SlideShare uma empresa Scribd logo
MATEMÁTICA PARA MECÂNICA
Autoras:
Fernanda Souza
Katia Dutra
Vamos começar?
O consumo de energia elétrica é uma preocupação do mundo moderno.
Se analisarmos uma conta de luz e soubermos a potência de um equipamento
elétrico, poderemos anotar a frequência de uso desses aparelhos para construir uma
tabela como a que vemos a seguir:
Observe que com base nesses dados podemos calcular o consumo médio mensal de todos esses
aparelhos juntos.
Também podemos, a partir do custo do quilowatt-hora, calcular o valor, em reais, do consumo de
energia elétrica mensal em uma residência, por exemplo.
Para efetuar este cálculo, precisamos realizar operações com números decimais.
Essa foi apenas uma situação dentre as muitas que
temos para operar com esse tipo de número.
Vamos rever como funcionam essas operações?
Aparelhos
elétricos
Potência média
(watts)
Dias estimados
uso/mês
Média
utilização/ dia
Consumo
médio mensal
(kWh)
Chuveiro elétrico 3 500 30 40 min 70,0
Computador 180 30 3 h 16,2
Geladeira 300 30 10 h 45
Liquidificador 300 15 15 min 1,1
Televisor 90 30 5 h 13,5
Um inspetor de qualidade precisava calcular o comprimento de uma peça
como a do esquema a seguir.
Como ele fez para somar os valores? Qual foi o valor de x que obteve? (As
medidas estão em centímetros.)
Para calcular o valor de x, basta somar
todas as medidas dadas:
x = 20,50 + 15,80 + 18,65 + 42,22
x= 97,17 cm
Fique por dentro
Observe outra situação:
+
20,50
15,80
18,65
42,22
97,17
Como você pôde ver, o valor de x (comprimento da peça) foi de 97,17 cm
x
42,2218,6515,8020,50
Para ADIÇÃO ou SUBTRAÇÃO de números decimais, devemos observar que:
Os algarismos que ocupam a mesma ordem (unidade,
dezena, centena, etc.) devem ficar na mesma coluna, com
uma virgula alinhada à outra (vírgula embaixo de vírgula).
Depois disso, basta adicionar e subtrair normalmente.
Por fim, no resultado, a vírgula se mantém alinhada com as
demais.
1 , 2 8 + 2,6 + 0 , 0 3 8 =1 , 2 8 2 , 6
0
0 , 0 3 8
+
_________
3 , 9 1 8
3,918
0
0
Clique e veja
alguns exemplos:
35,4 + 0,75 + 47 = 83,15
83,15
+
35,40
0,75
47,00
9 – 0,987 = 8,013
8,013
_ 9,000
0,987
O estudo da MULTIPLICAÇÃO de números decimais pode ser dividido em dois casos:
Clique nos exemplos abaixo e
observe que para multiplicar um
número decimal por 10, 100 e
1000, basta deslocar a vírgula
uma, duas, três posições para a
direita, respectivamente.
 Multiplicação por 10, por 100, por 1000.
1,349 x 10 =
1,349 x 100 =
1,349 x 1000 =
134 9,
134 9
134 9
,
,
A virgula deslocou
uma casa decimal
A virgula deslocou
duas casas decimais
A virgula deslocou
três casas decimais
 Multiplicação de um número decimal por outro número decimal:
Nestes casos devemos:
•Multiplicar os números como se fossem
números inteiros.
•Colocar a vírgula no resultado, de modo
que a quantidade de casas decimais seja
igual à soma do número de casas
decimais dos fatores.
Observe os exemplos:
3 casas decimais
3 casas decimais
6 casas decimais
3 casas decimais
1 casa decimal
4 casas decimais
Até aqui, já vimos como efetuar as operações de adição, subtração e multiplicação de números
decimais.
E na DIVISÃO como devemos proceder?
Em muitas disciplinas técnicas você trabalha com conversão de medidas. Essas, por sua vez,
exigem operações com números decimais e, em especial, a divisão.
Vamos rever como efetuar a divisão?
Nos números fracionários, multiplica-se o numerador da fração
por 25,4 e divide-se o resultado pelo denominador.
O estudo da DIVISÂO de números decimais pode ser dividido nos seguintes casos:
 Divisão por 10 , 100 e 1000:
Para dividir por 10, 100 e 1000 devemos deslocar a
vírgula uma, duas, três posições para a esquerda,
respectivamente. Quer ver melhor? Clique e observe os
exemplos a seguir!
134,9 ÷ 10 = 134 9,
134,9 ÷ 100 = 134 9,
134,9 ÷ 1000 = 134 9,0
 Divisão de um número decimal por outro número decimal:
1º caso: Divisão exata
Considere a divisão entre 1,4 : 0,05.
