SlideShare uma empresa Scribd logo
13

Econometria – Semestre 2010.01

CAPÍTULO 7 – ANÁLISE DE REGRESSÃO MÚLTIPLA – O PROBLEMA DA ESTIMAÇÃO

1-O MODELO DE 3 VARIÁVEIS – NOTAÇÃO E PREMISSAS
Considere o modelo de regressão múltipla com 2 variáveis explicativas dado por:
Yi = β1 + β 2 . X 2i + β 3 . X 3i + ε i para i = 1, 2, ..., n

(1)

Na equação (1), Y é a variável dependente, X2 e X3 são as variáveis explicativas (ou regressores) e ε
é o termo de erro aleatório. i denota a i-ésima observação. Os coeficientes β2 e β3 são chamados
de coeficientes parciais de regressão e β1 é o intercepto ou coeficiente linear.
Novamente relembramos as hipóteses subjacentes ao modelo da equação (1):
1. A média dos erros é zero (condicional aos valores dos X’s): E (ε i X 2i , X 3i ) = 0 para todo i
2. Os erros são descorrelatados: COV (ε i , ε j ) = 0 para i ≠ j
3. Homocedasticidade (variância constante): VAR (ε i ) = σ 2 para todo i
4. Covariância
nula
entre
os
COV (ε i , X 2i ) = COV (ε i , X 3i ) = 0 para todo i

erros

e

cada

variável:

5. Suposição de que o modelo está corretamente especificado.
6. Inexistência de colinearidade entre os regressores, ou seja, não há relação linear exata
entre X2 e X3. Em particular, esta hipótese implica nas colunas da matriz do modelo X (vide
apêndice C) serem linearmente independentes.
Por que esta hipótese 6 (ausência de colinearidade perfeita) é importante? Pois nos permite
simplificar a estrutura do modelo. Se X3 é uma função linear perfeita de X2, na prática não existem
duas variáveis explicativas, existe só uma. Suponha que X3 = 2.X2 exatamente. Então o modelo de
regressão (1) torna-se:
Yi = β1 + β 2 . X 2i + β 3 . X 3i + ε i = β1 + β 2 . X 2i + β 3 .(2. X 2i ) + ε i = β1 + (β 2 + 2.β 3 )X 2i + ε i =
= β1 + α . X 2 i + ε i

(2)

Ou seja, na prática (1) reduz-se a um modelo com apenas uma variável explicativa, e não
conseguimos separar a influência de X2 e X3, que está “misturada” dentro do parâmetro α.

Professora Mônica Barros

ENCE
14

Econometria – Semestre 2010.01
Mais sobre colinearidade...

• Na prática, é comum existir correlação entre os regressores – o que não pode existir é
correlação perfeita (+ 1 ou -1) entre eles, pois isso impediria a inversão da matriz XtX que é
necessária para calcular os estimadores MQO.
• Multicolinearidade se refere a relações LINEARES entre os regressores. Não diz nada, a
princípio, sobre relações como X3 = X22.

2- O SIGNIFICADO DOS COEFICIENTES DE REGRESSÃO PARCIAIS

Da hipótese sobre a média dos erros segue que:

E (Yi X 2i , X 3i ) = β1 + β 2 . X 2i + β 3 . X 3i

(3)

Os coeficientes β2 e β3 são chamados de coeficientes parciais de regressão ou coeficientes
angulares parciais. O que eles significam?
• β2 mede a variação no valor médio de Y, E(Y) por unidade de variação de X2 mantendo-se
X3 constante. Ou seja, é o efeito líquido de uma unidade de variação em X2 sobre a média
de Y excluindo-se os efeitos de X3.
•

Similarmente, β3 mede a variação no valor médio de Y, E(Y) por unidade de variação de X3
mantendo-se X2 constante.

• Você pode olhar para β2 e β3 e reconhecer as derivadas parciais de E(Y|X2, X3) em relação a
X2 e X3 respectivamente.

A questão principal é: como manter fixa a influência de um dos regressores, olhando só para o
efeito do outro regressor? Um algoritmo possível é mostrado a seguir, com um exemplo. Veremos
que ele não será necessário para calcular os β’s, sua inclusão aqui é para propósitos ilustrativos.
Exemplo 7.1.
A planilha cars_spss.xls foi retirada de um arquivo de exemplos que acompanha o software
estatístico spss. As variáveis presentes no arquivo são:
milhas_por_galao = indicador do consumo de gasolina do carro
motor = indicador do tamanho (em polegadas cúbicas) do motor
hp = potência do motor em hp
peso = peso do carro em libras

Professora Mônica Barros

ENCE
15

Econometria – Semestre 2010.01
tempo_aceleracao = tempo para acelerar de 0 a 60 milhas por hora em segundos
ano = ano do modelo
pais_origem = país de origem, variável categórica
numero_cilindros = número de cilindros do motor
filtro_8_cilindros = filtro = 0 se o motor tem 8 cilindros, 1 do contrário
Neste exemplo analisamos APENAS os carros com motor abaixo de 8 cilindros.

Os gráficos a seguir mostram a relação entre milhas_por_galao e peso e milhas_por_galao e hp.
Gráfico 1
Scatterplot of milhas_por_galao vs peso
50
45

milhas_por_galao

40
35
30
25
20
15
1500

2000

2500

3000

3500

4000

150

175

peso

Gráfico 2
Scatterplot of milhas_por_galao vs hp
50
45

milhas_por_galao

40
35
30
25
20
15
50

75

100

125
hp

Professora Mônica Barros

ENCE
16

Econometria – Semestre 2010.01

Um modelo de regressão de “milhas_por_galao” em “hp” e “peso” fornece a seguinte equação e
diagnósticos básicos:
The regression equation is
milhas_por_galao = 52,9 - 0,0990 hp - 0,00698 peso

282 cases used, 9 cases contain missing values

Predictor
Constant
hp
peso

Coef
52,904
-0,09897
-0,0069813

S = 4,33857

SE Coef
1,365
0,02062
0,0006945

R-Sq = 58,5%

T
38,76
-4,80
-10,05

P
0,000
0,000
0,000

R-Sq(adj) = 58,2%

Analysis of Variance
Source
Regression
Residual Error
Total

Source
hp
peso

DF
1
1

DF
2
279
281

SS
7394,3
5251,7
12646,0

MS
3697,2
18,8

F
196,41

P
0,000

Seq SS
5492,1
1902,2

Ou seja, os coeficientes de “hp” e “peso” são, respectivamente, -0,09897 e -0,0069813 .
Suponha que desejamos identificar a influência de “hp” sobre “milhas_por_galao” mantendo
constante o efeito (linear) de “peso”. Como fazer isso?
1) Faça a regressão de “milhas_por_galao” em “peso” e calcule os resíduos. O resultado é:
The regression equation is
milhas_por_galao = 50,7 - 0,00941 peso

