SlideShare uma empresa Scribd logo
1 de 60
CURSO DE ESTATÍSTICA I
Ricardo Bruno N. dos Santos
FACECON-PPGE (UFPA)
O Que é a Estatística?
• A Estatística originou-se com a coleta e construção de tabelas de
dados para o governo.
• A situação evoluiu e esta coleta de dados representa somente um
dos aspectos da Estatística.
• No século XIX, o desenvolvimento do cálculo de probabilidade e
outras metodologias matemáticas, tais como a técnica de Mínimos
Quadrados, foram fundamentais para o desenvolvimento da
Estatística
O Que é a Estatística?
• Somente no século XX a Estatística desenvolve-se como uma área
específica do conhecimento a partir do desenvolvimento da
Inferência Estatística; uma metodologia baseada em probabilidade
que tem ampla aplicação nas ciências experimentais.
• A Estatística hoje consiste num metodologia científica para
obtenção, organização e análise de dados, oriundos das mais variadas
áreas das ciência experimentais, cujo objetivo principal é auxiliar a
tomada de decisões em situações de incerteza.
O Que é a Estatística?
Etapa inicial da análise utilizada para descrever, organizar e
resumir os dados coletados.
A disponibilidade de uma grande quantidade de dados e de
métodos computacionais muito eficientes revigorou esta área da
Estatística.
O Que é a Estatística?
O que fazer com as observações
que coletamos?
6
QUALITATIVA
QUANTITATIVA
NOMINAL
ORDINAL
CONTÍNUA
DISCRETA
peso, altura, salário, idade
número de filhos, número de
carros
sexo, cor dos olhos
classe social, grau de instrução
Variável:
Qualquer característica associada a uma população.
Classificação das variáveis:
O Que é a Estatística?
7
Amplitude, Intervalo-Interquartil, Variância, Desvio
Padrão, Coeficiente de Variação.
MEDIDAS DE DISPERSÃO:
Mínimo, Máximo, Moda, Média, Mediana, Percentis
MEDIDAS DE POSIÇÃO:
O Que é a Estatística?
Medidas de posição: Medidas de Tendência
Central
Resumos numéricos são ferramentas importantes para descrever a
distribuição de uma variável quantitativa. Agora você vai trabalhar com
medidas de posição que, como o próprio nome indica, são medidas que
indicam a localização dos dados. O objetivo não é o cálculo das medidas,
mas, sim, explorar propriedades e relações entre três das principais
medidas de posição.
Média Aritmética Simples: é calculada somando-se os valores de todas
as observações e dividindo-se essa soma pelo número de observações.
Equivale a dividir o total das n observações em n partes iguais.
Mediana: é o valor que divide o conjunto de dados em duas partes tais
que abaixo e acima da mediana encontram-se 50% das observações. O
cálculo da mediana requer que os dados estejam ordenados. Se o número
de observações for ímpar, a mediana é o valor central; se o número de
observações for par, a mediana é a média dos dois valores centrais.
Medidas de posição: Medidas de Tendência
Central
Moda: é o valor mais frequente.
Média Amostral: A média amostral, aritmética, ou simplesmente
média, é calculada somando-se os valores das observações da
amostra e dividindo-se o resultado pelo número de valores. Assim, a
média amostral é dada por:
𝒙 =
𝒙𝒊
𝒏
Média Populacional: A média populacional é calculada somando-
se todos os valores da população e dividindo o resultado pelo total
de elementos da população. Numa população de elementos, a
média populacional é dada por
𝝁 =
𝒙𝒊
𝑵
Medidas de posição: Medidas de Tendência
Central
Mediana: Para calcular a mediana devemos, em primeiro lugar,
ordenar os dados do menor para o maior valor. Se o número de
observações for ímpar, a mediana será a observação central. Se o
número de observações for par, a mediana será a média aritmética
das duas observações centrais. Notação: 𝑥
Exemplo: Salários mensais iniciais para uma amostra de 12
graduados em Administração
Medidas de posição: Medidas de Tendência
Central
Percentis: Em estatística descritiva, o p-ésimo percentil Pk é o valor x (xk)
que corresponde à frequência cumulativa de 𝑛
𝑝
100
, onde n é o tamanho
amostral.
𝒊 =
𝒑
𝟏𝟎𝟎
𝒏
Calculando o p-ésimo percentil
1 – Arranje os dados na ordem ascendente (do menor para o maior)
2 – Calcule o índice 𝒊 =
𝒑
𝟏𝟎𝟎
𝒏
3 - (a) Se não for um inteiro, arredonde para cima. O próximo inteiro
maior que i expressará a posição do p-ésimo percentil.
- (b) Se i é impar, o p-ésimo percentil é a média dos valores dados nas
posições i e i+1
Medidas de posição: Medidas de Tendência
Central
Exemplo: para os dados de salários o 85º percentil será:
𝑖 =
85
100
12 = 10,2
Arredondando para mais teríamos então a 11ª posição.
Medidas de posição: Medidas de Tendência
Central
Quartis: Na estatística descritiva, um quartil é qualquer um dos
três valores que divide o conjunto ordenado de dados em quatro
partes iguais, e assim cada parte representa 1/4 da amostra ou
população.
Assim, no caso duma amostra ordenada,
primeiro quartil (designado por Q1/4) = quartil inferior = é o valor
aos 25% da amostra ordenada = 25º percentil
segundo quartil (designado por Q2/4) = mediana = é o valor até ao
qual se encontra 50% da amostra ordenada = 50º percentil, ou
5º decil.
terceiro quartil (designado por Q3/4) = quartil superior = valor a
partir do qual se encontram 25% dos valores mais elevados = valor
aos 75% da amostra ordenada = 75º percentil à diferença entre os
quartis superior e inferior chama-se amplitude inter-quartil.
Medidas de posição: Medidas de Tendência
Central
Exemplo 1:
Amostra: 6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36
Amostra ordenada: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49
Q1/4 = 15
Q2/4 = 40
Q3/4 = 43
Exemplo 2:
Amostra ordenada: 7, 15, 36, 39, 40, 41
Q1/4 = 15
Q2/4 = (39+36)/2 = 37.5
Q3/4 = 40
Medidas de posição: Medidas de Tendência
Central
Medidas de posição: Medidas de
Tendência CentralBox Plot (Diagrama de Caixa)
Em estatística descritiva, diagrama de caixa, ou boxplot, box plot, é um gráfico
no qual o:
- eixo vertical representa a variável a ser analisada;
- eixo horizontal um fator de interesse.
O diagrama de caixa é uma ferramenta para localizar e analisar a variação de
uma variável dentre diferentes grupos de dados.
O diagrama de caixa procura obter as seguintes informações:
- Calcular a mediana e os quartis ( o quartil inferior contém 25% ( 1/4) das
menores medidas e o quartil superior contém 75 ( 3/4) de todas as medidas);
- Plotar um símbolo onde se localiza a mediana e uma caixa, daí o nome de
diagrama de caixas, onde a base representa o quartil inferior ( 25% ou 1/4) dos
menores valores), e o topo da caixa o quartil superior (75% ou 3/4) dos valores
observados. A caixa portanto representa 50% de todos os os valores observados
,concentrados na tendência central dos valores, eliminando os 25% menores
valores e 25% maiores valores ( 75% - 25% = 50%);
- Um segmento de reta vertical conecta o topo da caixa ao maior valor
observado e outro segmento conecta a base da caixa ao menor valor observado,
este segmento denomina-se Whisker, ou fio de bigode.
Medidas de posição: Medidas de Tendência
Central
Média Geométrica: Este tipo de média é calculada multiplicando-
se todos os valores e extraindo-se a raiz de índice n deste produto.
Digamos que tenhamos os números 4, 6 e 9, para obtermos o
valor médio aritmético deste conjunto, multiplicamos os elementos
e obtemos o produto 216. Pegamos então este produto e extraímos
a sua raiz cúbica, chegando ao valor médio 6.
Extraímos a raiz cúbica, pois o conjunto é composto de 3
elementos. Se fossem n elementos, extrairíamos a raiz de índice n.
Neste exemplo teríamos a seguinte solução
𝑮 =
𝒊=𝟏
𝒏
𝒙𝒊
𝟏
𝒏
= 𝒙 𝟏 𝒙 𝟐
.
. . 𝒙 𝒏
𝟏
𝒏 = 𝒏
𝒙 𝟏 𝒙 𝟐 … 𝒙 𝒏
Medidas de posição: Medidas de Tendência
Central
Média Harmônica: é o número de membros dividido pela soma
do inverso dos membros
𝐻 =
1
𝑛
𝑖=1
𝑛
𝑥𝑖
−1
−1
Pode-se então estabelecer que:
𝐻 ≤ 𝐺 ≤ 𝑥
A origem das médias
Arquitas de Tarento, um matemático pitagórico que viveu por volta
de 400 a.C., definiu que existiam três tipos de média. Um número é
a média aritmética de dois outros quando o excesso do primeiro
para o segundo é igual ao excesso do segundo para o terceiro,
a média geométrica quando a proporção do segundo para o terceiro
é igual à proporção do primeiro para o segundo, e a média
harmônica quando a quantidade que o primeiro excede o segundo
em relação ao primeiro é igual à quantidade que o segundo excede o
terceiro em relação ao terceiro; em notação moderna, sendo o
primeiro x, o segundo m e o terceiro y (x > m > y > 0):
A origem das médias
Logo
MEDIDAS DE DISPERSÃO
Medidas de dispersão
As medidas de posição apresentadas fornecem a informação dos
dados apenas a nível pontual, sem ilustrar outros aspectos
referentes à forma como os dados estão distribuídos na amostra.
As medidas de dispersão são utilizadas para avaliar o grau de
variabilidade, ou dispersão, dos valores em torno da média.
Medidas de dispersão
Qual a importância das medidas de dispersão na prática?
Vejamos o exemplo das notas de três turmas (A, B e C)
Essa tabela será o nosso mote para no final avaliar qual foi a
melhor turma.
Turma A Turma B Turma C
4 5 2
5 6 3
6 6 8
7 6 8
8 7 9
Medidas de dispersão
Amplitude total: é a diferença entre o menor e o maior valor
observado.
𝑨𝑻 = 𝑿𝒊 𝒎𝒂𝒙 − 𝑿𝒊 𝒎𝒊𝒏
Verifica-se que a amplitude como medida de dispersão é limitada.
Essa medida só depende dos valores extremos, ou seja, não é
afetada pela dispersão dos valores internos.
Quais os resultados para as notas das turmas?
Amplitude interquartil: é a diferença entre o terceiro quartil e o
primeiro.
Medidas de dispersão
Variância: A variância de um conjunto de dados (amostra ou
população) é uma medida de “VARIABILIDADE ABSOLUTA”. Ela mede
a variabilidade do conjunto em termos de desvios quadrados em
relação à média aritmética. É uma quantidade sempre NÃO
NEGATIVA e expressa em unidades quadradas do conjunto de dados,
sendo de difícil interpretação.
𝜎2 =
𝑖=1
𝑛
𝑥𝑖 − 𝜇 2
𝑁
𝑠2 =
𝑖=1
𝑛
𝑥𝑖 − 𝑥 2
𝑛 − 1
Populacional
Amostral
Medidas de dispersão
Desvio Padrão: É uma outra medida de dispersão mais
comumente empregada do que a variância, por ser expressa na
mesma unidade de medida do conjunto de dados. Mede a
"DISPERSÃO ABSOLUTA" de um conjunto de valores e é obtida a
partir da variância. Trata-se da raiz quadrada da variância
𝜎 = 𝑖=1
𝑛
𝑥𝑖 − 𝜇 2
𝑁
𝑠 = 𝑖=1
𝑛
𝑥𝑖 − 𝑥 2
𝑛 − 1
Medidas de dispersão
Coeficiente de variação: É uma medida de “VARIABILIDADE
RELATIVA”, útil para comparar a variabilidade de observações com
diferentes unidades de medida.
𝑐𝑣 =
𝜎
𝑥
(100)
Medidas de dispersão
Medidas de dispersão
Vamos avaliar qual a melhor Turma. Na sua opinião qual turma é
melhor.
Medidas de dispersão
Vamos usar:
Excel
R
