Rodovia BR 470, km 71, n° 1.040, Bairro Benedito
Caixa postal n° 191 - CEP: 89.130-000. lndaial-SC
Fone: (0xx47) 3281-9000...
3

NÚMEROS RACIONAIS (Q)
Números racionais podem ser apresentados na forma
, na forma decimal (0,5) ou percentual (50%).
f...
4

Analisando o quadro anterior, ele foi dividido em 8 partes
iguais e três dessas partes estão pintadas. Dizemos que este...
5

denominador, por este motivo, mesmo na forma de número
misto, o denominador não se altera.
2ª maneira

Fazendo a leitur...
6

1ª maneira

2ª maneira

Atenção
Observe que foi efetuada a operação inversa da divisão
do caso anterior, pois antes se ...
7

FRAÇÕES EQUIVALENTES
Frações equivalentes são as que têm o mesmo valor em
relação a uma fração para a outra, só que rep...
8

denominador por um mesmo número natural, diferente de
zero e de um, tornando essa fração mais simples. A fração
já está...
9

Exemplo:
6 9 3
3 é um número racional, pois 3 = , , etc.
2 3 1
-12,75 é um número racional, pois -12,75 =
Todo número r...
10

Então, para ser um número racional, deve ser um valor
de x tal que x seja igual a uma fração com numerador e
denominad...
11

COMPARAÇÃO DE DOIS NÚMEROS RACIONAIS
Comparar dois números racionais significa dizer se o
primeiro é maior (>), menor (...
12

Depois de marcados os números inteiros na reta,
podemos localizar os números racionais.
Exemplo:
(a)
é um número racio...
13

MÓDULO OU VALOR ABSOLUTO DE UM NÚMERO
RACIONAL
Já estudamos módulo nos números inteiros. Só para
relembrar: módulo é a...
14

NÚMEROS OPOSTOS OU SIMÉTRICOS
Nesse mesmo exemplo, podemos identificar também os
números opostos ou simétricos, que são...
15

2, por esse processo chegamos num mesmo denominador e,
então, podemos fazer a soma dos numeradores, conservando
o deno...
16

PROPRIEDADES DA ADIÇÃO
COMUTATIVA
Numa adição de números racionais, a ordem das
parcelas não altera seu resultado.
Exe...
17

ou

OPOSTOS OU SIMÉTRICOS
Qualquer número racional somado ao seu oposto resulta
em zero.
Exemplo:
ou
SUBTRAÇÃO
A subtr...
18

OPERAÇÕES
DECIMAIS

DE

NÚMEROS

RACIONAIS

COM

Para realizarmos este tipo de operação, podemos optar
entre duas form...
19

Toda fração é uma divisão, então transformar uma
fração em número decimal é dividir o seu numerador
pelo seu denominad...
20

(0,876) . (-0,87) = - 0,76212
0,76212

ou

(-0,87) . (+0,876) = -

PROPRIEDADES DA MULTIPLICAÇÃO
COMUTATIVA
Na multipl...
21

de racionais é igual à soma dos produtos resultantes da
multiplicação entre o primeiro racional e cada uma das
parcela...
22

, para cada fração pertencente aos números
inteiros, representamos seu inverso

por

=1

DIVISÃO DOS NÚMEROS RACIONAIS...
23

ou
POTENCIAÇÃO DOS NÚMEROS RACIONAIS
Para elevarmos uma fração a um expoente, basta
elevarmos o numerador e denominado...
24

QUANDO O ÍNDICE FOR PAR
Exemplo:
, pois 9.9 = 9² = 81 e (-9) . (-9) = 81
, pois 3.3.3.3 = 34 = 81 e ( -34) = 81
, pois...
25

QUANDO O ÍNDICE FOR ÍMPAR
Exemplo:
= 3, pois 3.3.3 = 3³ = 27
= 2, pois 2.2.2.2.2.2.2 = 27 = 128
= -3, pois, (-3).(-3)....
26