288 cases used, 3 cases contain missing values

Predictor
Constant
peso

S = 4,51187

Coef
50,730
-0,0094074

SE Coef
1,316
0,0005021

R-Sq = 55,1%

T
38,54
-18,74

P
0,000
0,000

R-Sq(adj) = 55,0%

O que este modelo nos diz? Os resíduos são: R1i = mphi – 50,7 + 0,00941*pesoi onde mphi
indica o consumo (em milhas por galão) do i-ésimo carro.
2) Faça a regressão de “hp” em “peso” e calcule os resíduos.
The regression equation is
hp = 22,6 + 0,0244 peso

Professora Mônica Barros

ENCE
17

Econometria – Semestre 2010.01
285 cases used, 6 cases contain missing values

Predictor
Constant
peso

S = 12,6751

Coef
22,572
0,024364

SE Coef
3,715
0,001416

R-Sq = 51,1%

T
6,08
17,21

P
0,000
0,000

R-Sq(adj) = 51,0%

Os resíduos deste modelo são R2i = hpi – 22,6 – 0,0244*pesoi e indicam a parte de “hp” que
sobra após removermos a influência linear de “peso”.
3) Faça a regressão (sem constante) dos resíduos em 1) em relação aos resíduos em 2). O
coeficiente angular desta regressão nos dá o efeito líquido de “hp” sobre
“milhas_por_galao”, ou seja, vai fornecer o valor -0,09897 que encontramos acima na
regressão múltipla. A “mágica” dos MQO é que eles nos fornecem estes coeficientes sem
que a gente tenha que calcular estas regressões intermediárias.
The regression equation is
RESI1 = - 0,0990 RESI2

282 cases used, 9 cases contain missing values

Predictor
Noconstant
RESI2

Coef

SE Coef

-0,09897

0,02054

T

P

-4,82

0,000

Como vimos acima, o coeficiente desta regressão é o mesmo que o coeficiente de “hp” na
regressão original. Na verdade você pode escrever as equações e obter o coeficiente -0.09897
explicitamente e ver que isso sempre vai dar certo. Note que, da 1ª regressão:
mph = 50,730 – 0,0094074*(peso) + RESI1 e então, RESI1 = mph - 50,730 + 0,0094074*(peso)
Da 2ª. regressão: hp = 22,572 + 0,024364*(peso) + RESI2 e então RESI2 = hp – 22,572 0,024364*(peso)
Fazendo a regressão de RESI1 em RESI2 leva a:
RESI1 = -0,09897*(RESI2)
Subsitituindo os valores de RESI1 e RESI2 encontrados nas duas primeiras equações de regressão
leva a:
mph - 50,730 + 0,0094074*(peso) = -0,09897*( hp – 22,572 -0,024364*(peso))
mph = 50,730 + 0,09897*(22,572) + peso*(- 0,0094074 + 0,09897*0,024364) + hp*(-0,09897)
mph = 52,964 -0,0070*peso - 0,09897*hp

Professora Mônica Barros

ENCE
18

Econometria – Semestre 2010.01

O que concorda, a menos de erros de arredondamento, com os coeficientes encontrados na
regressão múltipla.
Se você quiser obter o coeficiente de “milhas_por_galao” em “peso” (sem recorrer à regressão
múltipla) pode usar um procedimento análogo.

3 – OS ESTIMADORES DE MQO

O livro do Gujarati explicita os estimadores de MQO neste caso. Como já derivamos estes
estimadores em forma matricial, acho mais conveniente relembrar a solução matricial e escrever a
matriz do modelo desta forma mais geral.
Lembre-se que a solução matricial para os estimadores MQO é (vide apêndice C):

(X X ) .(X X ).βˆ = (X X )
t

−1

t

t

−1

(

ˆ
.X t . y ⇒ β = X t X

)

−1

.X t . y

(4)

Neste caso:

 1 x1, 2

 1 x 2, 2
X =
... ...

1 x
n,2


 y1 
 
y 
Y = 2
....
 
y 
 n

x1,3 
 e1 

 β1 
e 
x2,3 
 
 2
 β =  β 2  ε =  ... 
...
β 

 
 3
xn,3 
 en 


A matriz de variância-covariância dos β’s é uma matriz 3 x 3 simétrica, que contém as variâncias
na diagonal principal e as covariâncias dos β’s fora da diagonal principal. Ela é dada por (vide
teorema 4.4. nas notas de aula do apêndice C):

(

V =σ 2 X tX

)

−1

onde σ 2 = VAR(ε i ) para i = 1,2,..., n

(5)

Note que, na equação (5), as variâncias e covariâncias dos β’s dependem de um parâmetro
desconhecido, σ2, que é a variância dos erros. Isso indica que precisamos estimar σ2 para que a
equação (5) tenha alguma utilidade prática. Como fazê-lo? A resposta está a seguir.
Resultado 4.2.
Num modelo de regressão múltipla com intercepto e (k-1) variáveis explicativas, um estimador
não tendencioso de σ2 é dado por:
n

ˆ
σ2 =

RSS
=
n−k

n

ˆ
∑ ( yi − yi )2 ∑ (εˆi )2
i =1

n−k

=

i =1

(6)

n−k

Professora Mônica Barros

ENCE
19

Econometria – Semestre 2010.01
Neste caso particular (2 regressores e uma constante), k = 3.

O estimador dado pela equação (6) NÃO É o estimador de máxima verossimilhança de σ2 sob a
hipótese de normalidade, que tem denominador n sempre. É claro que, à medida que o número
de observações (n) cresce, o estimador de máxima verossimilhança e os estimador não
tendencioso tendem a ser bem “parecidos”.
Propriedades dos estimadores MQO
• A superfície de regressão passa pelos pontos médios de Y e de todas as variáveis

explicativas, neste caso: (Y , X 2 , X 3 ) .
• Assim, no caso geral temos:

ˆ
ˆ
ˆ
ˆ
Y = β1 + β 2 . X 2 + β 3 . X 3 + ... + β k −1 . X k −1

(7)

Reescrevendo (7):

ˆ
ˆ
ˆ
ˆ
β1 = Y − β 2 . X 2 − β 3 . X 3 − ... − β k −1 . X k −1

(8)

Para uma observação qualquer, o valor ajustado por MQO é:
ˆ
ˆ
ˆ
ˆ
ˆ
Yi = β1 + β 2 . X 2i + β 3 . X 3i + ... + β k −1. X k −1,i =
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
= Y − β 2 . X 2 − β 3 . X 3 − ... − β k −1. X k −1 + β 2 . X 2i + β 3 .( X 3i ) + ... + β k −1. X k −1,i =
ˆ
ˆ
ˆ
= Y + β 2 .( X 2i − X 2 ) + β 3 .( X 3i − X 3 ) + ... + β k −1 .( X k −1,i − X k −1 )

(9)

Isto é :
ˆ
ˆ
ˆ
ˆ
Yi − Y = β 2 .( X 2i − X 2 ) + β 3 .( X 3i − X 3 ) + ... + β k −1.( X k −1,i − X k −1 )

A equação (9) nos diz que o modelo pode ser escrito como uma regressão múltipla SEM constante
usando como variáveis explicativas os desvios das variáveis em relação às suas médias.