Distribuição de Frequências
Organização dos dados: Os métodos utilizados para organizar
dados compreendem o arranjo desses dados em subconjuntos que
apresentem características similares.
mesma idade (ou “faixa etária”), mesma finalidade, mesma escola,
mesmo bairro, etc
Os DADOS AGRUPADOS podem ser resumidos em tabelas ou
gráficos e, a partir desses, podemos obter as estatísticas descritivas
já definidas: média, mediana, desvio, etc.
Dados organizados em grupos ou categorias/classes são
usualmente designados “DISTRIBUIÇÃO DE FREQUÊNCIA”.
Distribuição de Frequências
Uma distribuição de frequência é um método de se agrupar dados
em classes de modo a fornecer a quantidade (e/ou a percentagem)
de dados em cada classe.
Com isso, podemos RESUMIR e VISUALIZAR um conjunto de
dados sem precisar levar em conta os valores individuais.
Construindo assim uma SÍNTESE dos DADOS QUANTITATIVOS.
Uma distribuição de frequência (absoluta ou relativa ) pode ser
apresentada em TABELAS ou GRÁFICOS.
Distribuição de Frequências
Uma distribuição de frequência agrupa os dados por classes de
ocorrência, resumindo a análise de conjunto de dados grandes.
Tipos de Frequência
Simples
Absolutas
Relativas
Acumuladas
Crescente
Absolutas
Relativas
Decrescente
Absolutas
Relativas
Distribuição de Frequências
Eventos Altura
Aluno1 1,60
Aluno2 1,69
Aluno3 1,72
Aluno4 1,73
Aluno5 1,73
Aluno6 1,74
Aluno7 1,75
Aluno8 1,75
Aluno9 1,75
Aluno10 1,75
Aluno11 1,75
Aluno12 1,76
Aluno13 1,78
Aluno14 1,80
Aluno15 1,82
Aluno16 1,82
Aluno17 1,84
Aluno18 1,88
Distribuição de Frequências
Como construir uma distribuição de frequência a partir dessas
informações?
Primeiro reduzir o número de linhas da tabela, para isso temos
que calcular o NÚMERO DE CLASSES.
O Número de classes pode ser representado pela letra (k). Para o
cálculo do número de classes pode-se utilizar algumas regras como:
1) Regra de Sturges (Regra do Logaritmo)
𝑘 = 1 + 3,3log(𝑛)
2) Regra da Raiz Quadrada
𝑘 = 𝑛
3) Bom Senso!
Podemos decidir qual o melhor número de classes, muitos afirmam
que devemos ter classes entre os tamanhos 5 a 20.
Distribuição de Frequências
Distribuição de Frequências
Existem várias maneiras de apresentarmos o intervalo de classes: iguais
ou diferentes entre si. Porém, sempre que possível, deveremos optar por
intervalos iguais, o que facilitará os cálculos posteriores. Mas mesmo com
intervalos iguais, as distribuições poderão apresentar-se da seguinte
forma:
0 -- 10: compreende todos os valores entre 0 e 10, exclusive os
extremos.
0 |--|10: compreende todos os valores entre 0 e 10, inclusive os
extremos.
0 --|10: compreende todos os valores entre 0 e 10, inclusive o 10 e
exclusive o 0.
010: compreende todos os valores entre 0 e 10, inclusive o 0 e
exclusive o 10.
Como optaremos por este último tipo (010), pode-se definir como
intervalo de classe a diferença entre o limite superior e o limite inferior da
classe. Portanto, no exemplo, 10 – 0 = 10 é o intervalo ou amplitude da
classe que será representado pela letra h.
Distribuição de Frequências
Largura das classes (amplitude das classes (h)): É a segunda etapa
da construção de uma distribuição de frequência para dados
quantitativos. Recomenda-se que a largura seja a mesma para cada
uma das classes.
𝐿𝑎𝑟𝑔𝑢𝑟𝑎 𝐴𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑑𝑎 𝑑𝑒 𝐶𝑙𝑎𝑠𝑠𝑒 =
𝑀á𝑥𝑖𝑚𝑜 − 𝑀í𝑛𝑖𝑚𝑜
𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
Para o exemplo das alturas temos:
1,88−1,60
5
= 0,056
Que arredondando transforma-se em 0,06
Distribuição de Frequências
Obs. 1: Na amplitude das classes (h), observe que aumentamos
uma unidade, não seguindo, portanto, as regras de arredondamento.
Esta é uma regra que deve ser sempre seguida no cálculo da
amplitude da classe. Você saberia me dizer por quê?
Obs. 2: Deve-se conservar o número de casas decimais dos dados
observados. Por exemplo, se os dados se referem à massa de
indivíduos em kg e forem expressos com uma casa após a vírgula
(por exemplo, 60,5 kg), então a amplitude deverá ter uma casa após
a vírgula.
Obs. 3: Usando o bom-senso e a experiência, poderá ser
conveniente , quando possível, a utilização da amplitude de um
intervalo de classe igual a 10 ou 5, facilitando as operações
posteriores.
Distribuição de Frequências
Para os dados das alturas teremos:
1,59 --| 1,66
1,66 --| 1,72
1,72 --| 1,78
1,78 --| 1,84
1,84 --| 1,90
Distribuição de Frequências
Ponto Médio das Classes (𝑿𝒊): É a média aritmética entre o limite
superior e o limite inferior da classe. Assim, se a classe for 0--|10,
teremos
0+10
2
= 5, que será o ponto médio da classe.
Limites de Classe: São os números extremos de cada intervalo:
sendo assim, temos um limite inferior e um superior. Se a primeira
classe tiver um intervalo de notas de 0 até 10, o 0 será o limite
inferior enquanto que o 10 será o limite superior desta classe.
Distribuição de Frequências
Frequência Acumulada (𝑭𝒊): Corresponde à soma das freqüências
de determinada classe com as anteriores. No exemplo, vejamos
como fica a frequência acumulada de cada classe:
Altura Fi
1,59 --| 1,66 1
1,66 --| 1,72 2
1,72 --| 1,78 10
1,78 --| 1,84 4
1,84 --| 1,90 1
Total 18
Distribuição de Frequências
Frequência relativa ( 𝒇𝒊 ):Corresponde ao quociente entre a
freqüência absoluta da classe e o total de elementos.
𝑓𝑖 =
𝑓𝑖
𝑛
Altura Fi fi
1,59 --| 1,66 1 0,06
1,66 --| 1,72 2 0,11
1,72 --| 1,78 10 0,56
1,78 --| 1,84 4 0,22
1,84 --| 1,90 1 0,06
Total 18 1,00
Distribuição de Frequências
Distribuições cumulativas: São as somas das ocorrências de dados
cumulativamente às classes. Também é importante mostrar os
termos em percentuais tanto na relativa quanto na acumulada
Altura Fi fi %fi FA %FA
1,59 --| 1,66 1 0,06 5,56 0,06 5,56
1,66 --| 1,72 2 0,11 11,11 0,17 16,67
1,72 --| 1,78 10 0,56 55,56 0,72 72,22
1,78 --| 1,84 4 0,22 22,22 0,94 94,44
1,84 --| 1,90 1 0,06 5,56 1,00 100,00
Total 18 1,00 100,00
Distribuição de Frequências
Gráficos: Histograma: Também conhecido como Distribuição de
Frequências ou Diagrama das Frequências, é uma representação gráfica na
qual um conjunto de dados é agrupado em classes uniformes,
representado por um retângulo cuja base horizontal são as classes e seu
intervalo e a altura vertical representa a frequência com que os valores
desta classe estão presente no conjunto de dados . É uma das Sete
Ferramentas da Qualidade. O histograma é um gráfico composto por
retângulos justapostos em que a base de cada um deles corresponde ao
intervalo de classe e a sua altura à respectiva frequência. Quando o
número de dados aumenta indefinidamente e o intervalo de classe tende a
zero, a distribuição de frequência passa para uma distribuição de
densidade de probabilidades. A construção de histogramas tem caráter
preliminar em qualquer estudo e é um importante indicador da
distribuição de dados. Podem indicar se uma distribuição aproxima-se de
uma FUNÇÃO NORMAL, como pode indicar mistura de populações quando
se apresentam bimodais.
Distribuição de Frequências
Passos para a construção do histograma:
1) Na abscissas, distribua as classes
2) Na ordenada da esquerda, as frequências absolutas
3) Construa um gráfico de barras para as frequências
4) Construa um gráfico de linha para a frequência acumulada
(utilize a escala da direita)
Distribuição de Frequências
Distribuição de Frequências
Ogivas
0
5
10
15
20
1,59 --| 1,66 1,66 --| 1,72 1,72 --| 1,78 1,78 --| 1,84 1,84 --| 1,90
Distribuição de Frequências
Gráfico de Pizza
Distribuição de Frequências
Média Ponderada de uma Frequência:
𝒙 =
𝑭𝒊 𝒙
𝒇
Onde:
𝒙 – Ponto Médio da Classe
𝒇𝒊 - Frequência acumulada
𝒇 - n
Distribuição de Frequências
Altura Fi fi %fi FA %FA
Ponto
Médio
x*fi
1,59 1,65 1 0.06 5.56 0.06 5.56 1,62 1.62
1,65 1,71 1 0.06 5.56 0.11 11.11 1,68 1.68
1,71 1,77 10 0.56 55.56 0.67 66.67 1,74 17.4
1,77 1,83 4 0.22 22.22 0.89 88.89 1,80 7.2
1,83 1,89 2 0.11 11.11 1.00 100.00 1,86 3.72
Total 18 1,00 100,00 8,75 31,62
Média 1,7564
Média
real
1,7589
Distribuição de Frequências
Podemos além da média, encontrar a mediana e a moda para
distribuições de frequência, bem como a variância e o desvio padrão.
Distribuição de Frequências
Para dados agrupados em intervalos de classes, você pode calcular
a moda por meio do método de Czuber, que se baseia na influência
das classes adjacente na moda deslocando-se no sentido da classe
de maior frequência. A expressão que você utilizará é:
𝑀𝑜 = 𝐿𝑖 +
𝑑1
𝑑1 + 𝑑2
× 𝑐
Li : limite inferior da classe modal;
𝑑1 : diferença entre a frequência da classe modal e a
imediatamente anterior;
𝑑2 : diferença entre a frequência da classe modal e a
imediatamente posterior; e
c : amplitude da classe modal
Para a tabela de alturas temos: 1.71 +
9
9+6
× 0,06 = 1,746 ≅ 1,75
Distribuição de Frequências
Quando os dados estão agrupados na mediana, devemos
encontrar a classe mediana. Se os dados estão agrupados em
intervalos de classe, como no caso do número de casa por rua,
utilizaremos a seguinte expressão:
𝑀𝑑 = 𝑙𝑖 +
𝑛
2
− 𝑓𝑎𝑛𝑡𝑎𝑐
𝑓 𝑚𝑒𝑑
× 𝑐
li : limite inferior da classe mediana;
n : número total de elementos;
𝑓𝑎𝑛𝑡𝑎𝑐 : frequência acumulada anterior à classe mediana;
𝑓 𝑚𝑒𝑑 : frequência absoluta da classe mediana; e
c: amplitude da classe mediana.
Distribuição de Frequências
Porém é importante definir a classe mediana, para tanto devemos
usar a seguinte fórmula (n/2) para definir a classe mediana
Utilizando os dados das alturas teremos:
Classe mediana =
18
2
= 9 logo temos que examinar o 9º
elemento, onde o mesmo se encontra na classe 1,71--|1,77
Aplicando a fórmula da mediana temos:
𝑀𝑑 = 1,71 +
18
2
− 0,11
10
× 0,06 = 1,763 ≅ 1,76
Distribuição de Frequências
Em um conjunto de dados, a mediana, a moda e a média não
necessariamente devem apresentar o mesmo valor. Uma informação
importante é que a mediana não é influenciada pelos valores
extremos. Comparando os resultados encontrados para uma
amostra em relação às medidas de posição estudadas e verificando a
inter-relação entre elas, você pode concluir que seus valores podem
nos dar um indicativo da natureza da distribuição dos dados, em
função das regras definidas pela Figura seguinte:
Distribuição de Frequências
Distribuição de Frequências
Com relação a Variância para dados agrupados em classes, pode-se utilizar a
seguinte expressão a partir dos desvio padrão:
𝑠 =
1
𝑛 − 1
𝑖=1
𝑛
𝑥𝑖 − 𝑥 2 𝑓𝑎
Onde
n – Nº de Observações
𝑥𝑖 − 𝑥 2 - Os desvios em torno da média ao quadrado. Onde 𝑥𝑖 são os pontos
médios de cada classe;
𝑓𝑎 - Frequências absolutas de cada classe.
Para as alturas temos:
𝑠 =
1
18 − 1
{ 1,62 − 1,76 2 × 1 + 1,68 − 1,76 2 × 1 + 1,74 − 1,76 2 × 10 + 1,8 − 1,76 2 × 4 + [ 1,86 − 1,76 2 × 2]
s=0,058
𝑠2
= 0,03