Exemplo:

ou

ou

Todos os números racionais podem ser representados
na forma de fração , em que a é o numerador e b o...
27

Propriedades das potências com expoente fracionário
Multiplicação de potências de mesma base; conserva a
base e soma o...
28

precisamos racionalizar os denominadores. Para racionalizar,
precisamos transformar o denominador em um denominador
ra...
29

REDUÇÃO DE RADICAIS AO MESMO ÍNDICE
Reduzir ao mesmo índice significa descobrir dois
radicais, de mesmo índice, de tal ...
30

= 3, pois .3.3.3 = 3³ = 27 e a

=3

Não se esqueça, porém, das condições impostas à
existência dos radicais envolvidos...
31

3ª Propriedade
Um radical que tem um produto no radicando pode ser
decomposto em um produto de radicais de mesmo índic...
32

OPERAÇÕES COM RADICAIS
SIMPLIFICANDO RADICAIS
Se o valor do radicando tiver o expoente igual ao valor
do índice do rad...
33

Exemplo:

MULTIPLICAÇÃO E DIVISÃO
Exemplo:
Se os índices forem iguais, basta usar a 3ª e a 4ª
propriedades.

Se os índ...
34

representado por uma fração com numerador e denominador
inteiros e denominador diferente de zero (não existe divisão
p...
35

PROPRIEDADES DA ADIÇÃO
Comutativa: a ordem das parcelas não altera seu
resultado.
Associativa: não importa a ordem em ...
36

mesmo.
Inverso: todo número multiplicado pelo seu inverso resulta
em 1.
RADICIAÇÃO
Se considerarmos um número real x, ...
37

A UTOATIVIDADE
1. Quando x = -5 e y = 4, a expressão
numérico:

, qual seu valor

a) Seu valor será
b) Seu valor será
...
38

c) 2
d) 2
4. Simplificando o Radical

, obtém-se:

a)
b)
c)
d)
5. Racionalizando o denominador de

, o resultado será:
...
39

6. Se você dividir

por

, obterá:

a)
b)
c)
d)
7. O número racional -2,7 pode ser escrito na forma de fração,
assinal...
40

a) Entre os consecutivos -4 e -3.
b) Entre os consecutivos -4 e -5.
c) Entre os consecutivos 4 e 3.
d) Entre os consec...
41

G ABARITO
1. Quando x = -5 e y = 4, a expressão

, qual seu valor numérico:

a) Seu valor será
b) Seu valor será
c) Se...
42
3. O resultado de (

6 − 4 ).( 4 + 6 ) é:

a) 0
b)
c) 2
d) 2
4. Simplificando o Radical

, obtém-se:

a)
b)
c)
Copyright...
43

d)
5. Racionalizando o denominador de

, o resultado será:

a)
b)
c)
d)

Copyright © Editora GRUPO UNIASSELVI 2011. To...
44
6. Se você dividir

por

, obterá:

a)
b)
c)
d)

Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservado...
45
7. O número racional -2,7 pode ser escrito na forma de fração, assinale a opção
correta:
a)

b)
c)
d)

8. O número raci...
46
a)
b)
c)
d)
10. Determine o radical corresponde à potência 20,3, assinalando a opção correta:

a)
b)
c)
d)

Copyright ©...
72370870 matematica-etapa-3
Próximos SlideShares
Carregando em…5
×

72370870 matematica-etapa-3

2.460 visualizações

Publicada em

0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
2.460
No SlideShare
0
A partir de incorporações
0
Número de incorporações
2
Ações
Compartilhamentos
0
Downloads
131
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