4- O COEFICIENTE DE DETERMINAÇÃO (R2) E O COEFICIENTE DE CORRELAÇÃO MÚLTIPLA

Considere um caso muito simples – o modelo constante. Queremos estimar um modelo constante,
ou seja, yi = c + erro. Sem o conhecimento de nenhuma variável explicativa, ou seja, sem o modelo
de regressão, a nossa melhor estimativa seria o valor médio das observações de y. Na verdade
você pode aplicar o critério de mínimos quadrados ordinários para verificar que o estimador de c é
a média de Y. Aqui:
n

n

(

)

n

ˆ
ˆ
ˆ
ˆ
ˆ
RSS = ∑ ( yi − c ) =∑ yi − 2.c. yi + c 2 = ∑ yi − 2.c.n. y + n.c 2
i =1

2

i =1

2

2

i =1

Professora Mônica Barros

ENCE
20

Econometria – Semestre 2010.01
Derivando em relação a c^ e igualando a zero fornece:
dRSS
ˆ
ˆ
= 0 ⇒ −2.n. y + 2.nc = 0 ⇒ c = y
ˆ
dc

A soma de quadrados (mínima) no modelo constante será conhecida como Soma de Quadrados
Total, e denotada SST.
Note que:
SST = SYY = ∑ ( yi − y )

2

(10)

A soma dos quadrados devidos à regressão (ou soma dos quadrados explicados pela regressão),
SSReg (do inglês “sum of squares due to regression”) é dada por:

(

ˆ ˆ
SS Re g = ∑ yi − y

)

2

ˆ
ˆ
onde yi é a média dos valores ajustados, y =

1 n
1 n ˆ
ˆ
ˆ
ˆ
y i = ∑ β 1 + β 2 . x 2 i + β 3 . x3 i
∑ n i=1
n i =1

(

ˆ
ˆ
ˆ ˆ
y = β1 + β 2 .x2 + β 3 .x3 = y pelas propriedades dos MQO, como já visto.

Então, a soma dos quadrados explicados pela regressão é dada por:
ˆ
SS Re g = ∑ ( yi − y )

2

(11)

Após uma certa álgebra pode-se provar que (faça-o!):
SST = SYY = ∑ ( yi − y ) = SSReg + RSS
2

(12)

Ou seja, a soma dos quadrados total é composta de duas partes:
• A soma dos quadrados devido à regressão e,
• A soma do quadrado dos resíduos.

Intuitivamente, o “peso” destas duas partes na SST deve ser um (mas não o único) indicador do
quanto o ajuste da regressão é “bom”. Se a soma do quadrado dos residuos é “grande” (em
relação a SSReg), o ajuste deve ser “ruim”. Do contrário, se RSS é “pequena” (e SSReg é “grande”),
o ajuste do modelo deve ser “bom”.

Definição 4.3. (Coeficiente de Determinação R2)
O coeficiente de determinação (R2) de uma regressão é um número entre 0 e 1 definido como:

Professora Mônica Barros

ENCE

)
21

Econometria – Semestre 2010.01

R2 =

SS Re g SS Re g SYY − RSS
RSS
=
=
= 1−
SST
SYY
SYY
SYY

(13)

Quanto mais próximo de 1. “melhor” o ajuste do modelo de regressão.
Num modelo de regressão simples, R2 é o quadrado do coeficiente de correlação entre X e Y. Num
modelo de regressão múltipla, existe uma quantidade análoga a r, que é chamada de coeficiente
de correlação múltipla, que mede o grau de associação entre Y e TODAS as variáveis explicativas
em conjunto.
Exemplo 4.1. – continuação
Vamos olhar com mais atenção os resultados do Exemplo 4.1. Em particular estamos interessados
no cálculo do R2 e na tabela ANOVA (que contém as somas de quadrados e estas somas divididas
pelos seus graus de liberdade).
Abaixo vemos que:
S = 4,33857

R-Sq = 58,5%

R-Sq(adj) = 58,2%

Então cerca de 59% da variação nos dados é explicada pelo modelo com as 2 variáveis. Não é
bom, mas também não é trágico. Note que o desvio padrão estimado é 4,339, assim a variância
estimada é (4,339)2 = 18,823. Mas, sabemos que este estimador é a RSS dividida por (n-3). A
regressão usou n = 282 observações (vide exemplo 4.1) e então n-3 = 279. Veja agora a tabela
ANOVA a seguir:
Analysis of Variance
Source
Regression
Residual Error
Total

DF
2
279
281

SS
7394,3
5251,7
12646,0

MS
3697,2
18,8

F
196,41

P
0,000

A soma do quadrado dos resíduos é 5251,7, seus graus de liberdade são (n-3) = 279. Dividindo RSS
por 279 encontramos 18,8 (na verdade 18,823), que é o estimador da variância, que aparece na
tabela ANOVA como o MS (mean squared) associado aos resíduos.
E o R2? Pela definição e usando os valores da tabela ANOVA:
R2 =

SS Re g SS Re g 7394,3
=
=
= 0.5847
SST
SYY
12646,0

Também o R 2 pode ser calculado como :
R2 = 1−

RSS
5251,7
= 1−
= 1 − 0,4153 = 0,5847
SYY
12646,0

5 – O R2 AJUSTADO

Professora Mônica Barros

ENCE
22

Econometria – Semestre 2010.01

Um problema no uso do R2 como medida da qualidade de um modelo de regressão é que ele é
não decrescente no número de variáveis explicativas. Ou seja, à medida que colocamos mais
variáveis explicativas, o R2 aumenta (ou pelo menos, não decresce). Por que?
2
SS Re g SS Re g
RSS
∑ εˆi
=
= 1−
= 1−
R =
2
SST
SYY
SYY
∑ ( yi − y )
2

O denominador nesta última expressão (SYY) não depende do número de variáveis explicativas,
mas o numerador depende. À medida que aumentamos o número de regressores, RSS tende a cair
(ou pelo menos ficar igual), e assim, R2 tende a crescer quando adicionamos mais regressores ao
modelo.
Então, para comparar dois modelos para a MESMA variável dependente que tenham número de
regressores diferentes, faz sentido “penalizar” o R2 à medida que aumentamos o número de
variáveis explicativas. Isso nos leva à definição do R2 ajustado.

