SlideShare uma empresa Scribd logo
REGRESSÃO LINEAR
Parte I
Vitor Vieira Vasconcelos
Flávia da Fonseca Feitosa
BH1350 – Métodos e Técnicas de Análise da Informação para o Planejamento
Julho de 2017
Conteúdo
• Revisão
 Modelos
 Correlação
 Teste de Significância
• Regressão Linear
 Estimação dos parâmetros
 Avaliação do ajuste do modelo
 Interpretação dos resultados
Leitura de Referência
Capítulo 5
Regressão
(p. 156-168)
Inferência Estatística se
resumindo a uma equação…
Saídai = (Modeloi) + erroi
Ou seja, os dados que observamos podem ser
previstos pelo modelo que escolhemos para
ajustar os dados mais um erro
Média como um modelo estatístico
Uma maneira útil de descrever um grupo como
um todo:
• Qual é a renda média das famílias residentes na
Mooca?
• Qual é a altura média dos edifícios em São
Caetano?
• Qual é o PIB médio dos municípios localizados
no arco do desmatamento?
Para além de médias… Modelos Lineares
 São modelos baseados sobre uma linha reta,
utilizados para representar a relação entre variáveis
 Ou seja, geralmente estamos tentando resumir as
RELAÇÕES observadas a partir de nossos dados
observados em termos de uma linha reta.
ConsumodeÁguaper
Capita(m3/dia/ano)
Renda per Capita (R$)
RELAÇÃO ENTRE
CONSUMO DE ÁGUA E
RENDA
CORRELAÇÃO
É uma medida do relacionamento linear
entre duas variáveis
Duas variáveis podem estar:
(a)Positivamente relacionadas 
quando maior a renda, maior o consumo de água
(b)Negativamente relacionadas 
quanto maior a renda, menor o consumo de água
(c)Não há relação entre as variáveis
Correlação de Pearson
Medida padronizada da correlação entre variáveis
Valor de r situa-se entre -1 e +1
r = +1  duas variáveis estão perfeitamente correlacionadas de forma positiva
(se uma aumenta, a outra aumenta proporcionalmente)
r = -1  relacionamento negativo perfeito (se uma aumenta, a outra diminui
em valor proporcional
r = 0  indica ausência de relacionamento linear
COEFICIENTE DE CORRELAÇÃO DE PEARSON
Teste de Significância do r de Pearson
Para testar a significância do r, calculamos uma estatística
teste conhecida como “razão t”, com graus de liberdade
igual a N-2.
Olhar na tabela o valor crítico de t, com graus de liberdade
“N-2” e α=0,05
Se tcalculado > tcrítico, podemos rejeitar a hipótese nula de que
ρ=0.
Neste caso, os graus de
liberdade indicam o quão
próxima a distribuição t está da
distribuição normal. Qto maior,
mais póximo da dist. normal.
ANÁLISE DE REGRESSÃO
CORRELAÇÃO: Indica a força e a direção do
relacionamento linear entre duas variáveis
aleatórias
Vamos avançar um passo:
Obter uma equação matemática que
descreva a relação entre duas ou mais
variáveis.
Esta é a essência da
(Lembrando que não estamos lidando com relações de causa-efeito)
Análise de regressão é uma ferramenta estatística
que permite explorar e inferir a relação de uma
variável dependente (Y  variável resposta/
dependente/ saída) com variáveis independentes
específicas (X  variáveis indicadoras/ previsoras/
explicativas/ independentes).
Y = aX + b
NETER J. et al. Applied Linear Statistical Models. Boston, MA: McGraw-Hill, 1996.
ANÁLISE DE REGRESSÃO
 Criminalidade (+) X Renda (-), Investimentos (-)
 Longevidade (+) X Escolaridade (+), Renda (+)
 Consumo de Água (+) X Renda per Capita (+)
 Outros exemplos? ...
Exemplo
1. Determinar como duas ou mais variáveis se
relacionam.
2. Estimar a função que determina a relação entre
duas variáveis.
3. Usar a equação para projetar/estimar valores da
variável dependente.
Lembrete importante: A existência de uma relação
estatística entre a variável resposta Y e a variável
explicativa X não implica na existência de uma relação