Transformando em frações decimais temos:
Os outros casos de divisão podem ser estudados em dois casos: o da divisão exata e o da
divisão não exata.
Você deve ter percebido que a divisão ficou muito fácil ao
transformarmos os números decimais em frações
Observe a seguir um
método prático para
efetuar a divisão exata de
um decimal por outro
1º) Igualamos o número de casas decimais do dividendo e divisor;
2 ) Suprimimos a vírgula;
3º) Efetuamos a divisão dos números obtidos.
Efetuando ...
1,4 0,05
Igualando as casas decimais:
1,4 0,050
Suprimindo as vírgulas, temos
140 5
Efetuando a divisão
0
40 28
514'0' 1,4 0,05 = 28
http://www.youtube.com/watch?v=74y69o4cnHM
Entenda melhor a divisão de
decimais assistindo a essa
vídeoaula.
2º caso: Divisão não exata
No caso da divisão não exata calculamos o quociente aproximado.
Seja por exemplo a divisão de 66 por 21.
6
90
30 3,14
66' 21
Determinar um quociente com aproximação de
décimos, centésimos ou milésimos significa parar a
divisão ao atingir a primeira, segunda ou terceira casa
decimal do quociente, respectivamente.
Exemplos:
13 ÷ 7 = 1, 8 ( aproximação de décimos )
13 ÷ 7 =
13 ÷ 7 =
1,
1,
85 ( aproximação de centésimos )
857 ( aproximação de milésimos )
http://www.youtube.com/watch?v=JjSUgr6pZI0
Para finalizar, vamos recordar a potenciação e a radiciação de números decimais. Vamos lá?
Potenciação de números decimais
As potências nas quais a base é um número decimal e o expoente é um numero natural, utilizamos a
mesma regra de potenciação.
Multiplicamos a base por
ela mesma, quantas
vezes for o expoente.
(0,7)³ = 0,7 x 0,7 x 0,7 = 0,343
3 fatores
(0,5) =
5
0,5 x 0,5 x 0,5 x 0,5 x 0,5
5 fatores
= 0,03125
(3,2)²= 3,2 x 3,2
2 fatores
= 10,24
Clique e observe os exemplos:
A raiz quadrada de um número decimal pode ser
determinada com facilidade, transformando o
número em uma fração decimal.
Veja os exemplos:
Raiz Quadrada de números decimais
E lembre: todas essas operações serão muito utilizadas ao
longo de todo o seu curso técnico!
Navegando...
Fique mais por dentro dos decimais. Acesse:
http://www.slideshare.net/guestdc3a85/nmeros-racionais-expressos-na-forma-decimal-2519868
História dos Números Decimais da Turma da Mônica:
http://www.slideshare.net/kov0901/histria-dos-nmeros-decimais-6023932
Agora é sua vez!
Teste os seus
conhecimentos.
3. Com pedaços de arame que medem 22,6 cm e 13,8 cm, podemos construir o esqueleto de um
bloco retangular, como você vê na figura. Quantos centímetros desse arame são necessários
para essa construção?
13,8 cm
13,8 cm
22,6 cm
2. Calcule o comprimento (L) de uma correia aberta que deverá ligar duas polias de diâmetros
diferentes (15 cm e 20 cm) e com distância entre os eixos de 40 cm.
Para calcular esse comprimento vamos utilizar a seguinte fórmula:
Onde R é o raio maior, r o raio menor e c a distância entre os eixos.
4. Ao iniciar uma viagem, Valdir abasteceu o tanque de combustível do seu carro, que estava
totalmente vazio, e pagou R$ 162,80 pelo abastecimento. Se o litro de combustível custa R$ 2,96,
quantos litros cabem no tanque do carro de Valdir?
5. Calcule o comprimento da correia aberta que liga duas polias iguais com 30 cm de diâmetro e com a
distância entre eixos de 70 cm.
Para resolver esse problema você vai aplicar: L = p x d + 2 x c
Onde L é o comprimento total da correia; p x d é o perímetro da circunferência e c é a distância entre
os centros dos eixos.
Gabarito
Confira suas
respostas!
1) 1,425 mm
2) 142,27 cm
3) 200,8 cm
4) 55 litros
5) 234,20 cm
Referências Bibliográficas
1. FRANÇA, Hélio. Mecânica: Máquinas Térmicas, Hidráulicas e Pneumáticas. Rio de Janeiro:
FAETEC- ETER, 2008
2. GIOVANNI JÚNIOR, José Ruy e CASTRUCCI Benedicto . A Conquista da Matemática, 6º ano.
São Paulo: FTD, 2009
3. SILVEIRA, Ênio e MARQUES, Cláudio. Matemática vol. 1. São Paulo: Moderna, 1995
4. Telecurso Profissionalizante de Mecânica, NOVO TELECURSO 2000 – teleaula nº 8 de Cálculo
Técnico. Fundação Roberto Marinho.