Definição 5.1. (R2 ajustado)
R 2 adj = 1 −

RSS /(n − k )
SYY /(n − 1)

(14)

Onde k é o número de parâmetros num modelo com (k-1) variáveis explicativas (e um termo
constante) e n é o número de observações.
Por que falamos em R2 “ajustado”? Porque as somas dos quadrados que originalmente aparecem
na definição do R2 são ajustadas pelos seus graus de liberdade. A RSS está associada a (n-k) graus
de liberdade, pois o modelo tem k parâmetros, significando que “perdemos” k graus de liberdade
em relação ao número de observações original. SYY está associada a (n-1) graus de liberdade, pois
podemos interpretá-la como a soma de quadrados dos resíduos de um modelo constante (só um
parâmetro), e então perde-se 1 grau de liberdade apenas.
Podemos reescrever o R2 ajustado em termos de estimadores da variância. Note que:
ˆ
σ2 =

RSS
SYY
é o estimador da variância do erro e SY2 =
é a variância amostral dos Y’s.
n−k
n −1

Relação entre R2 e o R2 ajustado
Com um pouco de álgebra é fácil mostrar que:

Professora Mônica Barros

ENCE
23

Econometria – Semestre 2010.01

(

R 2 adj = 1 − 1 − R 2

n −1
)n − k

Para k > 1, o R2 ajustado é menor que o R2. Também, o R2 ajustado pode ser negativo, o que não
ocorre com o R2 “usual”. Note que se R2 = 1, este também será o valor do R2 ajustado. Se R2 = 0, o
R2 ajustado será negativo se k >1.
No exemplo 4.1. note que o R2 ajustado é R-Sq(adj) = 58,2%, menor que o R2 (58,5%). A diferença
é pequena pois neste caso n-1 = 281 e n-3 = 279.
Cuidados ao usar o R2 e o R2 ajustado
Ao comparar dois modelos através do R2 e do R2 ajustado, é preciso ter em mente que:
• A variável explicativa deve ser a mesma nos 2 modelos. Não se pode comparar desta forma
um modelo para Y e outro para ln(Y), por exemplo;
• O número de observações (n) deve ser o mesmo nos 2 modelos.

Professora Mônica Barros

ENCE

Mais conteúdo relacionado

Semelhante a Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati

Cursocalc1ead
Cursocalc1eadCursocalc1ead
Cursocalc1ead
Carlos Genesis
 
Calculo d edo_1
Calculo d edo_1Calculo d edo_1
Calculo d edo_1
Sigmar de Lima
 
Aritmética de máquina
Aritmética de máquinaAritmética de máquina
Aritmética de máquina
Antonio Eduardo Assis Amorim
 
02 tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA
02   tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA02   tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA
02 tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA
Ricardo Bruno - Universidade Federal do Pará
 
Matematica 2015
Matematica 2015Matematica 2015
Matematica 2015
Eduardo Araujo
 
Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...
Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...
Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...
Cleverson Neves
 
Reproducao sp-matematica-1-unidade-2-capitulo-4
Reproducao sp-matematica-1-unidade-2-capitulo-4Reproducao sp-matematica-1-unidade-2-capitulo-4
Reproducao sp-matematica-1-unidade-2-capitulo-4
Karla Danielle Ferreira
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Antonio Carneiro
 
Conjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º GrauConjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º Grau
guest47023a
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Antonio Carneiro
 
Matemática - Tipo C
Matemática - Tipo CMatemática - Tipo C
Matemática - Tipo C
Carol Monteiro
 
AMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptxAMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptx
NunoSilva599593
 
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
Daniel Brandão de Castro
 
Tópico 4 regressão linear simples 01
Tópico 4   regressão linear simples 01Tópico 4   regressão linear simples 01
Tópico 4 regressão linear simples 01
Ricardo Bruno - Universidade Federal do Pará
 
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDFpdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
AbraoSantos22
 
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.pdf
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.pdfpdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.pdf
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.pdf
cojuraperguntaa
 
Sistemas equacoes lineares
Sistemas equacoes linearesSistemas equacoes lineares
Sistemas equacoes lineares
Josemar Pereira da Silva
 
Apostila física exp ii
Apostila física exp iiApostila física exp ii
Apostila física exp ii
Diego dos Santos Vicentin
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade ii
Welison Lopes
 
Aula 1 fic
Aula 1   ficAula 1   fic
Aula 1 fic
BUIAR
 

Semelhante a Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati (20)

Cursocalc1ead
Cursocalc1eadCursocalc1ead
Cursocalc1ead
 
Calculo d edo_1
Calculo d edo_1Calculo d edo_1
Calculo d edo_1
 
Aritmética de máquina
Aritmética de máquinaAritmética de máquina
Aritmética de máquina
 
02 tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA
02   tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA02   tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA
02 tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA
 
Matematica 2015
Matematica 2015Matematica 2015
Matematica 2015
 
Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...
Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...
Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...
 
Reproducao sp-matematica-1-unidade-2-capitulo-4
Reproducao sp-matematica-1-unidade-2-capitulo-4Reproducao sp-matematica-1-unidade-2-capitulo-4
Reproducao sp-matematica-1-unidade-2-capitulo-4
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
 
Conjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º GrauConjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º Grau
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
 
Matemática - Tipo C
Matemática - Tipo CMatemática - Tipo C
Matemática - Tipo C
 
AMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptxAMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptx
 
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
 
Tópico 4 regressão linear simples 01
Tópico 4   regressão linear simples 01Tópico 4   regressão linear simples 01
Tópico 4 regressão linear simples 01
 
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDFpdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
 
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.pdf
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.pdfpdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.pdf
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.pdf
 
Sistemas equacoes lineares
Sistemas equacoes linearesSistemas equacoes lineares
Sistemas equacoes lineares
 
Apostila física exp ii
Apostila física exp iiApostila física exp ii
Apostila física exp ii
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade ii
 
Aula 1 fic
Aula 1   ficAula 1   fic
Aula 1 fic
 

Mais de Monica Barros

Monica Barros - Econometria - ENCE 2010 - Resumo Capítulo 9 Gujarati
Monica Barros - Econometria - ENCE 2010 - Resumo Capítulo 9 GujaratiMonica Barros - Econometria - ENCE 2010 - Resumo Capítulo 9 Gujarati
Monica Barros - Econometria - ENCE 2010 - Resumo Capítulo 9 Gujarati
Monica Barros
 
Introdução à programação em R
Introdução à programação em RIntrodução à programação em R
Introdução à programação em R
Monica Barros
 
Time series and forecasting from wikipedia
Time series and forecasting from wikipediaTime series and forecasting from wikipedia
Time series and forecasting from wikipedia
Monica Barros
 
Barros monica isf2012
Barros monica isf2012Barros monica isf2012
Barros monica isf2012
Monica Barros
 
