblização
Agenda de moblização
 
Agenda de moblização
Agenda de moblizaçãoAgenda de moblização
Agenda de moblização
 
Agenda de moblização
Agenda de moblizaçãoAgenda de moblização
Agenda de moblização
 
Intervalos reais
Intervalos reaisIntervalos reais
Intervalos reais
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
Sequênicas
SequênicasSequênicas
Sequênicas
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
Resumo de Função exponencial
Resumo de Função exponencialResumo de Função exponencial
Resumo de Função exponencial
 

Último

Nós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaNós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaIlda Bicacro
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - FalamansaMary Alvarenga
 
Atividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfAtividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfmaria794949
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaCludiaRodrigues693635
 
Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leiteprofesfrancleite
 
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdfLabor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdfemeio123
 
Exercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfExercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfRILTONNOGUEIRADOSSAN
 
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdfedjailmax
 
APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.HandersonFabio
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilMariaHelena293800
 
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdfRespostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdfssuser06ee57
 
clubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaclubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaLuanaAlves940822
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfManuais Formação
 
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docxCONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docxEduardaMedeiros18
 
Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Rosana Andrea Miranda
 
livro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensoriallivro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensorialNeuroppIsnayaLciaMar
 
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....LuizHenriquedeAlmeid6
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptxlucioalmeida2702
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxGraycyelleCavalcanti
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosbiancaborges0906
 

Último (20)

Nós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaNós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-Nova
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - Falamansa
 
Atividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfAtividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdf
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditiva
 
Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leite
 
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdfLabor e Trabalho em A Condição Humana de Hannah Arendt .pdf
Labor e Trabalho em A Condição Humana de Hannah Arendt .pdf
 
Exercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfExercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdf
 
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
 
APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantil
 
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdfRespostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
 
clubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaclubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importância
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
 
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docxCONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
CONTO-3º-4º-E-5ºANO-A-PRINCESA-E-A-ERVILHA[1] (1).docx
 
Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024
 
livro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensoriallivro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensorial
 
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptx
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptx
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anos
 