Mais conteúdo relacionado

Mais procurados

Numeros Reais - conjuntos numéricos
Numeros Reais - conjuntos numéricosNumeros Reais - conjuntos numéricos
Numeros Reais - conjuntos numéricos
PROFESSOR GLEDSON GUIMARÃES
 
Moda, Média e Mediana
Moda, Média e MedianaModa, Média e Mediana
Moda, Média e Mediana
Juliana Perleto
 
Notação cientifica
Notação cientificaNotação cientifica
Notação cientifica
Murilo Martins
 
16 aula conjuntos numericos
16 aula    conjuntos numericos16 aula    conjuntos numericos
16 aula conjuntos numericos
jatobaesem
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
betencourt
 
Matematica Juros Simples
Matematica Juros SimplesMatematica Juros Simples
Matematica Juros Simples
RASC EAD
 
Arranjo simples
Arranjo simplesArranjo simples
Arranjo simples
Joyce Micielle
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
rubensdiasjr07
 
Oficina de Fração
Oficina de FraçãoOficina de Fração
Oficina de Fração
Eliane
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
giselelamas
 
Perímetros e áreas de figuras planas
Perímetros e áreas de figuras planasPerímetros e áreas de figuras planas
Perímetros e áreas de figuras planas
edmildo
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reais
leilamaluf
 
Slide Frações
Slide FraçõesSlide Frações
Slide Frações
andreiacaetano
 
Lista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauLista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grau
Everton Moraes
 
Matemática básica
Matemática básicaMatemática básica
Regra de três simples e composta
Regra de três simples e compostaRegra de três simples e composta
Regra de três simples e composta
Marcelo Pinheiro
 
Polígonos..
Polígonos..Polígonos..
Polígonos..
Rodrigo Carvalho
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
Larissa Souza
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
Ubirajara Neves
 
Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
Murilo Cretuchi de Oliveira
 

Mais procurados (20)

Numeros Reais - conjuntos numéricos
Numeros Reais - conjuntos numéricosNumeros Reais - conjuntos numéricos
Numeros Reais - conjuntos numéricos
 
Moda, Média e Mediana
Moda, Média e MedianaModa, Média e Mediana
Moda, Média e Mediana
 
Notação cientifica
Notação cientificaNotação cientifica
Notação cientifica
 
16 aula conjuntos numericos
16 aula    conjuntos numericos16 aula    conjuntos numericos
16 aula conjuntos numericos
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
Matematica Juros Simples
Matematica Juros SimplesMatematica Juros Simples
Matematica Juros Simples
 
Arranjo simples
Arranjo simplesArranjo simples
Arranjo simples
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
 
Oficina de Fração
Oficina de FraçãoOficina de Fração
Oficina de Fração
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
 
Perímetros e áreas de figuras planas
Perímetros e áreas de figuras planasPerímetros e áreas de figuras planas
Perímetros e áreas de figuras planas
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reais
 
Slide Frações
Slide FraçõesSlide Frações
Slide Frações
 
Lista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauLista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grau
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Regra de três simples e composta
Regra de três simples e compostaRegra de três simples e composta
Regra de três simples e composta
 