causal entre elas.
Objetivos da Análise de Regressão
Os dados para a análise de regressão são da forma:
(x1, y1), (x2, y2), ..., (xi, yi), ... (xn, yn)
Com os dados constrói-se o diagrama de dispersão.
Este deve exibir uma tendência linear para que se
possa usar a regressão linear.
Ou seja, o diagrama permite decidir empiricamente
se um relacionamento linear entre X e Y deve ser
assumido.
Diagrama de Dispersão
Sugerem uma regressão/relação linear.
Assim, a relação entre as variáveis poderá ser
descrita por uma equação linear.
Diagrama de Dispersão
Sugerem uma regressão/relação não linear.
Assim, a relação entre as variáveis poderá ser
descrita por uma equação não linear.
(ou podemos verificar a possibilidade de “linearizar” a relação
através de transformações nas variáveis)
Diagrama de Dispersão
Por análise do diagrama de dispersão pode-se também
concluir (empiricamente) se o grau de relacionamento
linear entre as variáveis é forte ou fraco, conforme o
modo como se situam os pontos ao redor de uma reta
imaginária que passa através da concentração de pontos.
Diagrama de Dispersão
Diagrama de Dispersão
Existência de correlação
linear positiva: em
média, quanto maior o X,
maior será o Y
Existência de correlação
linear negativa: em
média, quanto maior o
X, menor será o Y
Um modelo de regressão contendo somente
uma variável preditora (X) é denominado
modelo de regressão simples.
Um modelo com mais de uma variável
preditora (X) é denominado
modelo de regressão múltiplo.
Modelos de Regressão
onde:
Yi é o valor da variável resposta na i-ésima observação;
β0 e β1 são parâmetros;
Xi é uma constante conhecida; é o valor da variável
preditora na i-ésima observação;
ξi é um termo de erro aleatório com média zero e variância
constante σ2 (E(ξi)=0 e σ2 (ξi)= σ2 )
ξi e ξj são não correlacionados (independentes) para i j
(σ2 (ξi,ξj)= 0 )
Regressão Linear Simples
Saídai = (Modeloi) + erroi
Lembrando:
Yi
ξi
X
Y
β0
β1
Coeficiente
angular
µY = E(Y) = β0 + β1 X
Inclinação
Populacional
Intercepto
Populacional
Erro
Aleatório
Variável Preditora
Variável
Resposta Yi=β0+β1Xi +εi
Ŷi=b0+b1Xi
εi =Yi-Ŷi
Modelo estimado
Resíduo
Regressão Linear Simples
Os parâmetros β0 e β1 são denominados coeficientes de
regressão:
1. β1 é a inclinação da reta de regressão. Ela indica a mudança
na média de Y quando X é acrescido de uma unidade.
2. β0 é o intercepto em Y da equação de regressão (é o valor de
Y quando X = 0.)
β0 só tem significado se o modelo incluir X = 0.
Significado de β0 e β1
0β
1β
Y
X
0
β0
θ
x x+1
∆x=1
∆y
yi = β0 + β1xi
x
y
∆
∆
=1β
β0 (intercepto): quando a região experimental inclui X=0, β0 é o valor da
média da distribuição de Y em X=0, cc, não tem significado prático como um
termo separado (isolado) no modelo;
β1 (inclinação): expressa a taxa de mudança em Y, isto é, é a mudança em Y
quando ocorre a mudança de uma unidade em X. Ele indica a mudança na
média da distribuição de probabilidade de Y por unidade de acréscimo em X.
Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
Como encontrar a “linha” que
melhor se ajusta aos nossos dados?
Ou seja:
Como estimar os valores de β0 e β1?
Yi
ξi
X
Y
β0
β1
Coeficiente
angular
Y = β0 + β1 X
Em geral não se conhece os valores de β0 e β1 .
Eles podem ser estimados através de dados obtidos por
amostras.
O método utilizado na estimação dos parâmetros é o
método dos mínimos quadrados, o qual considera os
desvios dos Yi de seu valor esperado (E(Yi )):
ξi = Yi – (β0 + β1 Xi)
Estimação dos Parâmetros
Ŷi
Ŷi=b0+b1Xi
εi =Yi-Ŷi
Em particular, o método dos mínimos
quadrados requer que a soma dos n desvios