Mais conteúdo relacionado

Mais procurados

Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoAntonio Mankumbani Chora
 
Aula bioestatistica
Aula bioestatisticaAula bioestatistica
Aula bioestatisticaAleNiv
 
Estatística
EstatísticaEstatística
Estatísticaaldaalves
 
Distribuição de frequencia
Distribuição de frequenciaDistribuição de frequencia
Distribuição de frequenciaAsafe Salomao
 
Estatística conceitos iniciais_professorjarbas.com.br
Estatística conceitos iniciais_professorjarbas.com.brEstatística conceitos iniciais_professorjarbas.com.br
Estatística conceitos iniciais_professorjarbas.com.brfpv_transilvania
 
Determinar frequências absoluta, relativa e relativa percentual
Determinar frequências absoluta, relativa e relativa percentualDeterminar frequências absoluta, relativa e relativa percentual
Determinar frequências absoluta, relativa e relativa percentualdean dundas
 
amostragem
amostragemamostragem
amostragemsocram01
 
Aula de Estatística Básica -Aula 4
Aula de Estatística Básica -Aula  4Aula de Estatística Básica -Aula  4
Aula de Estatística Básica -Aula 4Luiz Martins Souza
 

Mais procurados (20)

Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formando
 
Introdução à Estatística
Introdução à EstatísticaIntrodução à Estatística
Introdução à Estatística
 
Amostragem - estatistica
Amostragem - estatisticaAmostragem - estatistica
Amostragem - estatistica
 
Estatistica introdução
Estatistica introduçãoEstatistica introdução
Estatistica introdução
 
Aula bioestatistica
Aula bioestatisticaAula bioestatistica
Aula bioestatistica
 
Aula 01 introdução a estatística
Aula 01   introdução a estatísticaAula 01   introdução a estatística
Aula 01 introdução a estatística
 
Estatística
EstatísticaEstatística
Estatística
 
Estatistica[1]
Estatistica[1]Estatistica[1]
Estatistica[1]
 
Estatística Descritiva
Estatística DescritivaEstatística Descritiva
Estatística Descritiva
 
Aula 02 população amostra e dados
Aula 02   população amostra e dadosAula 02   população amostra e dados
Aula 02 população amostra e dados
 
Aula 20 medidas de assimetria
Aula 20   medidas de assimetriaAula 20   medidas de assimetria
Aula 20 medidas de assimetria
 
Estatistica resumo
Estatistica   resumoEstatistica   resumo
Estatistica resumo
 
Distribuição de frequencia
Distribuição de frequenciaDistribuição de frequencia
Distribuição de frequencia
 