Polígonos..
Polígonos..Polígonos..
Polígonos..
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
 
Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
 

Semelhante a Operacoes numeros decimais

Cálculo Numérico
Cálculo NuméricoCálculo Numérico
Cálculo Numérico
Sandro Lima
 
Números Decimais
Números DecimaisNúmeros Decimais
Números Decimais
Equipe_FAETEC
 
Ordem de grandeza
Ordem de grandezaOrdem de grandeza
Ordem de grandeza
fisicaatual
 
Apostila teoria - 2013 - 60
Apostila   teoria - 2013 - 60Apostila   teoria - 2013 - 60
Apostila teoria - 2013 - 60
Carlos Fernando Inacio
 
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio CarlosOperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
Antonio Carneiro
 
ABAIXO DO BÁSICO -CÂNDIDO PORTINARI.pptx
ABAIXO DO BÁSICO -CÂNDIDO PORTINARI.pptxABAIXO DO BÁSICO -CÂNDIDO PORTINARI.pptx
ABAIXO DO BÁSICO -CÂNDIDO PORTINARI.pptx
NairaROBERTAMOREIRAF
 
Teoria dos erros
Teoria dos errosTeoria dos erros
Teoria dos erros
Laura Jane
 
Matemática básica.
Matemática básica.Matemática básica.
Matemática básica.
Ajudar Pessoas
 
Anexo 1 - Algarismos e medições.pptx
Anexo 1 - Algarismos e medições.pptxAnexo 1 - Algarismos e medições.pptx
Anexo 1 - Algarismos e medições.pptx
Jonathas Felipe
 
Aula 1 eletricidade
Aula 1 eletricidadeAula 1 eletricidade
Aula 1 eletricidade
Alleksa Henrik's
 
Números racionais representação fracionária e decimal - operações e proprie...
Números racionais   representação fracionária e decimal - operações e proprie...Números racionais   representação fracionária e decimal - operações e proprie...
Números racionais representação fracionária e decimal - operações e proprie...
Camila Rodrigues
 
2008 helio2anoaula01
2008 helio2anoaula012008 helio2anoaula01
2008 helio2anoaula01
Evandro Alves
 
Apendice
ApendiceApendice
Apendice
Luciano Goulart
 
Matemática – notação científica 01 – 2014
Matemática – notação científica 01 – 2014Matemática – notação científica 01 – 2014
Matemática – notação científica 01 – 2014
Jakson Raphael Pereira Barbosa
 
Apostila mecanica tecnica_rev_01
Apostila mecanica tecnica_rev_01Apostila mecanica tecnica_rev_01
Apostila mecanica tecnica_rev_01
william dos santos
 
Exercicios conversão unidades derivadas
Exercicios   conversão unidades derivadasExercicios   conversão unidades derivadas
Exercicios conversão unidades derivadas
Geisla Maia Gomes
 
Transforamções de unidades
Transforamções de unidadesTransforamções de unidades
Transforamções de unidades
Luciana Oliveira
 
Aula 2 mat ef
Aula 2   mat efAula 2   mat ef
Aula 2 mat ef
Walney M.F
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimais
Erasmo lopes
 
Notação científica
Notação científicaNotação científica
Notação científica
O mundo da FÍSICA
 

Semelhante a Operacoes numeros decimais (20)

Cálculo Numérico
Cálculo NuméricoCálculo Numérico
Cálculo Numérico
 
Números Decimais
Números DecimaisNúmeros Decimais
Números Decimais
 
Ordem de grandeza
Ordem de grandezaOrdem de grandeza
Ordem de grandeza
 
Apostila teoria - 2013 - 60
Apostila   teoria - 2013 - 60Apostila   teoria - 2013 - 60
Apostila teoria - 2013 - 60
 
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio CarlosOperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
OperaçõEs Com NúMeros Racionais Decimais Autor Antonio Carlos
 
ABAIXO DO BÁSICO -CÂNDIDO PORTINARI.pptx
ABAIXO DO BÁSICO -CÂNDIDO PORTINARI.pptxABAIXO DO BÁSICO -CÂNDIDO PORTINARI.pptx
ABAIXO DO BÁSICO -CÂNDIDO PORTINARI.pptx
 
Teoria dos erros
Teoria dos errosTeoria dos erros
Teoria dos erros
 
Matemática básica.
Matemática básica.Matemática básica.
Matemática básica.
 