72370870 matematica-etapa-3

  1. 1. Rodovia BR 470, km 71, n° 1.040, Bairro Benedito Caixa postal n° 191 - CEP: 89.130-000. lndaial-SC Fone: (0xx47) 3281-9000/3281-9090 Home-page: www.uniasselvi.com.br Curso de Nivelamento de Matemática Centro Universitário Leonardo da Vinci Organização Cristiane Bonatti Reitor da UNIASSELVI Prof. Malcon Anderson Tafner Pró-Reitor de Ensino de Graduação a Distância Prof. Janes Fidélis Tomelin Pró-Reitor Operacional de Ensino de Graduação a Distância Prof. Hermínio Kloch Diagramação e Capa Davi Schaefer Pasold Revisão: Diógenes Schweigert José Rodrigues Marina Luciani Garcia Todos os direitos reservados à Editora Grupo UNIASSELVI - Uma empresa do Grupo UNIASSELVI Fone/Fax: (47) 3281-9000/ 3281-9090 Copyright © Editora GRUPO UNIASSELVI 2011. Proibida a reprodução total ou parcial da obra de acordo com a Lei 9.610/98.
  2. 2. 3 NÚMEROS RACIONAIS (Q) Números racionais podem ser apresentados na forma , na forma decimal (0,5) ou percentual (50%). fracionária Iniciaremos os estudos na forma fracionária. Números Fracionários são todos os números resultantes da divisão de dois números inteiros. Como 0, 1, -2, -27, 35, , ..., podemos observar que dentro dos números racionais estão os números inteiros. Isso nos mostra de onde surgiram as frações. As frações são representadas por um número fracionário, ou seja, a parte de um todo, cada parte da fração representa o todo em diversas partes iguais. Fração como parte de um todo Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  3. 3. 4 Analisando o quadro anterior, ele foi dividido em 8 partes iguais e três dessas partes estão pintadas. Dizemos que este quadro todo representa um inteiro. Se representarmos sua parte pintada, temos , ou seja, três oitavos do quadro estão pintadas e (cinco oitavos) não. Na representação da fração , temos que o número 3 representa o numerador, o número 8 o denominador, e o traço de fração (divisão). Eles são chamados de termos da fração. TRANSFORMAÇÃO DE FRAÇÃO EM NÚMERO MISTO E VICE-VERSA TRANSFORMAÇÃO DE FRAÇÃO EM NÚMERO MISTO 1ª maneira Observe a representação gráfica anterior, o número de vezes em que o todo está dividido é representado pelo Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  4. 4. 5 denominador, por este motivo, mesmo na forma de número misto, o denominador não se altera. 2ª maneira Fazendo a leitura da divisão: o quociente é o número inteiro que a fração representa, o divisor continua sendo o denominador e o resto é o numerador. Então: Transformação de número misto em fração Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  5. 5. 6 1ª maneira 2ª maneira Atenção Observe que foi efetuada a operação inversa da divisão do caso anterior, pois antes se dividia denominador por numerador e encontrava-se a forma do número misto. Agora multiplicamos a parte inteira pelo denominador e somamos o numerador; lembrando que o denominador não se altera, pois ele continua dividindo o todo em partes iguais. Novamente observe que o denominador não se altera, pois a quantidade de partes em que o todo está dividido é a mesma. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  6. 6. 7 FRAÇÕES EQUIVALENTES Frações equivalentes são as que têm o mesmo valor em relação a uma fração para a outra, só que representada de forma equivalente (igual, mesmo valor). Exemplo: , essas frações são frações equivalentes, pois todas equivalem à metade. Vejamos isso em uma representação gráfica, cada parte representa uma parte de um todo. Assim: Para podermos entender um pouco melhor essa situação, vamos conhecer a simplificação de fração. SIMPLIFICAÇÃO DE FRAÇÃO Simplificar uma fração é poder dividir o numerador e o Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  7. 7. 