quadrados, denotado por Q, seja mínima:
2
10
1
][ ii
n
i
XYQ ββ −−= ∑=
Estimação dos Parâmetros
Procedimento matemático para minimizar Q (soma dos desvios
quadrados):
(1) Q deve ser derivado em relação a β0 e β1:
(1) Com derivadas parciais igualadas à zero, obtêm-se os valores
estimados de β0 e β1:
∑
∑
=
=
−
−−
= n
i
i
n
i
ii
XX
YYXX
1
2
1
1
)(
))((
ˆβ
XY 10 ˆˆ ββ −=
∑
∑
=
∂
∂
=
∂
∂
−−−=
−−−=
n
i
iii
Q
n
i
ii
Q
XYX
XY
1
10
1
10
)(2
)(2
1
0
ββ
ββ
β
β
Estimação dos Parâmetros
Os estimadores β0 e β1 possuem distribuição
normal e intervalos de confiança com uma
distribuição t, com n-2 graus de liberdade
Derivação
1ˆβ
Q
Correlação linear
 Não determina causalidade,
mas pode dar pistas.
 Pode ser testada
estatisticamente.
 Identifica se duas variáveis se
relacionam de forma linear.
 Determina o quão mais
próximo de uma reta é a
relação entre as variáveis.
 0: não há relação linear
 1: relação linear perfeita
 Não indica o quanto uma
variável pode estar
influenciando a outra.
Regressão linear
 Não determina causalidade,
mas pode dar pistas.
 Pode ser testada
estatisticamente
 Determina uma relação
linear entre duas variáveis.
 Traz elementos que
permitem fazer predições.
 Identifica o quanto uma
variável afeta a outra.
 Necessita de uma análise dos
resíduos para decidir sobre
sua adequação.
Slides: Marcos Pó
Correlação vs. Regressão
Como avaliar o quão bem nossa
“linha” adere aos dados?
Ou seja:
Como avaliar a qualidade de ajuste
do modelo?
Análise da Variância da Regressão
Análise da Variância da Regressão
Desvio Total
Diferença entre dados
observados (Yi) e média de Y
Desvio não Explicado pelo Modelo
Diferença entre dados observados (Yi)
e o modelo (linha de regressão)
Desvio Explicado Pelo Modelo
Diferença entre média de Y e
Modelo (linha de regressão)
Desvio Total = Desvio Explicado pelo Modelo + Desvio Não Explicado pelo Modelo
Ŷi
Análise da Variância da Regressão
)ˆ()ˆ( YYYYYY iii −+−=−
Elevando-se ao quadrado os dois lados da igualdade e fazendo-se
a soma para todas as observações de uma determinada amostra
tem-se que:
Soma dos quadrados
total (SQT)
Soma dos quadrados
do modelo (SQM)
Soma dos quadrados
residual (SQR)
Desvio
Total Desvio Explicado
pelo Modelo
Desvio Não-explicado
pelo Modelo
Inferência: Análise da Variância
Se SQT=0, então todas as
observações Y são iguais.
Quanto maior for SQT,
maior será a variação entre
os Y’s.
SQT é uma medida da
variação dos Y’s quando
não se leva em
consideração a variável
independente X.
Se SQR = 0, então as
observações caem na
linha de regressão.
Quanto maior SQR,
maior será a variação
das observações Y
ao redor da linha de
regressão.
Se a linha de regressão
for horizontal, de modo
que então
SQM = 0.
0
^
=−
−
YYi
Particionando a Soma dos Quadrados
SQT SQM SQR
SQTotal = SQModelo + SQResíduos.
Um modo de se saber quão útil será a linha de
regressão para a predição é verificar quanto da SQT
está na SQM e quanto está na SQR.
Idealmente, gostaríamos que SQM fosse muito maior
que SQR.
Gostaríamos, portanto, que fosse próximo de 1.
SQT
SQM
Particionando a Soma dos Quadrados
Uma medida do efeito de X em reduzir a
variabilidade do Y é:
Note que: 0 ≤ R2 ≤ 1
R2 é denominado coeficiente de determinação. Em
um modelo de regressão simples, o coeficiente de
determinação é o quadrado do coeficiente de
correlação de Pearson (r) entre Y e X. Note que em
um modelo de regressão simples
SQT
SQR
1
SQT
SQR-SQT
SQT
SQM2
−===R
112
≤≤−⇒±= rRr
Coeficiente de Determinação
SQTotal = SQModelo + SQResíduos
Temos dois casos extremos:
R2 = 1 todas as observações caem na linha de
regressão ajustada. A variável preditora X explica