Anexo 1 - Algarismos e medições.pptx
Anexo 1 - Algarismos e medições.pptxAnexo 1 - Algarismos e medições.pptx
Anexo 1 - Algarismos e medições.pptx
 
Aula 1 eletricidade
Aula 1 eletricidadeAula 1 eletricidade
Aula 1 eletricidade
 
Números racionais representação fracionária e decimal - operações e proprie...
Números racionais   representação fracionária e decimal - operações e proprie...Números racionais   representação fracionária e decimal - operações e proprie...
Números racionais representação fracionária e decimal - operações e proprie...
 
2008 helio2anoaula01
2008 helio2anoaula012008 helio2anoaula01
2008 helio2anoaula01
 
Apendice
ApendiceApendice
Apendice
 
Matemática – notação científica 01 – 2014
Matemática – notação científica 01 – 2014Matemática – notação científica 01 – 2014
Matemática – notação científica 01 – 2014
 
Apostila mecanica tecnica_rev_01
Apostila mecanica tecnica_rev_01Apostila mecanica tecnica_rev_01
Apostila mecanica tecnica_rev_01
 
Exercicios conversão unidades derivadas
Exercicios   conversão unidades derivadasExercicios   conversão unidades derivadas
Exercicios conversão unidades derivadas
 
Transforamções de unidades
Transforamções de unidadesTransforamções de unidades
Transforamções de unidades
 
Aula 2 mat ef
Aula 2   mat efAula 2   mat ef
Aula 2 mat ef
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimais
 
Notação científica
Notação científicaNotação científica
Notação científica
 

Mais de Equipe_FAETEC

Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)
Equipe_FAETEC
 
O Emprego da Crase (Turismo)
O Emprego da Crase (Turismo)O Emprego da Crase (Turismo)
O Emprego da Crase (Turismo)
Equipe_FAETEC
 
Trigonometria no Triângulo Retângulo (Eletrotécnica)
Trigonometria no Triângulo Retângulo (Eletrotécnica)Trigonometria no Triângulo Retângulo (Eletrotécnica)
Trigonometria no Triângulo Retângulo (Eletrotécnica)
Equipe_FAETEC
 
Trigonometria no Triângulo Retângulo (Telecomunicações)
Trigonometria no Triângulo Retângulo (Telecomunicações)Trigonometria no Triângulo Retângulo (Telecomunicações)
Trigonometria no Triângulo Retângulo (Telecomunicações)
Equipe_FAETEC
 
O Gênero Textual Currículo
O Gênero Textual CurrículoO Gênero Textual Currículo
O Gênero Textual Currículo
Equipe_FAETEC
 
As Vozes Verbais
As Vozes VerbaisAs Vozes Verbais
As Vozes Verbais
Equipe_FAETEC
 
Plural de los sustantivos y adjetivos
Plural de los sustantivos y adjetivosPlural de los sustantivos y adjetivos
Plural de los sustantivos y adjetivos
Equipe_FAETEC
 
Função Polinomial do 1º Grau
Função Polinomial do 1º GrauFunção Polinomial do 1º Grau
Função Polinomial do 1º Grau
Equipe_FAETEC
 
Linguagem Verbal e Não Verbal
Linguagem Verbal e Não VerbalLinguagem Verbal e Não Verbal
Linguagem Verbal e Não Verbal
Equipe_FAETEC
 
linguagem verbal e não verbal
linguagem verbal e não verballinguagem verbal e não verbal
linguagem verbal e não verbal
Equipe_FAETEC
 
Função Polinomial
Função PolinomialFunção Polinomial
Função Polinomial
Equipe_FAETEC
 
Noções de Funções
Noções de FunçõesNoções de Funções
Noções de Funções
Equipe_FAETEC
 
Regência Verbal
Regência Verbal Regência Verbal
Regência Verbal
Equipe_FAETEC
 
Relatorio
RelatorioRelatorio
Relatorio
Equipe_FAETEC
 
Regência Verbal
Regência VerbalRegência Verbal
Regência Verbal
Equipe_FAETEC
 
Unidades de medidas e suas transformações
Unidades de medidas e suas transformaçõesUnidades de medidas e suas transformações
Unidades de medidas e suas transformações
Equipe_FAETEC
 