Southeast load
Southeast loadSoutheast load
Southeast load
Monica Barros
 
Barros Monica Isf2012
Barros Monica Isf2012Barros Monica Isf2012
Barros Monica Isf2012
Monica Barros
 
V30n3a02
V30n3a02V30n3a02
V30n3a02
Monica Barros
 
V29n2a04 Artigo Revista Sobrapo
V29n2a04 Artigo Revista SobrapoV29n2a04 Artigo Revista Sobrapo
V29n2a04 Artigo Revista Sobrapo
Monica Barros
 
Icord 2007
Icord 2007Icord 2007
Icord 2007
Monica Barros
 
Modelagem Revistas
Modelagem RevistasModelagem Revistas
Modelagem Revistas
Monica Barros
 
Pulp And Paper Isf
Pulp And Paper IsfPulp And Paper Isf
Pulp And Paper Isf
Monica Barros
 
Ecomod 2007
Ecomod 2007Ecomod 2007
Ecomod 2007
Monica Barros
 
Residential%20 Electrical%20 Energy%20 Consumption%20 Profile%20in%20 Brazil
Residential%20 Electrical%20 Energy%20 Consumption%20 Profile%20in%20 BrazilResidential%20 Electrical%20 Energy%20 Consumption%20 Profile%20in%20 Brazil
Residential%20 Electrical%20 Energy%20 Consumption%20 Profile%20in%20 Brazil
Monica Barros
 

Mais de Monica Barros (13)

Monica Barros - Econometria - ENCE 2010 - Resumo Capítulo 9 Gujarati
Monica Barros - Econometria - ENCE 2010 - Resumo Capítulo 9 GujaratiMonica Barros - Econometria - ENCE 2010 - Resumo Capítulo 9 Gujarati
Monica Barros - Econometria - ENCE 2010 - Resumo Capítulo 9 Gujarati
 
Introdução à programação em R
Introdução à programação em RIntrodução à programação em R
Introdução à programação em R
 
Time series and forecasting from wikipedia
Time series and forecasting from wikipediaTime series and forecasting from wikipedia
Time series and forecasting from wikipedia
 
Barros monica isf2012
Barros monica isf2012Barros monica isf2012
Barros monica isf2012
 
Southeast load
Southeast loadSoutheast load
Southeast load
 
Barros Monica Isf2012
Barros Monica Isf2012Barros Monica Isf2012
Barros Monica Isf2012
 
V30n3a02
V30n3a02V30n3a02
V30n3a02
 
V29n2a04 Artigo Revista Sobrapo
V29n2a04 Artigo Revista SobrapoV29n2a04 Artigo Revista Sobrapo
V29n2a04 Artigo Revista Sobrapo
 
Icord 2007
Icord 2007Icord 2007
Icord 2007
 
Modelagem Revistas
Modelagem RevistasModelagem Revistas
Modelagem Revistas
 
Pulp And Paper Isf
Pulp And Paper IsfPulp And Paper Isf
Pulp And Paper Isf
 
Ecomod 2007
Ecomod 2007Ecomod 2007
Ecomod 2007
 
Residential%20 Electrical%20 Energy%20 Consumption%20 Profile%20in%20 Brazil
Residential%20 Electrical%20 Energy%20 Consumption%20 Profile%20in%20 BrazilResidential%20 Electrical%20 Energy%20 Consumption%20 Profile%20in%20 Brazil
Residential%20 Electrical%20 Energy%20 Consumption%20 Profile%20in%20 Brazil
 

Último

Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
Mary Alvarenga
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
Marcelo Botura
 
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdfIntendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Falcão Brasil
 
A Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdfA Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdf
Falcão Brasil
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
Mary Alvarenga
 
Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
Luiz C. da Silva
 
Marinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdfMarinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdf
Falcão Brasil
 
Plano_Aula_01_Introdução_com_Circuito_Piscar_LED
Plano_Aula_01_Introdução_com_Circuito_Piscar_LEDPlano_Aula_01_Introdução_com_Circuito_Piscar_LED
Plano_Aula_01_Introdução_com_Circuito_Piscar_LED
luggio9854
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
portaladministradores
 
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdfO Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
Falcão Brasil
 
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdfA Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
Falcão Brasil
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
Falcão Brasil
 
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Falcão Brasil
 
Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024
Bibliotecas Escolares AEIDH
 
Escola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdfEscola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdf
Falcão Brasil
 
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
Estuda.com
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 

Último (20)

Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
 
Elogio da Saudade .
Elogio da Saudade                          .Elogio da Saudade                          .
Elogio da Saudade .
 
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdfIntendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdf
 
A Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdfA Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdf
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
 
Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
 
Marinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdfMarinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdf
 
Plano_Aula_01_Introdução_com_Circuito_Piscar_LED
Plano_Aula_01_Introdução_com_Circuito_Piscar_LEDPlano_Aula_01_Introdução_com_Circuito_Piscar_LED
Plano_Aula_01_Introdução_com_Circuito_Piscar_LED
 
Festa dos Finalistas .
Festa dos Finalistas                    .Festa dos Finalistas                    .
Festa dos Finalistas .
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
 
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdfO Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
 
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdfA Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
 
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
 
Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024
 
Escola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdfEscola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdf
 
VIAGEM AO PASSADO -
VIAGEM AO PASSADO                        -VIAGEM AO PASSADO                        -
VIAGEM AO PASSADO -
 