Estatística conceitos iniciais_professorjarbas.com.br
Estatística conceitos iniciais_professorjarbas.com.brEstatística conceitos iniciais_professorjarbas.com.br
Estatística conceitos iniciais_professorjarbas.com.br
 
Determinar frequências absoluta, relativa e relativa percentual
Determinar frequências absoluta, relativa e relativa percentualDeterminar frequências absoluta, relativa e relativa percentual
Determinar frequências absoluta, relativa e relativa percentual
 
amostragem
amostragemamostragem
amostragem
 
Regressão Linear Simples
Regressão Linear SimplesRegressão Linear Simples
Regressão Linear Simples
 
Correlação Estatística
Correlação EstatísticaCorrelação Estatística
Correlação Estatística
 
Aula de Estatística Básica -Aula 4
Aula de Estatística Básica -Aula  4Aula de Estatística Básica -Aula  4
Aula de Estatística Básica -Aula 4
 
Estatistica conceitos
Estatistica conceitosEstatistica conceitos
Estatistica conceitos
 

Destaque

Estatística - Aula 2 - Estatística descritiva
Estatística - Aula 2 - Estatística descritivaEstatística - Aula 2 - Estatística descritiva
Estatística - Aula 2 - Estatística descritivaHelder Lopes
 
Probabilidade história
Probabilidade históriaProbabilidade história
Probabilidade históriamarinaforcato
 
Genética probabilidade slides
Genética probabilidade slidesGenética probabilidade slides
Genética probabilidade slidesFabiano Reis
 
IESB Logística Empresarial - Métodos Quantitativos - Volume I
IESB Logística Empresarial - Métodos Quantitativos - Volume IIESB Logística Empresarial - Métodos Quantitativos - Volume I
IESB Logística Empresarial - Métodos Quantitativos - Volume IRafael José Rorato
 
Retas e planos no espaço: Geometria de Posição
Retas e planos no espaço: Geometria de PosiçãoRetas e planos no espaço: Geometria de Posição
Retas e planos no espaço: Geometria de PosiçãoBruno Cavalcanti
 
Tabela de distribuição de frequências para variáveis quantitativas contínuas....
Tabela de distribuição de frequências para variáveis quantitativas contínuas....Tabela de distribuição de frequências para variáveis quantitativas contínuas....
Tabela de distribuição de frequências para variáveis quantitativas contínuas....Alberto Tchivinda
 
Aula estatística descritiva básica
Aula estatística descritiva básicaAula estatística descritiva básica
Aula estatística descritiva básicaHoracimar Cotrim
 
Funções e Função Afim
Funções e Função Afim Funções e Função Afim
Funções e Função Afim estudamatematica
 
Probabilidade resolvidos
Probabilidade resolvidosProbabilidade resolvidos
Probabilidade resolvidosresolvidos
 
Cap2 - Parte 5 - Medidas Para Dados Agrupados
Cap2 - Parte 5 - Medidas Para Dados AgrupadosCap2 - Parte 5 - Medidas Para Dados Agrupados
Cap2 - Parte 5 - Medidas Para Dados AgrupadosRegis Andrade
 
Exemplo de cálculo média,moda e mediana com distribuição frequencia
Exemplo de cálculo média,moda e mediana com distribuição frequenciaExemplo de cálculo média,moda e mediana com distribuição frequencia
Exemplo de cálculo média,moda e mediana com distribuição frequenciaRenato Ribeiro Soares
 

Destaque (20)

Estatística - Aula 2 - Estatística descritiva
Estatística - Aula 2 - Estatística descritivaEstatística - Aula 2 - Estatística descritiva
Estatística - Aula 2 - Estatística descritiva
 
Estatística
EstatísticaEstatística
Estatística
 
estatis
estatisestatis
estatis
 
Estatística 10 Ano
Estatística 10 Ano Estatística 10 Ano
Estatística 10 Ano
 
Probabilidade história
Probabilidade históriaProbabilidade história
Probabilidade história
 
Distribuição normal
Distribuição normalDistribuição normal
Distribuição normal
 
Tópico 4 regressão linear simples 02
Tópico 4   regressão linear simples 02Tópico 4   regressão linear simples 02
Tópico 4 regressão linear simples 02
 
Estatística
EstatísticaEstatística
Estatística
 
Genética probabilidade slides
Genética probabilidade slidesGenética probabilidade slides
Genética probabilidade slides
 
Probabilidade - Estatística I
Probabilidade - Estatística IProbabilidade - Estatística I
Probabilidade - Estatística I
 
IESB Logística Empresarial - Métodos Quantitativos - Volume I
IESB Logística Empresarial - Métodos Quantitativos - Volume IIESB Logística Empresarial - Métodos Quantitativos - Volume I
IESB Logística Empresarial - Métodos Quantitativos - Volume I
 
Retas e planos no espaço: Geometria de Posição
Retas e planos no espaço: Geometria de PosiçãoRetas e planos no espaço: Geometria de Posição
Retas e planos no espaço: Geometria de Posição
 
Tabela de distribuição de frequências para variáveis quantitativas contínuas....
Tabela de distribuição de frequências para variáveis quantitativas contínuas....Tabela de distribuição de frequências para variáveis quantitativas contínuas....
Tabela de distribuição de frequências para variáveis quantitativas contínuas....
 
Aula estatística descritiva básica
Aula estatística descritiva básicaAula estatística descritiva básica
Aula estatística descritiva básica
 
Funções e Função Afim
Funções e Função Afim Funções e Função Afim
Funções e Função Afim
 
Probabilidade resolvidos
Probabilidade resolvidosProbabilidade resolvidos
Probabilidade resolvidos
 
Cap2 - Parte 5 - Medidas Para Dados Agrupados
Cap2 - Parte 5 - Medidas Para Dados AgrupadosCap2 - Parte 5 - Medidas Para Dados Agrupados
Cap2 - Parte 5 - Medidas Para Dados Agrupados
 
Exemplo de cálculo média,moda e mediana com distribuição frequencia
Exemplo de cálculo média,moda e mediana com distribuição frequenciaExemplo de cálculo média,moda e mediana com distribuição frequencia
Exemplo de cálculo média,moda e mediana com distribuição frequencia
 
Geometria
GeometriaGeometria
Geometria
 
Probabilidade Profa. Lucia M. Carvalho
Probabilidade Profa. Lucia M. CarvalhoProbabilidade Profa. Lucia M. Carvalho
Probabilidade Profa. Lucia M. Carvalho
 

Semelhante a Estatística Descritiva

Organização tratamento de_dados
Organização tratamento de_dadosOrganização tratamento de_dados
Organização tratamento de_dadosHelena Borralho
 
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]Dafmet Ufpel
 
Probabilidade e Estatística - Aula 03
Probabilidade e Estatística - Aula 03Probabilidade e Estatística - Aula 03
Probabilidade e Estatística - Aula 03Augusto Junior
 
Estatística completa
Estatística completaEstatística completa
Estatística completaRonne Seles
 
Aprenda fazer uma distribuição de frequência, Estatistica
Aprenda fazer uma distribuição de frequência, EstatisticaAprenda fazer uma distribuição de frequência, Estatistica
Aprenda fazer uma distribuição de frequência, EstatisticaPedro Kangombe
 
APOSTILA DE ESTATISTICA BASICA E SIMPLIFICADA.docx
APOSTILA DE ESTATISTICA BASICA E SIMPLIFICADA.docxAPOSTILA DE ESTATISTICA BASICA E SIMPLIFICADA.docx
APOSTILA DE ESTATISTICA BASICA E SIMPLIFICADA.docxMariaDeSousa41
 
EstatíStica Aula 000
EstatíStica Aula 000EstatíStica Aula 000
EstatíStica Aula 000educacao f
 
Prof.Dr.Nilo antonio de Souza Sampaio
Prof.Dr.Nilo antonio de Souza SampaioProf.Dr.Nilo antonio de Souza Sampaio
Prof.Dr.Nilo antonio de Souza SampaioNilo Sampaio
 
Estatística - Nilo Antonio de Souza Sampaio
Estatística - Nilo Antonio de Souza SampaioEstatística - Nilo Antonio de Souza Sampaio
Estatística - Nilo Antonio de Souza SampaioNilo Sampaio
 
4426477 matematica-e-realidade-aula-08-551
4426477 matematica-e-realidade-aula-08-5514426477 matematica-e-realidade-aula-08-551
4426477 matematica-e-realidade-aula-08-551Jenifer Ferreira
 
Tópico 1 - Estatistica Descritiva.pdf
Tópico 1 - Estatistica Descritiva.pdfTópico 1 - Estatistica Descritiva.pdf
Tópico 1 - Estatistica Descritiva.pdfCarlosMahumane1
 

Semelhante a Estatística Descritiva (20)

Organização tratamento de_dados
Organização tratamento de_dadosOrganização tratamento de_dados
Organização tratamento de_dados
 
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
 
Probabilidade e Estatística - Aula 03
Probabilidade e Estatística - Aula 03Probabilidade e Estatística - Aula 03
Probabilidade e Estatística - Aula 03
 
Estatística completa
Estatística completaEstatística completa
Estatística completa
 
Estatisticas petrobras
Estatisticas petrobrasEstatisticas petrobras
Estatisticas petrobras
 