Proporcao
ProporcaoProporcao
Proporcao
Equipe_FAETEC
 
virgula. pptx
virgula. pptxvirgula. pptx
virgula. pptx
Equipe_FAETEC
 
Notacao Cientifica
Notacao CientificaNotacao Cientifica
Notacao Cientifica
Equipe_FAETEC
 
Periodo simples e_composto
Periodo simples e_compostoPeriodo simples e_composto
Periodo simples e_composto
Equipe_FAETEC
 

Mais de Equipe_FAETEC (20)

Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)
 
O Emprego da Crase (Turismo)
O Emprego da Crase (Turismo)O Emprego da Crase (Turismo)
O Emprego da Crase (Turismo)
 
Trigonometria no Triângulo Retângulo (Eletrotécnica)
Trigonometria no Triângulo Retângulo (Eletrotécnica)Trigonometria no Triângulo Retângulo (Eletrotécnica)
Trigonometria no Triângulo Retângulo (Eletrotécnica)
 
Trigonometria no Triângulo Retângulo (Telecomunicações)
Trigonometria no Triângulo Retângulo (Telecomunicações)Trigonometria no Triângulo Retângulo (Telecomunicações)
Trigonometria no Triângulo Retângulo (Telecomunicações)
 
O Gênero Textual Currículo
O Gênero Textual CurrículoO Gênero Textual Currículo
O Gênero Textual Currículo
 
As Vozes Verbais
As Vozes VerbaisAs Vozes Verbais
As Vozes Verbais
 
Plural de los sustantivos y adjetivos
Plural de los sustantivos y adjetivosPlural de los sustantivos y adjetivos
Plural de los sustantivos y adjetivos
 
Função Polinomial do 1º Grau
Função Polinomial do 1º GrauFunção Polinomial do 1º Grau
Função Polinomial do 1º Grau
 
Linguagem Verbal e Não Verbal
Linguagem Verbal e Não VerbalLinguagem Verbal e Não Verbal
Linguagem Verbal e Não Verbal
 
linguagem verbal e não verbal
linguagem verbal e não verballinguagem verbal e não verbal
linguagem verbal e não verbal
 
Função Polinomial
Função PolinomialFunção Polinomial
Função Polinomial
 
Noções de Funções
Noções de FunçõesNoções de Funções
Noções de Funções
 
Regência Verbal
Regência Verbal Regência Verbal
Regência Verbal
 
Relatorio
RelatorioRelatorio
Relatorio
 
Regência Verbal
Regência VerbalRegência Verbal
Regência Verbal
 
Unidades de medidas e suas transformações
Unidades de medidas e suas transformaçõesUnidades de medidas e suas transformações
Unidades de medidas e suas transformações
 
Proporcao
ProporcaoProporcao
Proporcao
 
virgula. pptx
virgula. pptxvirgula. pptx
virgula. pptx
 
Notacao Cientifica
Notacao CientificaNotacao Cientifica
Notacao Cientifica
 
Periodo simples e_composto
Periodo simples e_compostoPeriodo simples e_composto
Periodo simples e_composto
 