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 

Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati

  • 1. 13 Econometria – Semestre 2010.01 CAPÍTULO 7 – ANÁLISE DE REGRESSÃO MÚLTIPLA – O PROBLEMA DA ESTIMAÇÃO 1-O MODELO DE 3 VARIÁVEIS – NOTAÇÃO E PREMISSAS Considere o modelo de regressão múltipla com 2 variáveis explicativas dado por: Yi = β1 + β 2 . X 2i + β 3 . X 3i + ε i para i = 1, 2, ..., n (1) Na equação (1), Y é a variável dependente, X2 e X3 são as variáveis explicativas (ou regressores) e ε é o termo de erro aleatório. i denota a i-ésima observação. Os coeficientes β2 e β3 são chamados de coeficientes parciais de regressão e β1 é o intercepto ou coeficiente linear. Novamente relembramos as hipóteses subjacentes ao modelo da equação (1): 1. A média dos erros é zero (condicional aos valores dos X’s): E (ε i X 2i , X 3i ) = 0 para todo i 2. Os erros são descorrelatados: COV (ε i , ε j ) = 0 para i ≠ j 3. Homocedasticidade (variância constante): VAR (ε i ) = σ 2 para todo i 4. Covariância nula entre os COV (ε i , X 2i ) = COV (ε i , X 3i ) = 0 para todo i erros e cada variável: 5. Suposição de que o modelo está corretamente especificado. 6. Inexistência de colinearidade entre os regressores, ou seja, não há relação linear exata entre X2 e X3. Em particular, esta hipótese implica nas colunas da matriz do modelo X (vide apêndice C) serem linearmente independentes. Por que esta hipótese 6 (ausência de colinearidade perfeita) é importante? Pois nos permite simplificar a estrutura do modelo. Se X3 é uma função linear perfeita de X2, na prática não existem duas variáveis explicativas, existe só uma. Suponha que X3 = 2.X2 exatamente. Então o modelo de regressão (1) torna-se: Yi = β1 + β 2 . X 2i + β 3 . X 3i + ε i = β1 + β 2 . X 2i + β 3 .(2. X 2i ) + ε i = β1 + (β 2 + 2.β 3 )X 2i + ε i = = β1 + α . X 2 i + ε i (2) Ou seja, na prática (1) reduz-se a um modelo com apenas uma variável explicativa, e não conseguimos separar a influência de X2 e X3, que está “misturada” dentro do parâmetro α. Professora Mônica Barros ENCE
  • 2. 14 Econometria – Semestre 2010.01 Mais sobre colinearidade... • Na prática, é comum existir correlação entre os regressores – o que não pode existir é correlação perfeita (+ 1 ou -1) entre eles, pois isso impediria a inversão da matriz XtX que é necessária para calcular os estimadores MQO. • Multicolinearidade se refere a relações LINEARES entre os regressores. Não diz nada, a princípio, sobre relações como X3 = X22. 2- O SIGNIFICADO DOS COEFICIENTES DE REGRESSÃO PARCIAIS Da hipótese sobre a média dos erros segue que: E (Yi X 2i , X 3i ) = β1 + β 2 . X 2i + β 3 . X 3i (3) Os coeficientes β2 e β3 são chamados de coeficientes parciais de regressão ou coeficientes angulares parciais. O que eles significam? • β2 mede a variação no valor médio de Y, E(Y) por unidade de variação de X2 mantendo-se X3 constante. Ou seja, é o efeito líquido de uma unidade de variação em X2 sobre a média de Y excluindo-se os efeitos de X3. • Similarmente, β3 mede a variação no valor médio de Y, E(Y) por unidade de variação de X3 mantendo-se X2 constante. • Você pode olhar para β2 e β3 e reconhecer as derivadas parciais de E(Y|X2, X3) em relação a X2 e X3 respectivamente. A questão principal é: como manter fixa a influência de um dos regressores, olhando só para o efeito do outro regressor? Um algoritmo possível é mostrado a seguir, com um exemplo. Veremos que ele não será necessário para calcular os β’s, sua inclusão aqui é para propósitos ilustrativos. Exemplo 7.1. A planilha cars_spss.xls foi retirada de um arquivo de exemplos que acompanha o software estatístico spss. As variáveis presentes no arquivo são: milhas_por_galao = indicador do consumo de gasolina do carro motor = indicador do tamanho (em polegadas cúbicas) do motor hp = potência do motor em hp peso = peso do carro em libras Professora Mônica Barros ENCE
  • 3. 15 Econometria – Semestre 2010.01 tempo_aceleracao = tempo para acelerar de 0 a 60 milhas por hora em segundos ano = ano do modelo pais_origem = país de origem, variável categórica numero_cilindros = número de cilindros do motor filtro_8_cilindros = filtro = 0 se o motor tem 8 cilindros, 1 do contrário Neste exemplo analisamos APENAS os carros com motor abaixo de 8 cilindros. Os gráficos a seguir mostram a relação entre milhas_por_galao e peso e milhas_por_galao e hp. Gráfico 1 Scatterplot of milhas_por_galao vs peso 50 45 milhas_por_galao 40 35 30 25 20 15 1500 2000 2500 3000 3500 4000 150 175 peso Gráfico 2 Scatterplot of milhas_por_galao vs hp 50 45 milhas_por_galao 40 35 30 25 20 15 50 75 100 125 hp Professora Mônica Barros ENCE
  • 4. 16 Econometria – Semestre 2010.01 Um modelo de regressão de “milhas_por_galao” em “hp” e “peso” fornece a seguinte equação e diagnósticos básicos: The regression equation is milhas_por_galao = 52,9 - 0,0990 hp - 0,00698 peso 282 cases used, 9 cases contain missing values Predictor Constant hp peso Coef 52,904 -0,09897 -0,0069813 S = 4,33857 SE Coef 1,365 0,02062 0,0006945 R-Sq = 58,5% T 38,76 -4,80 -10,05 P 0,000 0,000 0,000 R-Sq(adj) = 58,2% Analysis of Variance Source Regression Residual Error Total Source hp peso DF 1 1 DF 2 279 281 SS 7394,3 5251,7 12646,0 MS 3697,2 18,8 F 196,41 P 0,000 Seq SS 5492,1 1902,2 Ou seja, os coeficientes de “hp” e “peso” são, respectivamente, -0,09897 e -0,0069813 . Suponha que desejamos identificar a influência de “hp” sobre “milhas_por_galao” mantendo constante o efeito (linear) de “peso”. Como fazer isso? 1) Faça a regressão de “milhas_por_galao” em “peso” e calcule os resíduos. O resultado é: The regression equation is milhas_por_galao = 50,7 - 0,00941 peso 288 cases used, 3 cases contain missing values Predictor Constant peso S = 4,51187 Coef 50,730 -0,0094074 SE Coef 1,316 0,0005021 R-Sq = 55,1% T 38,54 -18,74 P 0,000 0,000 R-Sq(adj) = 55,0% O que este modelo nos diz? Os resíduos são: R1i = mphi – 50,7 + 0,00941*pesoi onde mphi indica o consumo (em milhas por galão) do i-ésimo carro. 2) Faça a regressão de “hp” em “peso” e calcule os resíduos. The regression equation is hp = 22,6 + 0,0244 peso Professora Mônica Barros ENCE