Introdução a Estatistica 2.pdf
Introdução a Estatistica 2.pdfIntrodução a Estatistica 2.pdf
Introdução a Estatistica 2.pdf
 
Estdescr
EstdescrEstdescr
Estdescr
 
Aprenda fazer uma distribuição de frequência, Estatistica
Aprenda fazer uma distribuição de frequência, EstatisticaAprenda fazer uma distribuição de frequência, Estatistica
Aprenda fazer uma distribuição de frequência, Estatistica
 
Estatistica
EstatisticaEstatistica
Estatistica
 
APOSTILA DE ESTATISTICA BASICA E SIMPLIFICADA.docx
APOSTILA DE ESTATISTICA BASICA E SIMPLIFICADA.docxAPOSTILA DE ESTATISTICA BASICA E SIMPLIFICADA.docx
APOSTILA DE ESTATISTICA BASICA E SIMPLIFICADA.docx
 
EstatíStica Aula 000
EstatíStica Aula 000EstatíStica Aula 000
EstatíStica Aula 000
 
C:\Fakepath\Mat
C:\Fakepath\MatC:\Fakepath\Mat
C:\Fakepath\Mat
 
Estatística
EstatísticaEstatística
Estatística
 
Aula 07 Medidas de Tendencia Central de Dados Não Agrupados
Aula 07   Medidas de Tendencia Central de Dados Não AgrupadosAula 07   Medidas de Tendencia Central de Dados Não Agrupados
Aula 07 Medidas de Tendencia Central de Dados Não Agrupados
 
Prof.Dr.Nilo antonio de Souza Sampaio
Prof.Dr.Nilo antonio de Souza SampaioProf.Dr.Nilo antonio de Souza Sampaio
Prof.Dr.Nilo antonio de Souza Sampaio
 
Estatística - Nilo Antonio de Souza Sampaio
Estatística - Nilo Antonio de Souza SampaioEstatística - Nilo Antonio de Souza Sampaio
Estatística - Nilo Antonio de Souza Sampaio
 
4426477 matematica-e-realidade-aula-08-551
4426477 matematica-e-realidade-aula-08-5514426477 matematica-e-realidade-aula-08-551
4426477 matematica-e-realidade-aula-08-551
 
Tópico 1 - Estatistica Descritiva.pdf
Tópico 1 - Estatistica Descritiva.pdfTópico 1 - Estatistica Descritiva.pdf
Tópico 1 - Estatistica Descritiva.pdf
 
Estdescr1
Estdescr1Estdescr1
Estdescr1
 
Estdescr1
Estdescr1Estdescr1
Estdescr1
 

Mais de Ricardo Bruno - Universidade Federal do Pará

Mais de Ricardo Bruno - Universidade Federal do Pará (20)

Tópico 4 regressão linear simples 01
Tópico 4   regressão linear simples 01Tópico 4   regressão linear simples 01
Tópico 4 regressão linear simples 01
 
Tópico 3 Testes de Hipóteses - 2 amostras
Tópico 3   Testes de Hipóteses - 2 amostrasTópico 3   Testes de Hipóteses - 2 amostras
Tópico 3 Testes de Hipóteses - 2 amostras
 
Tópico 3 testes de hípoteses - 1 amostra
Tópico 3   testes de hípoteses - 1 amostraTópico 3   testes de hípoteses - 1 amostra
Tópico 3 testes de hípoteses - 1 amostra
 
Tópico 2 Intervalo de Confiança
Tópico 2   Intervalo de ConfiançaTópico 2   Intervalo de Confiança
Tópico 2 Intervalo de Confiança
 
Variáveis Aleatórias Multidimensionais
Variáveis Aleatórias MultidimensionaisVariáveis Aleatórias Multidimensionais
Variáveis Aleatórias Multidimensionais
 
Variáveis aleatórias contínuas - Estatística II
Variáveis aleatórias contínuas - Estatística IIVariáveis aleatórias contínuas - Estatística II
Variáveis aleatórias contínuas - Estatística II
 
Variáveis aleatórias discretas - Estatística II
Variáveis aleatórias discretas - Estatística IIVariáveis aleatórias discretas - Estatística II
Variáveis aleatórias discretas - Estatística II
 
Distribuição binomial, poisson e hipergeométrica - Estatística I
Distribuição binomial, poisson e hipergeométrica - Estatística IDistribuição binomial, poisson e hipergeométrica - Estatística I
Distribuição binomial, poisson e hipergeométrica - Estatística I
 
Aplicação derivada e integral
Aplicação derivada e integralAplicação derivada e integral
Aplicação derivada e integral
 
Tópico 09 - Integral
Tópico 09 - IntegralTópico 09 - Integral
Tópico 09 - Integral
 
Tópico 08 - Derivadas
Tópico 08 - DerivadasTópico 08 - Derivadas
Tópico 08 - Derivadas
 
Tópico 07 - Limite de uma função
Tópico 07 - Limite de uma funçãoTópico 07 - Limite de uma função
Tópico 07 - Limite de uma função
 
Tópico 06 - Funções Compostas e Irracionas
Tópico 06 - Funções Compostas e IrracionasTópico 06 - Funções Compostas e Irracionas
Tópico 06 - Funções Compostas e Irracionas
 
Tópico 05 - Funções Exponenciais e Logarítmicas
Tópico 05 - Funções Exponenciais e LogarítmicasTópico 05 - Funções Exponenciais e Logarítmicas
Tópico 05 - Funções Exponenciais e Logarítmicas
 
Matemática I - Tópico 04: Equações do 1º e 2º graus e Inequações
Matemática I - Tópico 04: Equações do 1º e 2º graus e InequaçõesMatemática I - Tópico 04: Equações do 1º e 2º graus e Inequações
Matemática I - Tópico 04: Equações do 1º e 2º graus e Inequações
 
Matemática I - Tópico 02 e 03
Matemática I - Tópico 02 e 03Matemática I - Tópico 02 e 03
Matemática I - Tópico 02 e 03
 
Matemática I - Tópico 01
Matemática I - Tópico 01 Matemática I - Tópico 01
Matemática I - Tópico 01
 
07 tópico 6 - autocorrelação
07   tópico 6 - autocorrelação07   tópico 6 - autocorrelação
07 tópico 6 - autocorrelação
 
06 tópico 5 - heterocedasticidade
06   tópico 5 - heterocedasticidade06   tópico 5 - heterocedasticidade
06 tópico 5 - heterocedasticidade
 
05 tópico 4 - multicolinearidade
05   tópico 4 - multicolinearidade05   tópico 4 - multicolinearidade
05 tópico 4 - multicolinearidade
 

Último

ROTINA DE ESTUDO-APOSTILA ESTUDO ORIENTADO.pdf
ROTINA DE ESTUDO-APOSTILA ESTUDO ORIENTADO.pdfROTINA DE ESTUDO-APOSTILA ESTUDO ORIENTADO.pdf
ROTINA DE ESTUDO-APOSTILA ESTUDO ORIENTADO.pdfMarcianaClaudioClaud
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfcarloseduardogonalve36
 
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxSlides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxLuizHenriquedeAlmeid6
 
MODELO Resumo esquemático de Relatório escolar
MODELO Resumo esquemático de Relatório escolarMODELO Resumo esquemático de Relatório escolar
MODELO Resumo esquemático de Relatório escolarDouglasVasconcelosMa
 
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.FLAVIA LEZAN
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfManuais Formação
 
o-homem-que-calculava-malba-tahan-1_123516.pdf
o-homem-que-calculava-malba-tahan-1_123516.pdfo-homem-que-calculava-malba-tahan-1_123516.pdf
o-homem-que-calculava-malba-tahan-1_123516.pdfCarolineNunes80
 
Meu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livroMeu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livroBrenda Fritz
 
Nós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º anoNós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º anoIlda Bicacro
 
Abuso Sexual da Criança e do adolescente
Abuso Sexual da Criança e do adolescenteAbuso Sexual da Criança e do adolescente
Abuso Sexual da Criança e do adolescenteIpdaWellington
 
Sistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdfSistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdfAntonio Barros
 
livro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensoriallivro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensorialNeuroppIsnayaLciaMar
 
Edital do processo seletivo para contratação de agentes de saúde em Floresta, PE
Edital do processo seletivo para contratação de agentes de saúde em Floresta, PEEdital do processo seletivo para contratação de agentes de saúde em Floresta, PE
Edital do processo seletivo para contratação de agentes de saúde em Floresta, PEblogdoelvis
 
4 ano atividade fonema e letra 08.03-1.pdf
4 ano atividade fonema e letra 08.03-1.pdf4 ano atividade fonema e letra 08.03-1.pdf
4 ano atividade fonema e letra 08.03-1.pdfLindinhaSilva1
 
Alemanha vs União Soviética - Livro de Adolf Hitler
Alemanha vs União Soviética - Livro de Adolf HitlerAlemanha vs União Soviética - Livro de Adolf Hitler
Alemanha vs União Soviética - Livro de Adolf Hitlerhabiwo1978
 
APOSTILA- COMPLETA De FILOSOFIA-DA-EDUCAÇÃO.pdf
APOSTILA- COMPLETA  De FILOSOFIA-DA-EDUCAÇÃO.pdfAPOSTILA- COMPLETA  De FILOSOFIA-DA-EDUCAÇÃO.pdf
APOSTILA- COMPLETA De FILOSOFIA-DA-EDUCAÇÃO.pdflbgsouza
 