Operacoes numeros decimais

  • 2. Vamos começar? O consumo de energia elétrica é uma preocupação do mundo moderno. Se analisarmos uma conta de luz e soubermos a potência de um equipamento elétrico, poderemos anotar a frequência de uso desses aparelhos para construir uma tabela como a que vemos a seguir:
  • 3. Observe que com base nesses dados podemos calcular o consumo médio mensal de todos esses aparelhos juntos. Também podemos, a partir do custo do quilowatt-hora, calcular o valor, em reais, do consumo de energia elétrica mensal em uma residência, por exemplo. Para efetuar este cálculo, precisamos realizar operações com números decimais. Essa foi apenas uma situação dentre as muitas que temos para operar com esse tipo de número. Vamos rever como funcionam essas operações? Aparelhos elétricos Potência média (watts) Dias estimados uso/mês Média utilização/ dia Consumo médio mensal (kWh) Chuveiro elétrico 3 500 30 40 min 70,0 Computador 180 30 3 h 16,2 Geladeira 300 30 10 h 45 Liquidificador 300 15 15 min 1,1 Televisor 90 30 5 h 13,5
  • 4. Um inspetor de qualidade precisava calcular o comprimento de uma peça como a do esquema a seguir. Como ele fez para somar os valores? Qual foi o valor de x que obteve? (As medidas estão em centímetros.) Para calcular o valor de x, basta somar todas as medidas dadas: x = 20,50 + 15,80 + 18,65 + 42,22 x= 97,17 cm Fique por dentro Observe outra situação: + 20,50 15,80 18,65 42,22 97,17 Como você pôde ver, o valor de x (comprimento da peça) foi de 97,17 cm x 42,2218,6515,8020,50
  • 5. Para ADIÇÃO ou SUBTRAÇÃO de números decimais, devemos observar que: Os algarismos que ocupam a mesma ordem (unidade, dezena, centena, etc.) devem ficar na mesma coluna, com uma virgula alinhada à outra (vírgula embaixo de vírgula). Depois disso, basta adicionar e subtrair normalmente. Por fim, no resultado, a vírgula se mantém alinhada com as demais.
  • 6. 1 , 2 8 + 2,6 + 0 , 0 3 8 =1 , 2 8 2 , 6 0 0 , 0 3 8 + _________ 3 , 9 1 8 3,918 0 0 Clique e veja alguns exemplos: 35,4 + 0,75 + 47 = 83,15 83,15 + 35,40 0,75 47,00 9 – 0,987 = 8,013 8,013 _ 9,000 0,987
  • 7. O estudo da MULTIPLICAÇÃO de números decimais pode ser dividido em dois casos: Clique nos exemplos abaixo e observe que para multiplicar um número decimal por 10, 100 e 1000, basta deslocar a vírgula uma, duas, três posições para a direita, respectivamente.  Multiplicação por 10, por 100, por 1000. 1,349 x 10 = 1,349 x 100 = 1,349 x 1000 = 134 9, 134 9 134 9 , , A virgula deslocou uma casa decimal A virgula deslocou duas casas decimais A virgula deslocou três casas decimais
  • 8.  Multiplicação de um número decimal por outro número decimal: Nestes casos devemos: •Multiplicar os números como se fossem números inteiros. •Colocar a vírgula no resultado, de modo que a quantidade de casas decimais seja igual à soma do número de casas decimais dos fatores. Observe os exemplos: 3 casas decimais 3 casas decimais 6 casas decimais 3 casas decimais 1 casa decimal 4 casas decimais
  • 9.
  • 10. Até aqui, já vimos como efetuar as operações de adição, subtração e multiplicação de números decimais. E na DIVISÃO como devemos proceder? Em muitas disciplinas técnicas você trabalha com conversão de medidas. Essas, por sua vez, exigem operações com números decimais e, em especial, a divisão. Vamos rever como efetuar a divisão? Nos números fracionários, multiplica-se o numerador da fração por 25,4 e divide-se o resultado pelo denominador.
  • 11. O estudo da DIVISÂO de números decimais pode ser dividido nos seguintes casos:  Divisão por 10 , 100 e 1000: Para dividir por 10, 100 e 1000 devemos deslocar a vírgula uma, duas, três posições para a esquerda, respectivamente. Quer ver melhor? Clique e observe os exemplos a seguir! 134,9 ÷ 10 = 134 9, 134,9 ÷ 100 = 134 9, 134,9 ÷ 1000 = 134 9,0