8 denominador por um mesmo número natural, diferente de zero e de um, tornando essa fração mais simples. A fração já está na sua forma mais simples e percebermos que não é mais possível dividi-la, deixando-a em sua forma irredutível. Exemplo: (b) , a fração não pode ser simplificada, pois não existe um mesmo número que divida o 4 e o 7 simultaneamente. Sendo assim, é uma fração irredutível. NÚMERO RACIONAL (Q) Número Racional é todo número que pode ser representado por uma fração com numerador e denominador inteiros e denominador diferente de zero (não existe divisão por zero). O símbolo dos números racionais Q vem da inicial da palavra quociente, que significa razão ou fração. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  8. 8. 9 Exemplo: 6 9 3 3 é um número racional, pois 3 = , , etc. 2 3 1 -12,75 é um número racional, pois -12,75 = Todo número racional pode ser escrito na forma de um número decimal, por meio de uma decimal exata ou de uma dízima periódica. Exemplo: = 0,333... O CONJUNTO DOS NÚMEROS RACIONAIS (Q) O conjunto formado pelos números racionais é indicado pela letra Q: Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  9. 9. 10 Então, para ser um número racional, deve ser um valor de x tal que x seja igual a uma fração com numerador e denominador inteiro e que o denominador seja diferente de zero. A RELAÇÃO ENTRE OS CONJUNTOS DOS NÚMEROS Observe através do diagrama a relação entre conjuntos N = {0, 1, 2, 3, 4, 5, ...}, indica o conjunto dos números naturais; Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...}, indica o conjunto dos números inteiros; a   Q = Q = | a ∈Z e b ∈ Z * , indica o conjunto dos números b   racionais. Com isso podemos dizer que todo número natural é também um número inteiro e todo número inteiro é um número racional, ou ainda, que N está contido em Z e que N e Z estão contidos em Q. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  10. 10. 11 COMPARAÇÃO DE DOIS NÚMEROS RACIONAIS Comparar dois números racionais significa dizer se o primeiro é maior (>), menor (<) ou igual (=) ao segundo. Exemplo: , pois todo número negativo é menor que um número positivo. , pois 0 é maior do que qualquer número negativo. , pois quanto mais próximo do 0 maior será o número negativo. A REPRESENTAÇÃO DOS NÚMEROS RACIONAIS NA RETA NUMÉRICA Como todo número racional pode ser representado na sua forma decimal, existe uma relação de ordem em Q e, portanto, podemos localizá-lo na reta real. Lembrando que primeiramente precisamos localizar o ponto de origem na reta e, como acabamos de ver, os números inteiros estão dentro do conjunto dos números racionais. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  11. 11. 12 Depois de marcados os números inteiros na reta, podemos localizar os números racionais. Exemplo: (a) é um número racional entre 1 e 2, pois =- = 0,75 (b) - 0,27 é um número racional entre – 1 e 0, pois – 0,27 Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  12. 12. 13 MÓDULO OU VALOR ABSOLUTO DE UM NÚMERO RACIONAL Já estudamos módulo nos números inteiros. Só para relembrar: módulo é a distância do ponto que representa esse número até a origem. Exemplo: A distância do ponto A até a origem 0 (zero) é representada que é de da unidade. por A distância do ponto B até a origem 0 (zero) é que é de da unidade. representada por Então: é um número racional, pois é um número racional, pois = – 1 = – 1,125 = 1 = 1,125 Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  13. 13. 