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptxEBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptxIlda Bicacro
 

Último (20)

ROTINA DE ESTUDO-APOSTILA ESTUDO ORIENTADO.pdf
ROTINA DE ESTUDO-APOSTILA ESTUDO ORIENTADO.pdfROTINA DE ESTUDO-APOSTILA ESTUDO ORIENTADO.pdf
ROTINA DE ESTUDO-APOSTILA ESTUDO ORIENTADO.pdf
 
Poema - Maio Laranja
Poema - Maio Laranja Poema - Maio Laranja
Poema - Maio Laranja
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
 
Enunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdf
Enunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdfEnunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdf
Enunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdf
 
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxSlides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
 
MODELO Resumo esquemático de Relatório escolar
MODELO Resumo esquemático de Relatório escolarMODELO Resumo esquemático de Relatório escolar
MODELO Resumo esquemático de Relatório escolar
 
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
 
o-homem-que-calculava-malba-tahan-1_123516.pdf
o-homem-que-calculava-malba-tahan-1_123516.pdfo-homem-que-calculava-malba-tahan-1_123516.pdf
o-homem-que-calculava-malba-tahan-1_123516.pdf
 
Meu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livroMeu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livro
 
Nós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º anoNós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º ano
 
Abuso Sexual da Criança e do adolescente
Abuso Sexual da Criança e do adolescenteAbuso Sexual da Criança e do adolescente
Abuso Sexual da Criança e do adolescente
 
Sistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdfSistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdf
 
livro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensoriallivro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensorial
 
Edital do processo seletivo para contratação de agentes de saúde em Floresta, PE
Edital do processo seletivo para contratação de agentes de saúde em Floresta, PEEdital do processo seletivo para contratação de agentes de saúde em Floresta, PE
Edital do processo seletivo para contratação de agentes de saúde em Floresta, PE
 
4 ano atividade fonema e letra 08.03-1.pdf
4 ano atividade fonema e letra 08.03-1.pdf4 ano atividade fonema e letra 08.03-1.pdf
4 ano atividade fonema e letra 08.03-1.pdf
 
Alemanha vs União Soviética - Livro de Adolf Hitler
Alemanha vs União Soviética - Livro de Adolf HitlerAlemanha vs União Soviética - Livro de Adolf Hitler
Alemanha vs União Soviética - Livro de Adolf Hitler
 
APOSTILA- COMPLETA De FILOSOFIA-DA-EDUCAÇÃO.pdf
APOSTILA- COMPLETA  De FILOSOFIA-DA-EDUCAÇÃO.pdfAPOSTILA- COMPLETA  De FILOSOFIA-DA-EDUCAÇÃO.pdf
APOSTILA- COMPLETA De FILOSOFIA-DA-EDUCAÇÃO.pdf
 
662938.pdf aula digital de educação básica
662938.pdf aula digital de educação básica662938.pdf aula digital de educação básica
662938.pdf aula digital de educação básica
 
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptxEBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
 