  • 12.  Divisão de um número decimal por outro número decimal: 1º caso: Divisão exata Considere a divisão entre 1,4 : 0,05. Transformando em frações decimais temos: Os outros casos de divisão podem ser estudados em dois casos: o da divisão exata e o da divisão não exata. Você deve ter percebido que a divisão ficou muito fácil ao transformarmos os números decimais em frações
  • 13. Observe a seguir um método prático para efetuar a divisão exata de um decimal por outro 1º) Igualamos o número de casas decimais do dividendo e divisor; 2 ) Suprimimos a vírgula; 3º) Efetuamos a divisão dos números obtidos. Efetuando ... 1,4 0,05 Igualando as casas decimais: 1,4 0,050 Suprimindo as vírgulas, temos 140 5 Efetuando a divisão 0 40 28 514'0' 1,4 0,05 = 28
  • 14. http://www.youtube.com/watch?v=74y69o4cnHM Entenda melhor a divisão de decimais assistindo a essa vídeoaula.
  • 15. 2º caso: Divisão não exata No caso da divisão não exata calculamos o quociente aproximado. Seja por exemplo a divisão de 66 por 21. 6 90 30 3,14 66' 21 Determinar um quociente com aproximação de décimos, centésimos ou milésimos significa parar a divisão ao atingir a primeira, segunda ou terceira casa decimal do quociente, respectivamente. Exemplos: 13 ÷ 7 = 1, 8 ( aproximação de décimos ) 13 ÷ 7 = 13 ÷ 7 = 1, 1, 85 ( aproximação de centésimos ) 857 ( aproximação de milésimos )
  • 17. Para finalizar, vamos recordar a potenciação e a radiciação de números decimais. Vamos lá? Potenciação de números decimais As potências nas quais a base é um número decimal e o expoente é um numero natural, utilizamos a mesma regra de potenciação. Multiplicamos a base por ela mesma, quantas vezes for o expoente.
  • 18. (0,7)³ = 0,7 x 0,7 x 0,7 = 0,343 3 fatores (0,5) = 5 0,5 x 0,5 x 0,5 x 0,5 x 0,5 5 fatores = 0,03125 (3,2)²= 3,2 x 3,2 2 fatores = 10,24 Clique e observe os exemplos:
  • 19. A raiz quadrada de um número decimal pode ser determinada com facilidade, transformando o número em uma fração decimal. Veja os exemplos: Raiz Quadrada de números decimais E lembre: todas essas operações serão muito utilizadas ao longo de todo o seu curso técnico!
  • 20. Navegando... Fique mais por dentro dos decimais. Acesse: http://www.slideshare.net/guestdc3a85/nmeros-racionais-expressos-na-forma-decimal-2519868 História dos Números Decimais da Turma da Mônica: http://www.slideshare.net/kov0901/histria-dos-nmeros-decimais-6023932
  • 21. Agora é sua vez! Teste os seus conhecimentos.
  • 22. 3. Com pedaços de arame que medem 22,6 cm e 13,8 cm, podemos construir o esqueleto de um bloco retangular, como você vê na figura. Quantos centímetros desse arame são necessários para essa construção? 13,8 cm 13,8 cm 22,6 cm 2. Calcule o comprimento (L) de uma correia aberta que deverá ligar duas polias de diâmetros diferentes (15 cm e 20 cm) e com distância entre os eixos de 40 cm. Para calcular esse comprimento vamos utilizar a seguinte fórmula: Onde R é o raio maior, r o raio menor e c a distância entre os eixos.
  • 23. 4. Ao iniciar uma viagem, Valdir abasteceu o tanque de combustível do seu carro, que estava totalmente vazio, e pagou R$ 162,80 pelo abastecimento. Se o litro de combustível custa R$ 2,96, quantos litros cabem no tanque do carro de Valdir? 5. Calcule o comprimento da correia aberta que liga duas polias iguais com 30 cm de diâmetro e com a distância entre eixos de 70 cm. Para resolver esse problema você vai aplicar: L = p x d + 2 x c Onde L é o comprimento total da correia; p x d é o perímetro da circunferência e c é a distância entre os centros dos eixos.
  • 24. Gabarito Confira suas respostas! 1) 1,425 mm 2) 142,27 cm 3) 200,8 cm 4) 55 litros 5) 234,20 cm
  • 25. Referências Bibliográficas 1. FRANÇA, Hélio. Mecânica: Máquinas Térmicas, Hidráulicas e Pneumáticas. Rio de Janeiro: FAETEC- ETER, 2008 2. GIOVANNI JÚNIOR, José Ruy e CASTRUCCI Benedicto . A Conquista da Matemática, 6º ano. São Paulo: FTD, 2009 3. SILVEIRA, Ênio e MARQUES, Cláudio. Matemática vol. 1. São Paulo: Moderna, 1995 4. Telecurso Profissionalizante de Mecânica, NOVO TELECURSO 2000 – teleaula nº 8 de Cálculo Técnico. Fundação Roberto Marinho.