Aula 06 de estatística

  • 1. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize Prof. Me. Josivaldo Nascimento dos Passos Medidas Separatrizes UNIVERSIDADE ESTADUAL DO MARANH˜AO 17 de outubro de 2016 Estat´ıtica B´asica
  • 2. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize Sum´ario MEDIDAS SEPARATRIZES Conceitos; C´alculo das Medidas separatrize; Estat´ıtica B´asica
  • 3. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize Conceitos S˜ao n´umeros reais que dividem a sequˆencia ordenada de dados em partes que contˆem a mesma quantidade de elementos da s´erie. Desta forma, a mediana que divide a sequˆencia ordenada em dois grupos, cada um deles contendo 50% dos valores da sequˆencia, ´e tamb´em uma medida separatriz. Al´em da mediana, as outras medidas separatrizes que destacaremos s˜ao: quartis, quintis, decis e percentis. Se dividirmos a s´erie ordenada em quatro partes, cada uma ficar´a com 25% de seus elementos. Os elementos que separam estes grupos s˜ao chamados quartis. Assim, o primeiio quartil, que indicaremos por Q1, separa a sequˆencia ordenada deixando 25% de seus valores a esquerda e 75% de seus valores a direita. Estat´ıtica B´asica
  • 4. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize Conceitos O segundo quartil, que indicaremos por Q2, separa a sequˆencia or- denada, deixando 50% de seus valores a esquerda e 50% de seus valores a direita. Note que o Q2 ´e a mediana da s´erie. O terceiro quartil, que indicaremos por Q3, separa a sequˆencia or- denada deixando a sua esquerda 75% de seus elementos e 25% de seus elementos a direita. Se dividirmos a sequˆencia ordenada em cinco partes, cada uma ficar´a com 20% de seus elementos. Os elementos que separam estes grupos s˜ao chamados quintis. Assim, o primeiro quintil, que indicaremos por K1, separa a sequˆencia ordenada, deixando a sua esquerda 20% de seus valores e a sua direita 80% de seus valores. De modo an´alogo s˜ao definidos os outros quintis. Estat´ıtica B´asica
  • 5. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize Conceitos Se dividirmos a sequˆencia ordenada em dez partes, cada uma ficar´a com 10% de seus valores. Os elementos que separam estes grupos s˜ao chamados decis. Assim, o primeiro decil, que indicaremos por D1 separa a sequˆencia ordenada, deixando a sua esquerda 10% de seus valores e 90% de seus valores a direita. De modo an´alogo s˜ao definidos os outros decis. Se dividirmos a sequˆencia ordenada em 100 partes, cada uma ficar´a com 1% de seus elementos. Os elementos que separam estes grupos s˜ao chamados centis ou percentis. Assim, o primeiro percentil, que indicaremos por P1, separa a sequˆencia ordenada deixando a sua esquerda 1% de seus valores e 99% de seus valores a direita. De modo an´alogo s˜ao definidos os outros percentis. Estat´ıtica B´asica
  • 6. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize Conceitos Note que o Q4, K5, D10, P100 s˜ao elementos que deixam a sua es- querda 100% dos valores da sequencia ordenada e correspondem diretamente ao ´ultimo valor da sequˆencia. Se observarmos que os quartis, quintis e decis s˜ao m´ultiplos dos percentis, ent˜ao basta estabelecer a f´ormula de c´alculo de percentis. Todas as outras medidas podem ser identificadas como percentis. Desta forma: Estat´ıtica B´asica
  • 7. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize 1o Caso - DADOS BRUTOS OU ROL Devemos ordenar os elementos, caso sejam Dados Brutos obtendo o Rol. Identificamos a medida que queremos obter com o percentil corres- pondente, Pi Calculamos i% de n, ou seja, i.n 100 para localizar a posi¸c˜ao do per- centil i no Rol. Em seguida, identificamos o elemento que ocupa esta posi¸c˜ao. Note que se i.n 100 for um n´umero inteiro, ent˜ao Pi que estamos procurando identificar ´e um dos elementos da sequˆencia ordenada. Se i.n 100 n˜ao for um n´umero inteiro, isto significa que o Pi ´e um elemento itermedi´ario entre os elementos que ocupam as posi¸c˜oes aproximadas por falta e por excesso do valor i.n 100 . Neste caso, o Pi ´e definido como sendo a m´edia dos valores que ocupam estas posi¸c˜oes aproximadas. Estat´ıtica B´asica