14 NÚMEROS OPOSTOS OU SIMÉTRICOS Nesse mesmo exemplo, podemos identificar também os números opostos ou simétricos, que são representados por dois pontos que estão à mesma distância da origem. INVERSO DE UM NÚMERO RACIONAL De todos os números racionais, o único que não tem inverso é o zero. Exemplo: , o inverso de . OPERAÇÕES COM NÚMEROS RACIONAIS ADIÇÃO E SUBTRAÇÃO A adição de números inteiros pode ser realizada pela redução das frações ao mesmo denominador positivo e pela soma dos numeradores, conservando o denominador. Exemplo: No entanto, se observarmos a fração , é uma fração equivalente a , ou seja, a primeira fração foi multiplicada por Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  14. 14. 15 2, por esse processo chegamos num mesmo denominador e, então, podemos fazer a soma dos numeradores, conservando o denominador. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  15. 15. 16 PROPRIEDADES DA ADIÇÃO COMUTATIVA Numa adição de números racionais, a ordem das parcelas não altera seu resultado. Exemplo: ASSOCIATIVA Na adição de mais de dois números racionais, não importa a ordem em que forem feitas as adições, pois podemos agrupar valores e chegarmos aos mesmos resultados. Exemplo: ou ELEMENTO NEUTRO Qualquer número racional somado ao 0 (zero), resulta nele mesmo. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  16. 16. 17 ou OPOSTOS OU SIMÉTRICOS Qualquer número racional somado ao seu oposto resulta em zero. Exemplo: ou SUBTRAÇÃO A subtração dos números racionais pode ser realizada somando o primeiro número com o oposto do segundo, desse modo resolvemos pelo mesmo método da adição. Exemplo: 21 1 Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  17. 17. 18 OPERAÇÕES DECIMAIS DE NÚMEROS RACIONAIS COM Para realizarmos este tipo de operação, podemos optar entre duas formas de resolução: 1ª maneira Transformar todos os valores em fração Exemplo: Utiliza-se a simplificação de frações para tornar as operações mais fáceis. 2ª maneira Transformar todos os valores em decimal (usamos a regra do arredondamento no caso dos números decimais. Exemplo: Observe: Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  18. 18. 19 Toda fração é uma divisão, então transformar uma fração em número decimal é dividir o seu numerador pelo seu denominador. MULTIPLICAÇÃO Na multiplicação de números racionais, multiplicamos os numeradores e os denominadores da seguinte forma. Numerador multiplica numerador e denominador multiplica denominador. Exemplo: ou ou Para multiplicação de números racionais na forma decimal, basta multiplicar seus valores absolutos. Exemplo: (-0,876) . (-0,87) = +0,76212 0,76212 ou (0,87) . (0,876) = + Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  19. 19. 20 (0,876) . (-0,87) = - 0,76212 0,76212 ou (-0,87) . (+0,876) = - PROPRIEDADES DA MULTIPLICAÇÃO COMUTATIVA Na multiplicação de números racionais, a ordem dos fatores não altera o produto Exemplo: (0,876) . (-0,87) = - 0,76212 ou (-0,87) . (+0,876) = - 0,76212 ASSOCIATIVA Na multiplicação de números racionais com mais de dois fatores, não importa a ordem em que efetuamos as multiplicações. Exemplo: ou DISTRIBUTIVA O produto de um número racional por uma soma Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  20. 20. 21 de racionais é igual à soma dos produtos resultantes da multiplicação entre o primeiro racional e cada uma das parcelas. Exemplo: ELEMENTO NEUTRO DA MULTIPLICAÇÃO Como vimos na adição, o elemento neutro é o zero. Já na multiplicação, o elemento neutro é o 1 (um), pois qualquer número multiplicado por 1 resulta nele mesmo. Exemplo: ou 35 . 1 = 35 INVERSO Todo número multiplicado pelo seu inverso resulta em 1. Exemplo: Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  21. 21. 22 , para cada fração pertencente aos números inteiros, representamos seu inverso por =1 DIVISÃO DOS NÚMEROS RACIONAIS Na divisão de fração, trabalhamos com a multiplicação inversa. Você deve estar se perguntando: se é uma divisão, como vou resolver uma multiplicação? Através da multiplicação de fração, multiplicamos o numerador pelo numerador. Assim, obtemos o produto do numerador e, multiplicando denominador pelo denominador, obtemos o produto do denominador, ou seja, a segunda fração deve ser invertida, veja os exemplos a seguir: Exemplo: Divisão com sinais iguais, o quociente será positivo. ou Divisão com sinais diferentes, o quociente será negativo. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  22. 22. 23 ou POTENCIAÇÃO DOS NÚMEROS RACIONAIS Para elevarmos uma fração a um expoente, basta elevarmos o numerador e denominador a esse expoente. Exemplo: RADICIAÇÃO A palavra Radical vem do latim radix, que significa raiz. O símbolo √ de radical foi introduzido em 1525, por Christoff Rudolff. Raiz enésima de um número Se considerarmos um número real x, para a raiz enésima desse número será representada da seguinte maneira: Índice radicando Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  23. 23. 24 QUANDO O ÍNDICE FOR PAR Exemplo: , pois 9.9 = 9² = 81 e (-9) . (-9) = 81 , pois 3.3.3.3 = 34 = 81 e ( -34) = 81 , pois 2.2.2.2.2.2.2.2 = 28 = 256 e ( -28) = 256 A raiz quadrada dos números negativos não existe. Isto também se estende a todas as raízes pares. Qualquer número elevado ao quadrado resulta em um número positivo. Exemplo: ( é o oposto de PARA ÍNDICES PARES! )e não existe Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  24. 24. 25 QUANDO O ÍNDICE FOR ÍMPAR Exemplo: = 3, pois 3.3.3 = 3³ = 27 = 2, pois 2.2.2.2.2.2.2 = 27 = 128 = -3, pois, (-3).(-3).(-3) = (-3)³ = - 27 , pois (-2).(-2).(-2).(-2).(-2).(-2).(-2) = (-27)= - 128 Qualquer raiz de índice ímpar com radicando positivo ou negativo existe. RAIZ COM ÍNDICE NATURAL E ZERO NO RADICANDO Para raízes com o radicando zero e qualquer índice, o resultado sempre será zero. Exemplo: , pois 0 . 0 = 0 POTÊNCIA COM EXPOENTE RACIONAL Toda potência com expoente fracionário pode ser escrita na forma de radical e todo radical pode ser escrito na forma de uma potência com expoente fracionário. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  25. 25. 26 Exemplo: ou ou Todos os números racionais podem ser representados na forma de fração , em que a é o numerador e b o denominador; b ≠ 0 Assim, podemos reescrever 3,75 como . Os números inteiros também são racionais, por isso as propriedades estudadas para expoentes inteiros devem ser preservadas quando se amplia o campo do expoente para os racionais. Exemplo: , ou seja, Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  26. 26. 27 Propriedades das potências com expoente fracionário Multiplicação de potências de mesma base; conserva a base e soma os expoentes. Exemplo: Divisão de potências de mesma base; conserva a base e subtrai os expoentes. Exemplo: Potência de potência Exemplo: RACIONALIZAÇÃO DE DENOMINADORES No conjunto dos números reais existem expressões que apresentam um radical no denominador, nesse caso Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  27. 27. 28 precisamos racionalizar os denominadores. Para racionalizar, precisamos transformar o denominador em um denominador racional, mantendo o valor da expressão. Lembre que uma expressão em forma de fração não se altera quando multiplicamos ou dividimos o numerador e o denominador pelo mesmo número, diferente de zero. Exemplo: (a) = (b) = Potência de um produto Exemplo: Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  28. 28. 29 REDUÇÃO DE RADICAIS AO MESMO ÍNDICE Reduzir ao mesmo índice significa descobrir dois radicais, de mesmo índice, de tal forma que o primeiro seja equivalente ao segundo. Exemplo: Ou seja, PROPRIEDADES DOS RADICAIS 1ª Propriedade Se um radical tem o índice igual ao expoente do radicando, seu valor é igual à base do radicando. Exemplos: = 9, pois 9.9.9 = 9³ = 729 e a =9 Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  29. 29. 