Estatística Descritiva

  • 1. CURSO DE ESTATÍSTICA I Ricardo Bruno N. dos Santos FACECON-PPGE (UFPA)
  • 2. O Que é a Estatística? • A Estatística originou-se com a coleta e construção de tabelas de dados para o governo. • A situação evoluiu e esta coleta de dados representa somente um dos aspectos da Estatística. • No século XIX, o desenvolvimento do cálculo de probabilidade e outras metodologias matemáticas, tais como a técnica de Mínimos Quadrados, foram fundamentais para o desenvolvimento da Estatística
  • 3. O Que é a Estatística? • Somente no século XX a Estatística desenvolve-se como uma área específica do conhecimento a partir do desenvolvimento da Inferência Estatística; uma metodologia baseada em probabilidade que tem ampla aplicação nas ciências experimentais. • A Estatística hoje consiste num metodologia científica para obtenção, organização e análise de dados, oriundos das mais variadas áreas das ciência experimentais, cujo objetivo principal é auxiliar a tomada de decisões em situações de incerteza.
  • 4. O Que é a Estatística? Etapa inicial da análise utilizada para descrever, organizar e resumir os dados coletados. A disponibilidade de uma grande quantidade de dados e de métodos computacionais muito eficientes revigorou esta área da Estatística.
  • 5. O Que é a Estatística? O que fazer com as observações que coletamos?
  • 6. 6 QUALITATIVA QUANTITATIVA NOMINAL ORDINAL CONTÍNUA DISCRETA peso, altura, salário, idade número de filhos, número de carros sexo, cor dos olhos classe social, grau de instrução Variável: Qualquer característica associada a uma população. Classificação das variáveis: O Que é a Estatística?
  • 7. 7 Amplitude, Intervalo-Interquartil, Variância, Desvio Padrão, Coeficiente de Variação. MEDIDAS DE DISPERSÃO: Mínimo, Máximo, Moda, Média, Mediana, Percentis MEDIDAS DE POSIÇÃO: O Que é a Estatística?
  • 8. Medidas de posição: Medidas de Tendência Central Resumos numéricos são ferramentas importantes para descrever a distribuição de uma variável quantitativa. Agora você vai trabalhar com medidas de posição que, como o próprio nome indica, são medidas que indicam a localização dos dados. O objetivo não é o cálculo das medidas, mas, sim, explorar propriedades e relações entre três das principais medidas de posição. Média Aritmética Simples: é calculada somando-se os valores de todas as observações e dividindo-se essa soma pelo número de observações. Equivale a dividir o total das n observações em n partes iguais. Mediana: é o valor que divide o conjunto de dados em duas partes tais que abaixo e acima da mediana encontram-se 50% das observações. O cálculo da mediana requer que os dados estejam ordenados. Se o número de observações for ímpar, a mediana é o valor central; se o número de observações for par, a mediana é a média dos dois valores centrais.
  • 9. Medidas de posição: Medidas de Tendência Central Moda: é o valor mais frequente. Média Amostral: A média amostral, aritmética, ou simplesmente média, é calculada somando-se os valores das observações da amostra e dividindo-se o resultado pelo número de valores. Assim, a média amostral é dada por: 𝒙 = 𝒙𝒊 𝒏 Média Populacional: A média populacional é calculada somando- se todos os valores da população e dividindo o resultado pelo total de elementos da população. Numa população de elementos, a média populacional é dada por 𝝁 = 𝒙𝒊 𝑵
  • 10. Medidas de posição: Medidas de Tendência Central Mediana: Para calcular a mediana devemos, em primeiro lugar, ordenar os dados do menor para o maior valor. Se o número de observações for ímpar, a mediana será a observação central. Se o número de observações for par, a mediana será a média aritmética das duas observações centrais. Notação: 𝑥 Exemplo: Salários mensais iniciais para uma amostra de 12 graduados em Administração
  • 11. Medidas de posição: Medidas de Tendência Central Percentis: Em estatística descritiva, o p-ésimo percentil Pk é o valor x (xk) que corresponde à frequência cumulativa de 𝑛 𝑝 100 , onde n é o tamanho amostral. 𝒊 = 𝒑 𝟏𝟎𝟎 𝒏 Calculando o p-ésimo percentil 1 – Arranje os dados na ordem ascendente (do menor para o maior) 2 – Calcule o índice 𝒊 = 𝒑 𝟏𝟎𝟎 𝒏 3 - (a) Se não for um inteiro, arredonde para cima. O próximo inteiro maior que i expressará a posição do p-ésimo percentil. - (b) Se i é impar, o p-ésimo percentil é a média dos valores dados nas posições i e i+1
  • 12. Medidas de posição: Medidas de Tendência Central Exemplo: para os dados de salários o 85º percentil será: 𝑖 = 85 100 12 = 10,2 Arredondando para mais teríamos então a 11ª posição.
  • 13. Medidas de posição: Medidas de Tendência Central Quartis: Na estatística descritiva, um quartil é qualquer um dos três valores que divide o conjunto ordenado de dados em quatro partes iguais, e assim cada parte representa 1/4 da amostra ou população. Assim, no caso duma amostra ordenada, primeiro quartil (designado por Q1/4) = quartil inferior = é o valor aos 25% da amostra ordenada = 25º percentil segundo quartil (designado por Q2/4) = mediana = é o valor até ao qual se encontra 50% da amostra ordenada = 50º percentil, ou 5º decil. terceiro quartil (designado por Q3/4) = quartil superior = valor a partir do qual se encontram 25% dos valores mais elevados = valor aos 75% da amostra ordenada = 75º percentil à diferença entre os quartis superior e inferior chama-se amplitude inter-quartil.
  • 14. Medidas de posição: Medidas de Tendência Central Exemplo 1: Amostra: 6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36 Amostra ordenada: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49 Q1/4 = 15 Q2/4 = 40 Q3/4 = 43 Exemplo 2: Amostra ordenada: 7, 15, 36, 39, 40, 41 Q1/4 = 15 Q2/4 = (39+36)/2 = 37.5 Q3/4 = 40
  • 15. Medidas de posição: Medidas de Tendência Central
  • 16. Medidas de posição: Medidas de Tendência CentralBox Plot (Diagrama de Caixa) Em estatística descritiva, diagrama de caixa, ou boxplot, box plot, é um gráfico no qual o: - eixo vertical representa a variável a ser analisada; - eixo horizontal um fator de interesse. O diagrama de caixa é uma ferramenta para localizar e analisar a variação de uma variável dentre diferentes grupos de dados. O diagrama de caixa procura obter as seguintes informações: - Calcular a mediana e os quartis ( o quartil inferior contém 25% ( 1/4) das menores medidas e o quartil superior contém 75 ( 3/4) de todas as medidas); - Plotar um símbolo onde se localiza a mediana e uma caixa, daí o nome de diagrama de caixas, onde a base representa o quartil inferior ( 25% ou 1/4) dos menores valores), e o topo da caixa o quartil superior (75% ou 3/4) dos valores observados. A caixa portanto representa 50% de todos os os valores observados ,concentrados na tendência central dos valores, eliminando os 25% menores valores e 25% maiores valores ( 75% - 25% = 50%); - Um segmento de reta vertical conecta o topo da caixa ao maior valor observado e outro segmento conecta a base da caixa ao menor valor observado, este segmento denomina-se Whisker, ou fio de bigode.
  • 17.
  • 18. Medidas de posição: Medidas de Tendência Central Média Geométrica: Este tipo de média é calculada multiplicando- se todos os valores e extraindo-se a raiz de índice n deste produto. Digamos que tenhamos os números 4, 6 e 9, para obtermos o valor médio aritmético deste conjunto, multiplicamos os elementos e obtemos o produto 216. Pegamos então este produto e extraímos a sua raiz cúbica, chegando ao valor médio 6. Extraímos a raiz cúbica, pois o conjunto é composto de 3 elementos. Se fossem n elementos, extrairíamos a raiz de índice n. Neste exemplo teríamos a seguinte solução 𝑮 = 𝒊=𝟏 𝒏 𝒙𝒊 𝟏 𝒏 = 𝒙 𝟏 𝒙 𝟐 . . . 𝒙 𝒏 𝟏 𝒏 = 𝒏 𝒙 𝟏 𝒙 𝟐 … 𝒙 𝒏
  • 19. Medidas de posição: Medidas de Tendência Central Média Harmônica: é o número de membros dividido pela soma do inverso dos membros 𝐻 = 1 𝑛 𝑖=1 𝑛 𝑥𝑖 −1 −1 Pode-se então estabelecer que: 𝐻 ≤ 𝐺 ≤ 𝑥
  • 20. A origem das médias Arquitas de Tarento, um matemático pitagórico que viveu por volta de 400 a.C., definiu que existiam três tipos de média. Um número é a média aritmética de dois outros quando o excesso do primeiro para o segundo é igual ao excesso do segundo para o terceiro, a média geométrica quando a proporção do segundo para o terceiro é igual à proporção do primeiro para o segundo, e a média harmônica quando a quantidade que o primeiro excede o segundo em relação ao primeiro é igual à quantidade que o segundo excede o terceiro em relação ao terceiro; em notação moderna, sendo o primeiro x, o segundo m e o terceiro y (x > m > y > 0):
  • 21. A origem das médias Logo
  • 23. Medidas de dispersão As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual, sem ilustrar outros aspectos referentes à forma como os dados estão distribuídos na amostra. As medidas de dispersão são utilizadas para avaliar o grau de variabilidade, ou dispersão, dos valores em torno da média.
  • 24. Medidas de dispersão Qual a importância das medidas de dispersão na prática? Vejamos o exemplo das notas de três turmas (A, B e C) Essa tabela será o nosso mote para no final avaliar qual foi a melhor turma. Turma A Turma B Turma C 4 5 2 5 6 3 6 6 8 7 6 8 8 7 9
  • 25. Medidas de dispersão Amplitude total: é a diferença entre o menor e o maior valor observado. 𝑨𝑻 = 𝑿𝒊 𝒎𝒂𝒙 − 𝑿𝒊 𝒎𝒊𝒏 Verifica-se que a amplitude como medida de dispersão é limitada. Essa medida só depende dos valores extremos, ou seja, não é afetada pela dispersão dos valores internos. Quais os resultados para as notas das turmas? Amplitude interquartil: é a diferença entre o terceiro quartil e o primeiro.
  • 26. Medidas de dispersão Variância: A variância de um conjunto de dados (amostra ou população) é uma medida de “VARIABILIDADE ABSOLUTA”. Ela mede a variabilidade do conjunto em termos de desvios quadrados em relação à média aritmética. É uma quantidade sempre NÃO NEGATIVA e expressa em unidades quadradas do conjunto de dados, sendo de difícil interpretação. 𝜎2 = 𝑖=1 𝑛 𝑥𝑖 − 𝜇 2 𝑁 𝑠2 = 𝑖=1 𝑛 𝑥𝑖 − 𝑥 2 𝑛 − 1 Populacional Amostral
  • 27. Medidas de dispersão Desvio Padrão: É uma outra medida de dispersão mais comumente empregada do que a variância, por ser expressa na mesma unidade de medida do conjunto de dados. Mede a "DISPERSÃO ABSOLUTA" de um conjunto de valores e é obtida a partir da variância. Trata-se da raiz quadrada da variância 𝜎 = 𝑖=1 𝑛 𝑥𝑖 − 𝜇 2 𝑁 𝑠 = 𝑖=1 𝑛 𝑥𝑖 − 𝑥 2 𝑛 − 1
  • 28. Medidas de dispersão Coeficiente de variação: É uma medida de “VARIABILIDADE RELATIVA”, útil para comparar a variabilidade de observações com diferentes unidades de medida. 𝑐𝑣 = 𝜎 𝑥 (100)
  • 30. Medidas de dispersão Vamos avaliar qual a melhor Turma. Na sua opinião qual turma é melhor.