  • 8. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize 1o Caso - DADOS BRUTOS OU ROL Exemplo Calcule o Q1 da sequˆencia X : 2, 5, 8, 5, 5, 10, 1, 12, 12, 11, 13, 15. Ordenando a seq¨uˆencia, obtemos o Rol: X : 1, 2, 5, 5, 5, 8, 10, 11, 12, 12, 13, 15 Identificamos Q1 = P25. Calculamos 25% de 12 que ´e o n´umero de elementos da s´erie obtendo 3. Este valor indica a posi¸c˜ao do P25 no Rol, isto ´e, o P25 ´e o terceiro elemento do Rol. Observando o terceiro elemento do Rol obt´em-se 5. Portanto, Q1 = P25 = 5. Interpreta¸c˜ao: 25% dos valores desta sequˆencia s˜ao valores menores ou iguais a 5 e 75% dos valores desta sequˆencia s˜ao valores maiores ou iguais a 5. Estat´ıtica B´asica
  • 9. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize 2o Caso - VARI´AVEL DISCRETA Se os dados est˜ao apresentados na forma de uma vari´avel discreta, eles j´a est˜ao naturalmente ordenados. Identifica-se a medida que queremos obter com o percentil corres- pondente: Pi . Calculamos i% de n, ou seja, i.n 100 para localizar a posi¸c˜ao do per- centil i na s´erie. Em seguida utilizamos a frequˆencia acumulada da s´erie para localizar o elemento que ocupa esta posi¸c˜ao. O valor deste elemento ´e o Pi . Estat´ıtica B´asica
  • 10. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize 2o Caso - VARI´AVEL DISCRETA Exemplo Calcule o D4 para a s´erie: xi fi 2 3 4 5 5 8 7 6 10 2 O n´umero de elementos da s´erie ´e fi = 24 Temos que D4 = P40 e calculamos 40% de 24, obtendo 9,6. Esta posi¸c˜ao n˜ao-inteira significa que o P40 ´e um valor compreendido entre o nono e o d´ecimo elemento da s´erie. Construindo a frequˆencia acumulada: Estat´ıtica B´asica
  • 11. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize 2o Caso - VARI´AVEL DISCRETA xi fi Fi 2 3 3 4 5 8 5 8 16 7 6 22 10 2 24 observamos que o nono elemento ´e 5, e o d´ecimo elemento tamb´em ´e 5. Assim, D4 = P40 = 5 + 5 2 = 5. Interpreta¸c˜ao: 40% dos valores desta s´erie s˜ao valores menores ou guais a 5 e 60% dos valores desta s´erie s˜ao valores maiores ou iguais a 5. Estat´ıtica B´asica
  • 12. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize 3o Caso - VARI´AVEL CONT´INUA Se os dados est˜ao apresentados na forma de uma vari´avel cont´ınua, eles j´a est˜ao naturalmente ordenados e o n´umero de elementos da s´erie ´e n = fi . A f´ormula para o c´alculo dos percentis, fazemos uma generaliza¸c˜ao da mediana, resultando em Pi = li + i.n 100 − Fant fi .h Onde: Pi - Percentil i(i = 1, 2, 3, . . . , 99) li - limite inferior da classe que cont´em o percentil i. n - n´umero de elementos da s´erie. Fant - frequˆencia acumulada da classe anterior a classe que cont´em o Pi . Estat´ıtica B´asica
  • 13. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize 3o Caso - VARI´AVEL CONT´INUA fi - frequˆencia simples da classe que cont´em o percentil i. h - amplitude do intervalo de classe. Exemplo Calcule o Q3 da s´erie: Classe Int. cl. fi 1 0 10 16 2 10 20 18 3 20 30 24 4 30 40 35 5 40 50 12 O n´umero de elementos da s´erie ´e dado por fi = 105. Identifica- mos Q3 = P75 Estat´ıtica B´asica
  • 14. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize 3o Caso - VARI´AVEL CONT´INUA Iniciamos o c´alculo do valor P75 lembrando que neste caso i = 75 e que i.n 100 = 75.105 100 = 78, 75 Isto nos d´a a posi¸c˜ao do P75 na s´erie. Construindo a frequˆencia acumulada da s´erie obtemos: Classe Int. cl. fi Fi 1 0 10 16 16 2 10 20 18 34 3 20 30 24 58 4 30 40 35 93 5 40 50 12 105 A classe que cont´em o elemento que ocupa a posi¸c˜ao 78,75 na s´erie ´e a quarta classe. Esta ´e a classe que cont´em o P75. Estat´ıtica B´asica
  • 15. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize 3o Caso - VARI´AVEL CONT´INUA Substituindo os valores indicados na f´ormula, obt´em-se: P75 = 30 + 78, 75 − 58 35 .10 Portanto, Q3 = P75 = 35, 93 Interpreta¸c˜ao: 75% dos valores da s´erie s˜ao menores ou iguais a 35,93 e 25% dos valores da s´erie s˜ao maiores ou iguais a 35,93. Estat´ıtica B´asica
  • 16. MEDIDAS SEPARATRIZES C´alculo das Medidas separatrize MARTINS, Gilberto de Andrade Martins, Estat´ıstica Geral e Aplicada, 4 ed. S˜ao Paulo: Editora Atlas S.A., 2011 SILVA, Ermes Medeiros da; SILVA, Elio Medeiros da; GONC¸ALVES, Valter; MUROLO, Afrˆanio Carlos, ESTAT´ISTICA Para os cursos de: Economia, Administra¸c˜ao e Ciˆencias Contabeis 3 ed. S˜ao Paulo: Editora Atlas S.A., 1999 Estat´ıtica B´asica