toda a variação nas observações.
R2 = 0 isto ocorre quando b1 = 0. Não existe
relação linear em Y e X. A variável X não ajuda a
explicar a variação dos Yi .
Coeficiente de Determinação
Outra maneira de avaliar o modelo
utilizando a soma dos quadrados é por
meio do Teste F
O Teste F tem por base a razão F, que é a razão
de melhoria devida ao modelo e a diferença
entre o modelo e os dados observados
A razão F é uma medida do quanto o modelo
melhorou na previsão de valores comparado
com o nível de não precisão do modelo
Graus de
Liberdade
(df)
Soma dos
quadrados
(SQ)
Quadrado
médio
QM=SQ/df
Razão da
variância (F)
Regressão(X)
Resíduo
1 (p-1)
28 (n-p)
SQT-SQR=
SQM= 6394.02
SQR=8393.44
6394.02
(QMModelo)
299.77
(QMResíduo)
21.33 (p<0.001)
Total 29 (n-1) SQT = 14787.46
43.0
46.14787
02.63942
==
−
=
SQT
SQRSQT
R
Tabela ANOVA - F
Graus de
Liberdade
(df)
Soma dos
quadrados
(SQ)
Quadrado
médio
QM=SQ/df
Razão da
variância (F)
Regressão(X)
Resíduo
1 (p-1)
28 (n-p)
SQT-SQR=
SQM= 6394.02
SQR=8393.44
6394.02
(QMModelo)
299.77
(QMResíduo)
21.33(p<0.001)
Total 29 (n-1) SQT = 14787.46
43.0
46.14787
02.63942
==
−
=
SQT
SQRSQT
R
Tabela ANOVA - F
Importante Lembrar!
A razão F é uma medida do quanto o
modelo melhorou na previsão de
valores comparado com o nível de
não precisão do modelo
Um bom modelo deverá ter
uma razão F grande
0:
0ˆ...ˆˆ: 210
≠
===
jdosummenospeloexisteH
H
a
k
β
βββ
onde Fc ~ F p-1, n-p
Se F*> F (α; p-1,n-p), rejeitamos a hipótese nula, caso contrário,
aceitamos a hipótese.
Inferência: Teste F
(Adequação Global)
-∞ +∞0 t1-a/2;n-2
tn-2
-t1-a/2;n-2
1 α−
a/2a/2
1. Construir intervalos de confiança para :
2. Teste de hipótese para :
0ˆ:
0ˆ:
1
10
≠
=
β
β
aH
H
Se = 0 , significa que não há correlação entre X e Y.
Rejeitar , significa que o modelo que inclui X é melhor do que o
modelo que não inclui X, mesmo que a linha reta não seja a relação mais
apropriada.
1ˆβTestando se a inclinação é zero.
0H
Inferência: Significância de b
1. Construir intervalos de confiança para:1ˆβ
∑
∑
=
=
−
−−
= n
i
i
n
i
ii
XX
YYXX
1
2
1
1
)(
))((
ˆβ
Média:
Variância
estimada: ( )∑
= −
2)ˆ( 1
2
XX
QMR
i
s β
).2(~
)ˆ(
ˆ
1
11
−
−
nt
s β
ββ
Distribuição da estatística studentizada (σ é desconhecido)
Intervalo de confiança
)ˆ()2;2/1(ˆ
11 βαβ snt −−±
Inferência
2. Teste estatístico formal: feito de maneira padrão
usando a distribuição de Student
-∞ +∞0 t1-α/2;n-2
tn-2
-t1-α/2;n-2
1 α−
α/2α/2
)ˆ(
ˆ
*
1
1
β
ββ
s
t
esperado−
=
0
*
0
*
Hrejeita),2;2/1(||
Hrejeitanão),2;2/1(||
−−>
−−≤
nttSe
nttSe
α
α
Inferência
)ˆ(
ˆ
*
1
1
β
β
s
t =
Qual a probabilidade de que
t* tenha ocorrido por acaso
se o valor de b1 fosse de fato zero?
Se esse valor (significância) for
menor do que 0,05 (5%), b1 é
significativamente diferente de zero
0ˆ:
0ˆ:
1
10
≠
=
β
β
aH
H
0:H
0:H
01
00
≠
=
β
β
Se a hipótese nula H0= 0 não for rejeitada, pode-se
excluir a constante do modelo, já que a reta inclui a
origem.
0
ˆβDe forma semelhante testamos se é zero
Inferência
Executando uma Regressão
Simples no SPSS
Regressão Simples no SPSS
1. No SPSS, abra o arquivo
“Agua2010_SNIS.sav”
1. Vá em Analisar >
Regressão > Linear
(Analyze > Regression > Linear )
Selecione a variável “dependente” e
“independente”
Existe uma variedade de opções disponíveis, mas
serão exploradas no contexto da regressão múltipla.
Ajuste Global do Modelo
Resumo do Modelo
R = 0,601  Como temos apenas um previsor, este valor representa a
correlação simples entre Y (renda) e X (consumo).
R2 = 0,362  Coeficiente de Determinação. Nos informa que nosso modelo
consegue explicar 36,2% da variação do consumo de água. Devem existir
muitos fatores que podem explicar esta variação, mas nosso modelo, que