30 = 3, pois .3.3.3 = 3³ = 27 e a =3 Não se esqueça, porém, das condições impostas à existência dos radicais envolvidos. Exemplo: não é igual a -1, (-1)4 = 1, ou seja, = 1 pois 2ª Propriedade O valor do radical não se altera quando multiplicamos ou dividimos o índice e o expoente do radicando pelo mesmo número. Exemplos: (a) (b) 1 3 (c) Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  30. 30. 31 3ª Propriedade Um radical que tem um produto no radicando pode ser decomposto em um produto de radicais de mesmo índice, com cada fator do primeiro produto em um radical. Exemplo: 4ª Propriedade Se um radical tem um quociente em seu radicando, ele pode ser decomposto em um quociente de dois radicais com o mesmo índice. Exemplo: Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  31. 31. 32 OPERAÇÕES COM RADICAIS SIMPLIFICANDO RADICAIS Se o valor do radicando tiver o expoente igual ao valor do índice do radical, esses fatores podem ser extraídos do radicando e escritos como fatores externos. Exemplo: 9.7 = 3² 7 = 3 7 . 5³ = 5² 5 = 5 5 . Lembrando também que um fator externo pode ser introduzido como fator no radicando, bastando para isso escrevê-lo com um expoente igual ao índice do radical. Exemplo: 3 7 = 3² 7 = 9.7 . ADIÇÃO E SUBTRAÇÃO Na adição e subtração de radicais, só podemos escrever o resultado num só radical se os termos forem semelhantes, pois, então, podemos usar a propriedade distributiva da multiplicação em relação à adição e subtração. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  32. 32. 33 Exemplo: MULTIPLICAÇÃO E DIVISÃO Exemplo: Se os índices forem iguais, basta usar a 3ª e a 4ª propriedades. Se os índices forem diferentes, devemos inicialmente reduzir os radicais ao mesmo índice para depois resolver. RESUMO DO TÓPICO NÚMEROS RACIONAIS (Q) Número Racional é todo número que pode ser Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  33. 33. 34 representado por uma fração com numerador e denominador inteiros e denominador diferente de zero (não existe divisão por zero). a   Q = Q = | a ∈Z e b ∈ Z * b   FRAÇÕES EQUIVALENTES Frações equivalentes são as que têm o mesmo valor em relação a uma fração, só que representada de forma equivalente (igual, mesmo valor). SIMPLIFICAÇÃO DE FRAÇÃO Simplificar uma fração é poder dividir o numerador e o denominador por um mesmo número natural, diferente de zero e de um, tornando-a na sua forma irredutível. COMPARAÇÃO DE DOIS NÚMEROS RACIONAIS Comparar dois números racionais significa dizer se o primeiro é maior do que (>), menor do que (<) ou igual (=) ao segundo. OPERAÇÕES COM NÚMEROS RACIONAIS ADIÇÃO E SUBTRAÇÃO A adição de números inteiros pode ser realizada pela redução das frações ao mesmo denominador positivo e pela soma dos numeradores, conservando o denominador. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  34. 34. 35 PROPRIEDADES DA ADIÇÃO Comutativa: a ordem das parcelas não altera seu resultado. Associativa: não importa a ordem em que forem feitas as adições, pois podemos agrupar valores e chegarmos aos mesmos resultados. Elemento Neutro: qualquer número racional somado ao 0 (zero), resulta nele mesmo. Oposto ou Simétrico: qualquer número racional somado a seu oposto resulta em zero. MULTIPLICAÇÃO E DIVISÃO Na multiplicação de números racionais, multiplicamos os numeradores e os denominadores da seguinte forma: numerador multiplica numerador e denominador multiplica denominador. PROPRIEDADES DA MULTIPLICAÇÃO Comutativa: a ordem dos fatores não altera o produto. Associativa: não importa a ordem em que efetuamos as multiplicações. Distributiva: o produto pela soma dos racionais é igual à soma dos produtos resultantes da multiplicação entre o primeiro racional e cada uma das parcelas. Elemento Neutro: na multiplicação o elemento neutro é o 1 (um), pois qualquer número multiplicado por 1 resulta nele Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  35. 