  • 5. 17 Econometria – Semestre 2010.01 285 cases used, 6 cases contain missing values Predictor Constant peso S = 12,6751 Coef 22,572 0,024364 SE Coef 3,715 0,001416 R-Sq = 51,1% T 6,08 17,21 P 0,000 0,000 R-Sq(adj) = 51,0% Os resíduos deste modelo são R2i = hpi – 22,6 – 0,0244*pesoi e indicam a parte de “hp” que sobra após removermos a influência linear de “peso”. 3) Faça a regressão (sem constante) dos resíduos em 1) em relação aos resíduos em 2). O coeficiente angular desta regressão nos dá o efeito líquido de “hp” sobre “milhas_por_galao”, ou seja, vai fornecer o valor -0,09897 que encontramos acima na regressão múltipla. A “mágica” dos MQO é que eles nos fornecem estes coeficientes sem que a gente tenha que calcular estas regressões intermediárias. The regression equation is RESI1 = - 0,0990 RESI2 282 cases used, 9 cases contain missing values Predictor Noconstant RESI2 Coef SE Coef -0,09897 0,02054 T P -4,82 0,000 Como vimos acima, o coeficiente desta regressão é o mesmo que o coeficiente de “hp” na regressão original. Na verdade você pode escrever as equações e obter o coeficiente -0.09897 explicitamente e ver que isso sempre vai dar certo. Note que, da 1ª regressão: mph = 50,730 – 0,0094074*(peso) + RESI1 e então, RESI1 = mph - 50,730 + 0,0094074*(peso) Da 2ª. regressão: hp = 22,572 + 0,024364*(peso) + RESI2 e então RESI2 = hp – 22,572 0,024364*(peso) Fazendo a regressão de RESI1 em RESI2 leva a: RESI1 = -0,09897*(RESI2) Subsitituindo os valores de RESI1 e RESI2 encontrados nas duas primeiras equações de regressão leva a: mph - 50,730 + 0,0094074*(peso) = -0,09897*( hp – 22,572 -0,024364*(peso)) mph = 50,730 + 0,09897*(22,572) + peso*(- 0,0094074 + 0,09897*0,024364) + hp*(-0,09897) mph = 52,964 -0,0070*peso - 0,09897*hp Professora Mônica Barros ENCE
  • 6. 18 Econometria – Semestre 2010.01 O que concorda, a menos de erros de arredondamento, com os coeficientes encontrados na regressão múltipla. Se você quiser obter o coeficiente de “milhas_por_galao” em “peso” (sem recorrer à regressão múltipla) pode usar um procedimento análogo. 3 – OS ESTIMADORES DE MQO O livro do Gujarati explicita os estimadores de MQO neste caso. Como já derivamos estes estimadores em forma matricial, acho mais conveniente relembrar a solução matricial e escrever a matriz do modelo desta forma mais geral. Lembre-se que a solução matricial para os estimadores MQO é (vide apêndice C): (X X ) .(X X ).βˆ = (X X ) t −1 t t −1 ( ˆ .X t . y ⇒ β = X t X ) −1 .X t . y (4) Neste caso:  1 x1, 2   1 x 2, 2 X = ... ...  1 x n,2   y1    y  Y = 2 ....   y   n x1,3   e1    β1  e  x2,3     2  β =  β 2  ε =  ...  ... β      3 xn,3   en   A matriz de variância-covariância dos β’s é uma matriz 3 x 3 simétrica, que contém as variâncias na diagonal principal e as covariâncias dos β’s fora da diagonal principal. Ela é dada por (vide teorema 4.4. nas notas de aula do apêndice C): ( V =σ 2 X tX ) −1 onde σ 2 = VAR(ε i ) para i = 1,2,..., n (5) Note que, na equação (5), as variâncias e covariâncias dos β’s dependem de um parâmetro desconhecido, σ2, que é a variância dos erros. Isso indica que precisamos estimar σ2 para que a equação (5) tenha alguma utilidade prática. Como fazê-lo? A resposta está a seguir. Resultado 4.2. Num modelo de regressão múltipla com intercepto e (k-1) variáveis explicativas, um estimador não tendencioso de σ2 é dado por: n ˆ σ2 = RSS = n−k n ˆ ∑ ( yi − yi )2 ∑ (εˆi )2 i =1 n−k = i =1 (6) n−k Professora Mônica Barros ENCE
  • 7. 19 Econometria – Semestre 2010.01 Neste caso particular (2 regressores e uma constante), k = 3. O estimador dado pela equação (6) NÃO É o estimador de máxima verossimilhança de σ2 sob a hipótese de normalidade, que tem denominador n sempre. É claro que, à medida que o número de observações (n) cresce, o estimador de máxima verossimilhança e os estimador não tendencioso tendem a ser bem “parecidos”. Propriedades dos estimadores MQO • A superfície de regressão passa pelos pontos médios de Y e de todas as variáveis explicativas, neste caso: (Y , X 2 , X 3 ) . • Assim, no caso geral temos: ˆ ˆ ˆ ˆ Y = β1 + β 2 . X 2 + β 3 . X 3 + ... + β k −1 . X k −1 (7) Reescrevendo (7): ˆ ˆ ˆ ˆ β1 = Y − β 2 . X 2 − β 3 . X 3 − ... − β k −1 . X k −1 (8) Para uma observação qualquer, o valor ajustado por MQO é: ˆ ˆ ˆ ˆ ˆ Yi = β1 + β 2 . X 2i + β 3 . X 3i + ... + β k −1. X k −1,i = ˆ ˆ ˆ ˆ ˆ ˆ = Y − β 2 . X 2 − β 3 . X 3 − ... − β k −1. X k −1 + β 2 . X 2i + β 3 .( X 3i ) + ... + β k −1. X k −1,i = ˆ ˆ ˆ = Y + β 2 .( X 2i − X 2 ) + β 3 .( X 3i − X 3 ) + ... + β k −1 .( X k −1,i − X k −1 ) (9) Isto é : ˆ ˆ ˆ ˆ Yi − Y = β 2 .( X 2i − X 2 ) + β 3 .( X 3i − X 3 ) + ... + β k −1.( X k −1,i − X k −1 ) A equação (9) nos diz que o modelo pode ser escrito como uma regressão múltipla SEM constante usando como variáveis explicativas os desvios das variáveis em relação às suas médias. 4- O COEFICIENTE DE DETERMINAÇÃO (R2) E O COEFICIENTE DE CORRELAÇÃO MÚLTIPLA Considere um caso muito simples – o modelo constante. Queremos estimar um modelo constante, ou seja, yi = c + erro. Sem o conhecimento de nenhuma variável explicativa, ou seja, sem o modelo de regressão, a nossa melhor estimativa seria o valor médio das observações de y. Na verdade você pode aplicar o critério de mínimos quadrados ordinários para verificar que o estimador de c é a média de Y. Aqui: n n ( ) n ˆ ˆ ˆ ˆ ˆ RSS = ∑ ( yi − c ) =∑ yi − 2.c. yi + c 2 = ∑ yi − 2.c.n. y + n.c 2 i =1 2 i =1 2 2 i =1 Professora Mônica Barros ENCE