  • 32.
  • 33. Distribuição de Frequências Organização dos dados: Os métodos utilizados para organizar dados compreendem o arranjo desses dados em subconjuntos que apresentem características similares. mesma idade (ou “faixa etária”), mesma finalidade, mesma escola, mesmo bairro, etc Os DADOS AGRUPADOS podem ser resumidos em tabelas ou gráficos e, a partir desses, podemos obter as estatísticas descritivas já definidas: média, mediana, desvio, etc. Dados organizados em grupos ou categorias/classes são usualmente designados “DISTRIBUIÇÃO DE FREQUÊNCIA”.
  • 34. Distribuição de Frequências Uma distribuição de frequência é um método de se agrupar dados em classes de modo a fornecer a quantidade (e/ou a percentagem) de dados em cada classe. Com isso, podemos RESUMIR e VISUALIZAR um conjunto de dados sem precisar levar em conta os valores individuais. Construindo assim uma SÍNTESE dos DADOS QUANTITATIVOS. Uma distribuição de frequência (absoluta ou relativa ) pode ser apresentada em TABELAS ou GRÁFICOS.
  • 35. Distribuição de Frequências Uma distribuição de frequência agrupa os dados por classes de ocorrência, resumindo a análise de conjunto de dados grandes. Tipos de Frequência Simples Absolutas Relativas Acumuladas Crescente Absolutas Relativas Decrescente Absolutas Relativas
  • 36. Distribuição de Frequências Eventos Altura Aluno1 1,60 Aluno2 1,69 Aluno3 1,72 Aluno4 1,73 Aluno5 1,73 Aluno6 1,74 Aluno7 1,75 Aluno8 1,75 Aluno9 1,75 Aluno10 1,75 Aluno11 1,75 Aluno12 1,76 Aluno13 1,78 Aluno14 1,80 Aluno15 1,82 Aluno16 1,82 Aluno17 1,84 Aluno18 1,88
  • 37. Distribuição de Frequências Como construir uma distribuição de frequência a partir dessas informações? Primeiro reduzir o número de linhas da tabela, para isso temos que calcular o NÚMERO DE CLASSES. O Número de classes pode ser representado pela letra (k). Para o cálculo do número de classes pode-se utilizar algumas regras como: 1) Regra de Sturges (Regra do Logaritmo) 𝑘 = 1 + 3,3log(𝑛) 2) Regra da Raiz Quadrada 𝑘 = 𝑛 3) Bom Senso! Podemos decidir qual o melhor número de classes, muitos afirmam que devemos ter classes entre os tamanhos 5 a 20.
  • 39. Distribuição de Frequências Existem várias maneiras de apresentarmos o intervalo de classes: iguais ou diferentes entre si. Porém, sempre que possível, deveremos optar por intervalos iguais, o que facilitará os cálculos posteriores. Mas mesmo com intervalos iguais, as distribuições poderão apresentar-se da seguinte forma: 0 -- 10: compreende todos os valores entre 0 e 10, exclusive os extremos. 0 |--|10: compreende todos os valores entre 0 e 10, inclusive os extremos. 0 --|10: compreende todos os valores entre 0 e 10, inclusive o 10 e exclusive o 0. 010: compreende todos os valores entre 0 e 10, inclusive o 0 e exclusive o 10. Como optaremos por este último tipo (010), pode-se definir como intervalo de classe a diferença entre o limite superior e o limite inferior da classe. Portanto, no exemplo, 10 – 0 = 10 é o intervalo ou amplitude da classe que será representado pela letra h.
  • 40. Distribuição de Frequências Largura das classes (amplitude das classes (h)): É a segunda etapa da construção de uma distribuição de frequência para dados quantitativos. Recomenda-se que a largura seja a mesma para cada uma das classes. 𝐿𝑎𝑟𝑔𝑢𝑟𝑎 𝐴𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑑𝑎 𝑑𝑒 𝐶𝑙𝑎𝑠𝑠𝑒 = 𝑀á𝑥𝑖𝑚𝑜 − 𝑀í𝑛𝑖𝑚𝑜 𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 Para o exemplo das alturas temos: 1,88−1,60 5 = 0,056 Que arredondando transforma-se em 0,06
  • 41. Distribuição de Frequências Obs. 1: Na amplitude das classes (h), observe que aumentamos uma unidade, não seguindo, portanto, as regras de arredondamento. Esta é uma regra que deve ser sempre seguida no cálculo da amplitude da classe. Você saberia me dizer por quê? Obs. 2: Deve-se conservar o número de casas decimais dos dados observados. Por exemplo, se os dados se referem à massa de indivíduos em kg e forem expressos com uma casa após a vírgula (por exemplo, 60,5 kg), então a amplitude deverá ter uma casa após a vírgula. Obs. 3: Usando o bom-senso e a experiência, poderá ser conveniente , quando possível, a utilização da amplitude de um intervalo de classe igual a 10 ou 5, facilitando as operações posteriores.
  • 42. Distribuição de Frequências Para os dados das alturas teremos: 1,59 --| 1,66 1,66 --| 1,72 1,72 --| 1,78 1,78 --| 1,84 1,84 --| 1,90
  • 43. Distribuição de Frequências Ponto Médio das Classes (𝑿𝒊): É a média aritmética entre o limite superior e o limite inferior da classe. Assim, se a classe for 0--|10, teremos 0+10 2 = 5, que será o ponto médio da classe. Limites de Classe: São os números extremos de cada intervalo: sendo assim, temos um limite inferior e um superior. Se a primeira classe tiver um intervalo de notas de 0 até 10, o 0 será o limite inferior enquanto que o 10 será o limite superior desta classe.
  • 44. Distribuição de Frequências Frequência Acumulada (𝑭𝒊): Corresponde à soma das freqüências de determinada classe com as anteriores. No exemplo, vejamos como fica a frequência acumulada de cada classe: Altura Fi 1,59 --| 1,66 1 1,66 --| 1,72 2 1,72 --| 1,78 10 1,78 --| 1,84 4 1,84 --| 1,90 1 Total 18
  • 45. Distribuição de Frequências Frequência relativa ( 𝒇𝒊 ):Corresponde ao quociente entre a freqüência absoluta da classe e o total de elementos. 𝑓𝑖 = 𝑓𝑖 𝑛 Altura Fi fi 1,59 --| 1,66 1 0,06 1,66 --| 1,72 2 0,11 1,72 --| 1,78 10 0,56 1,78 --| 1,84 4 0,22 1,84 --| 1,90 1 0,06 Total 18 1,00
  • 46. Distribuição de Frequências Distribuições cumulativas: São as somas das ocorrências de dados cumulativamente às classes. Também é importante mostrar os termos em percentuais tanto na relativa quanto na acumulada Altura Fi fi %fi FA %FA 1,59 --| 1,66 1 0,06 5,56 0,06 5,56 1,66 --| 1,72 2 0,11 11,11 0,17 16,67 1,72 --| 1,78 10 0,56 55,56 0,72 72,22 1,78 --| 1,84 4 0,22 22,22 0,94 94,44 1,84 --| 1,90 1 0,06 5,56 1,00 100,00 Total 18 1,00 100,00
  • 47. Distribuição de Frequências Gráficos: Histograma: Também conhecido como Distribuição de Frequências ou Diagrama das Frequências, é uma representação gráfica na qual um conjunto de dados é agrupado em classes uniformes, representado por um retângulo cuja base horizontal são as classes e seu intervalo e a altura vertical representa a frequência com que os valores desta classe estão presente no conjunto de dados . É uma das Sete Ferramentas da Qualidade. O histograma é um gráfico composto por retângulos justapostos em que a base de cada um deles corresponde ao intervalo de classe e a sua altura à respectiva frequência. Quando o número de dados aumenta indefinidamente e o intervalo de classe tende a zero, a distribuição de frequência passa para uma distribuição de densidade de probabilidades. A construção de histogramas tem caráter preliminar em qualquer estudo e é um importante indicador da distribuição de dados. Podem indicar se uma distribuição aproxima-se de uma FUNÇÃO NORMAL, como pode indicar mistura de populações quando se apresentam bimodais.
  • 48. Distribuição de Frequências Passos para a construção do histograma: 1) Na abscissas, distribua as classes 2) Na ordenada da esquerda, as frequências absolutas 3) Construa um gráfico de barras para as frequências 4) Construa um gráfico de linha para a frequência acumulada (utilize a escala da direita)
  • 50. Distribuição de Frequências Ogivas 0 5 10 15 20 1,59 --| 1,66 1,66 --| 1,72 1,72 --| 1,78 1,78 --| 1,84 1,84 --| 1,90
  • 52. Distribuição de Frequências Média Ponderada de uma Frequência: 𝒙 = 𝑭𝒊 𝒙 𝒇 Onde: 𝒙 – Ponto Médio da Classe 𝒇𝒊 - Frequência acumulada 𝒇 - n
  • 53. Distribuição de Frequências Altura Fi fi %fi FA %FA Ponto Médio x*fi 1,59 1,65 1 0.06 5.56 0.06 5.56 1,62 1.62 1,65 1,71 1 0.06 5.56 0.11 11.11 1,68 1.68 1,71 1,77 10 0.56 55.56 0.67 66.67 1,74 17.4 1,77 1,83 4 0.22 22.22 0.89 88.89 1,80 7.2 1,83 1,89 2 0.11 11.11 1.00 100.00 1,86 3.72 Total 18 1,00 100,00 8,75 31,62 Média 1,7564 Média real 1,7589
  • 54. Distribuição de Frequências Podemos além da média, encontrar a mediana e a moda para distribuições de frequência, bem como a variância e o desvio padrão.
  • 55. Distribuição de Frequências Para dados agrupados em intervalos de classes, você pode calcular a moda por meio do método de Czuber, que se baseia na influência das classes adjacente na moda deslocando-se no sentido da classe de maior frequência. A expressão que você utilizará é: 𝑀𝑜 = 𝐿𝑖 + 𝑑1 𝑑1 + 𝑑2 × 𝑐 Li : limite inferior da classe modal; 𝑑1 : diferença entre a frequência da classe modal e a imediatamente anterior; 𝑑2 : diferença entre a frequência da classe modal e a imediatamente posterior; e c : amplitude da classe modal Para a tabela de alturas temos: 1.71 + 9 9+6 × 0,06 = 1,746 ≅ 1,75
  • 56. Distribuição de Frequências Quando os dados estão agrupados na mediana, devemos encontrar a classe mediana. Se os dados estão agrupados em intervalos de classe, como no caso do número de casa por rua, utilizaremos a seguinte expressão: 𝑀𝑑 = 𝑙𝑖 + 𝑛 2 − 𝑓𝑎𝑛𝑡𝑎𝑐 𝑓 𝑚𝑒𝑑 × 𝑐 li : limite inferior da classe mediana; n : número total de elementos; 𝑓𝑎𝑛𝑡𝑎𝑐 : frequência acumulada anterior à classe mediana; 𝑓 𝑚𝑒𝑑 : frequência absoluta da classe mediana; e c: amplitude da classe mediana.
  • 57. Distribuição de Frequências Porém é importante definir a classe mediana, para tanto devemos usar a seguinte fórmula (n/2) para definir a classe mediana Utilizando os dados das alturas teremos: Classe mediana = 18 2 = 9 logo temos que examinar o 9º elemento, onde o mesmo se encontra na classe 1,71--|1,77 Aplicando a fórmula da mediana temos: 𝑀𝑑 = 1,71 + 18 2 − 0,11 10 × 0,06 = 1,763 ≅ 1,76
  • 58. Distribuição de Frequências Em um conjunto de dados, a mediana, a moda e a média não necessariamente devem apresentar o mesmo valor. Uma informação importante é que a mediana não é influenciada pelos valores extremos. Comparando os resultados encontrados para uma amostra em relação às medidas de posição estudadas e verificando a inter-relação entre elas, você pode concluir que seus valores podem nos dar um indicativo da natureza da distribuição dos dados, em função das regras definidas pela Figura seguinte:
  • 60. Distribuição de Frequências Com relação a Variância para dados agrupados em classes, pode-se utilizar a seguinte expressão a partir dos desvio padrão: 𝑠 = 1 𝑛 − 1 𝑖=1 𝑛 𝑥𝑖 − 𝑥 2 𝑓𝑎 Onde n – Nº de Observações 𝑥𝑖 − 𝑥 2 - Os desvios em torno da média ao quadrado. Onde 𝑥𝑖 são os pontos médios de cada classe; 𝑓𝑎 - Frequências absolutas de cada classe. Para as alturas temos: 𝑠 = 1 18 − 1 { 1,62 − 1,76 2 × 1 + 1,68 − 1,76 2 × 1 + 1,74 − 1,76 2 × 10 + 1,8 − 1,76 2 × 4 + [ 1,86 − 1,76 2 × 2] s=0,058 𝑠2 = 0,03