35. 36 mesmo. Inverso: todo número multiplicado pelo seu inverso resulta em 1. RADICIAÇÃO Se considerarmos um número real x, para a raiz enésima desse número será representada da seguinte maneira: RACIONALIZAÇÃO DE DENOMINADORES Para racionalizar, precisamos transformar o denominador em um denominador racional, mantendo o valor da expressão. OPERAÇÕES COM RADICAIS SIMPLIFICANDO RADICAIS: quando o valor do radicando tiver o expoente igual ao valor do índice do radical, esses fatores podem ser extraídos do radicando e escritos como fatores externos. ADIÇÃO E SUBTRAÇÃO: só podemos escrever o resultado num só radical se os termos forem semelhantes. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  36. 36. 37 A UTOATIVIDADE 1. Quando x = -5 e y = 4, a expressão numérico: , qual seu valor a) Seu valor será b) Seu valor será c) Seu valor será -3 d) Seu valor será 3 2. São dadas as igualdades: I. II. III. IV. De acordo com as igualdades, é correto afirmar que: ( ) Todas as igualdades são verdadeiras. ( ) Somente as igualdades I, II e IV são verdadeiras. ( ) Somente as igualdades II são verdadeiras. ( ) Somente as igualdades I e II são verdadeiras. 3. O resultado de ( 6 − 4 ).( 4 + 6 ) é: a) 0 b) Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  37. 37. 38 c) 2 d) 2 4. Simplificando o Radical , obtém-se: a) b) c) d) 5. Racionalizando o denominador de , o resultado será: a) b) c) d) Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  38. 38. 39 6. Se você dividir por , obterá: a) b) c) d) 7. O número racional -2,7 pode ser escrito na forma de fração, assinale a opção correta: a) b) c) d) 8. O número racional consecutivos? fica entre quais os inteiros Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  39. 39. 40 a) Entre os consecutivos -4 e -3. b) Entre os consecutivos -4 e -5. c) Entre os consecutivos 4 e 3. d) Entre os consecutivos 4 e 5. 9. A expressão numérica simplificada por qual expressão? , pode ser a) b) c) d) 10. Determine o radical corresponde à potência 20,3, assinalando a opção correta: a) b) c) d) Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  40. 40. 41 G ABARITO 1. Quando x = -5 e y = 4, a expressão , qual seu valor numérico: a) Seu valor será b) Seu valor será c) Seu valor será d) Seu valor será 3 2. São dadas as igualdades: I. II. III. IV. De acordo com as igualdades, é correto afirmar que: ( ) Todas as igualdades são verdadeiras. ( ) Somente as igualdades I, II e IV são verdadeiras. ( ) Somente a igualdade II é verdadeira. ( x ) Somente as igualdades I e II são verdadeiras. Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  41. 41. 42 3. O resultado de ( 6 − 4 ).( 4 + 6 ) é: a) 0 b) c) 2 d) 2 4. Simplificando o Radical , obtém-se: a) b) c) Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  42. 42. 43 d) 5. Racionalizando o denominador de , o resultado será: a) b) c) d) Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  43. 43. 44 6. Se você dividir por , obterá: a) b) c) d) Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  44. 44. 45 7. O número racional -2,7 pode ser escrito na forma de fração, assinale a opção correta: a) b) c) d) 8. O número racional fica entre quais os inteiros consecutivos? a) Entre os consecutivos -4 e -3. b) Entre os consecutivos -4 e -5. c) Entre os consecutivos 4 e 3. d) Entre os consecutivos 4 e 5. 9. A expressão numérica a sentença verdadeira: , pode ser simplificada, assinale Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.
  45. 45. 46 a) b) c) d) 10. Determine o radical corresponde à potência 20,3, assinalando a opção correta: a) b) c) d) Copyright © Editora GRUPO UNIASSELVI 2011. Todos os direitos reservados.

×