  • 8. 20 Econometria – Semestre 2010.01 Derivando em relação a c^ e igualando a zero fornece: dRSS ˆ ˆ = 0 ⇒ −2.n. y + 2.nc = 0 ⇒ c = y ˆ dc A soma de quadrados (mínima) no modelo constante será conhecida como Soma de Quadrados Total, e denotada SST. Note que: SST = SYY = ∑ ( yi − y ) 2 (10) A soma dos quadrados devidos à regressão (ou soma dos quadrados explicados pela regressão), SSReg (do inglês “sum of squares due to regression”) é dada por: ( ˆ ˆ SS Re g = ∑ yi − y ) 2 ˆ ˆ onde yi é a média dos valores ajustados, y = 1 n 1 n ˆ ˆ ˆ ˆ y i = ∑ β 1 + β 2 . x 2 i + β 3 . x3 i ∑ n i=1 n i =1 ( ˆ ˆ ˆ ˆ y = β1 + β 2 .x2 + β 3 .x3 = y pelas propriedades dos MQO, como já visto. Então, a soma dos quadrados explicados pela regressão é dada por: ˆ SS Re g = ∑ ( yi − y ) 2 (11) Após uma certa álgebra pode-se provar que (faça-o!): SST = SYY = ∑ ( yi − y ) = SSReg + RSS 2 (12) Ou seja, a soma dos quadrados total é composta de duas partes: • A soma dos quadrados devido à regressão e, • A soma do quadrado dos resíduos. Intuitivamente, o “peso” destas duas partes na SST deve ser um (mas não o único) indicador do quanto o ajuste da regressão é “bom”. Se a soma do quadrado dos residuos é “grande” (em relação a SSReg), o ajuste deve ser “ruim”. Do contrário, se RSS é “pequena” (e SSReg é “grande”), o ajuste do modelo deve ser “bom”. Definição 4.3. (Coeficiente de Determinação R2) O coeficiente de determinação (R2) de uma regressão é um número entre 0 e 1 definido como: Professora Mônica Barros ENCE )
  • 9. 21 Econometria – Semestre 2010.01 R2 = SS Re g SS Re g SYY − RSS RSS = = = 1− SST SYY SYY SYY (13) Quanto mais próximo de 1. “melhor” o ajuste do modelo de regressão. Num modelo de regressão simples, R2 é o quadrado do coeficiente de correlação entre X e Y. Num modelo de regressão múltipla, existe uma quantidade análoga a r, que é chamada de coeficiente de correlação múltipla, que mede o grau de associação entre Y e TODAS as variáveis explicativas em conjunto. Exemplo 4.1. – continuação Vamos olhar com mais atenção os resultados do Exemplo 4.1. Em particular estamos interessados no cálculo do R2 e na tabela ANOVA (que contém as somas de quadrados e estas somas divididas pelos seus graus de liberdade). Abaixo vemos que: S = 4,33857 R-Sq = 58,5% R-Sq(adj) = 58,2% Então cerca de 59% da variação nos dados é explicada pelo modelo com as 2 variáveis. Não é bom, mas também não é trágico. Note que o desvio padrão estimado é 4,339, assim a variância estimada é (4,339)2 = 18,823. Mas, sabemos que este estimador é a RSS dividida por (n-3). A regressão usou n = 282 observações (vide exemplo 4.1) e então n-3 = 279. Veja agora a tabela ANOVA a seguir: Analysis of Variance Source Regression Residual Error Total DF 2 279 281 SS 7394,3 5251,7 12646,0 MS 3697,2 18,8 F 196,41 P 0,000 A soma do quadrado dos resíduos é 5251,7, seus graus de liberdade são (n-3) = 279. Dividindo RSS por 279 encontramos 18,8 (na verdade 18,823), que é o estimador da variância, que aparece na tabela ANOVA como o MS (mean squared) associado aos resíduos. E o R2? Pela definição e usando os valores da tabela ANOVA: R2 = SS Re g SS Re g 7394,3 = = = 0.5847 SST SYY 12646,0 Também o R 2 pode ser calculado como : R2 = 1− RSS 5251,7 = 1− = 1 − 0,4153 = 0,5847 SYY 12646,0 5 – O R2 AJUSTADO Professora Mônica Barros ENCE
  • 10. 22 Econometria – Semestre 2010.01 Um problema no uso do R2 como medida da qualidade de um modelo de regressão é que ele é não decrescente no número de variáveis explicativas. Ou seja, à medida que colocamos mais variáveis explicativas, o R2 aumenta (ou pelo menos, não decresce). Por que? 2 SS Re g SS Re g RSS ∑ εˆi = = 1− = 1− R = 2 SST SYY SYY ∑ ( yi − y ) 2 O denominador nesta última expressão (SYY) não depende do número de variáveis explicativas, mas o numerador depende. À medida que aumentamos o número de regressores, RSS tende a cair (ou pelo menos ficar igual), e assim, R2 tende a crescer quando adicionamos mais regressores ao modelo. Então, para comparar dois modelos para a MESMA variável dependente que tenham número de regressores diferentes, faz sentido “penalizar” o R2 à medida que aumentamos o número de variáveis explicativas. Isso nos leva à definição do R2 ajustado. Definição 5.1. (R2 ajustado) R 2 adj = 1 − RSS /(n − k ) SYY /(n − 1) (14) Onde k é o número de parâmetros num modelo com (k-1) variáveis explicativas (e um termo constante) e n é o número de observações. Por que falamos em R2 “ajustado”? Porque as somas dos quadrados que originalmente aparecem na definição do R2 são ajustadas pelos seus graus de liberdade. A RSS está associada a (n-k) graus de liberdade, pois o modelo tem k parâmetros, significando que “perdemos” k graus de liberdade em relação ao número de observações original. SYY está associada a (n-1) graus de liberdade, pois podemos interpretá-la como a soma de quadrados dos resíduos de um modelo constante (só um parâmetro), e então perde-se 1 grau de liberdade apenas. Podemos reescrever o R2 ajustado em termos de estimadores da variância. Note que: ˆ σ2 = RSS SYY é o estimador da variância do erro e SY2 = é a variância amostral dos Y’s. n−k n −1 Relação entre R2 e o R2 ajustado Com um pouco de álgebra é fácil mostrar que: Professora Mônica Barros ENCE
  • 11. 23 Econometria – Semestre 2010.01 ( R 2 adj = 1 − 1 − R 2 n −1 )n − k Para k > 1, o R2 ajustado é menor que o R2. Também, o R2 ajustado pode ser negativo, o que não ocorre com o R2 “usual”. Note que se R2 = 1, este também será o valor do R2 ajustado. Se R2 = 0, o R2 ajustado será negativo se k >1. No exemplo 4.1. note que o R2 ajustado é R-Sq(adj) = 58,2%, menor que o R2 (58,5%). A diferença é pequena pois neste caso n-1 = 281 e n-3 = 279. Cuidados ao usar o R2 e o R2 ajustado Ao comparar dois modelos através do R2 e do R2 ajustado, é preciso ter em mente que: • A variável explicativa deve ser a mesma nos 2 modelos. Não se pode comparar desta forma um modelo para Y e outro para ln(Y), por exemplo; • O número de observações (n) deve ser o mesmo nos 2 modelos. Professora Mônica Barros ENCE