inclui somente a renda per capita, pode explicar 36,2% dela. No entanto, 63,8%
da variação do consumo de água não pode ser explicada pela variação da
renda per capita.
Ajuste Global do Modelo
Análise de Variância
Soma dos Quadrados do Modelo (SQM), Soma dos Quadrados dos Resíduos
(SQR) e Soma dos Quadrados Total (SQT)
Lembrando: SQT = SQM + SQR
Razão F = Quadrado Médio do Modelo / Quadrado Médio do Resíduo
Razão F = 2499,709 (É um número bem grande!!! O que isso significa?)
Ajuste Global do Modelo
Análise de Variância
Para estes dados, F é 2499.709, que é significativo ao nível de p<0,001 (pois o
valor na coluna Sig. é menor do que 0,001)
Esse resultado nos informa que existe uma probabilidade menor do que 0,1%
de que um valor F tão alto tenha ocorrido apenas por acaso. Ou seja, pode-se
concluir que nosso modelo de regressão representa melhor o consumo de
água do que se tivéssemos usado apenas o valor médio do consumo.
Parâmetros do Modelo
A análise de variância apresentada na tabela ANOVA nos informa se o
modelo, em geral, resulta em um grau de previsão significativamente bom
dos valores da variável de saída (no caso, consumo de água). No entanto, a
ANOVA não nos informa sobre a contribuição individual das variáveis no
modelo (embora neste caso simples exista uma única variável X no modelo
e, assim, podemos inferir que esta variável é um bom previsor.)
A tabela dos coeficientes fornece detalhes dos parâmetros do modelo (os
valores beta) e da significância desses valores.
Parâmetros do Modelo
b0= intercepto y (ponto onde a linha corta o eixo y)  b0= 4,252 (Valor que Y
assume quando X=0)
b1= inclinação reta de regressão  Mudança da variável de saída (Y) para cada
alteração de uma unidade no previsor (X)
b1= 0,041  Em média, um aumento de R$ 1 na renda per capita, está
relacionado a um aumento de 0,041 m3/ano de consumo de água (41 litros/ano)
Esta variável preditora (renda) está tendo impacto?
Parâmetros do Modelo
Esta variável preditora (renda) está tendo impacto?
Para isso, b1 deve ser diferente de zero!!! O teste t nos informa se b1 difere de
zero.
Em “Sig.” temos a probabilidade de que o valor de t ocorra se o valor de b é zero.
Se esta probabilidade é menor do 0,05 (5%) aceita-se que o resultado reflete um
efeito genuíno, não é fruto do acaso.
Como as probabilidades são próximas de 0,000 (zero até a terceira casa),
podemos dizer que a esta probabilidade é menor do que 0,001 (p<0,001).
Concluímos que a renda tem uma contribuição significativa (p<0,001) na
explicação da variação do consumo de água.

Mais conteúdo relacionado

Mais procurados

Testes parametricos e nao parametricos
Testes parametricos e nao parametricosTestes parametricos e nao parametricos
Testes parametricos e nao parametricosRosario Cação
 
Modelo de regressão linear: aspectos teóricos e computacionais
Modelo de regressão linear: aspectos teóricos e computacionais Modelo de regressão linear: aspectos teóricos e computacionais
Modelo de regressão linear: aspectos teóricos e computacionais Rodrigo Rodrigues
 
amostragem
amostragemamostragem
amostragemsocram01
 
Teste de hipoteses
Teste de hipotesesTeste de hipoteses
Teste de hipoteseszimbu
 
Análise de Componentes Principais
Análise de Componentes PrincipaisAnálise de Componentes Principais
Análise de Componentes PrincipaisCélia M. D. Sales
 
Econometria modelos de_regressao_linear
Econometria modelos de_regressao_linearEconometria modelos de_regressao_linear
Econometria modelos de_regressao_linearJoevan Santos
 
Diagnósticos do Modelo Clássico de Regressão Linear
Diagnósticos do Modelo Clássico de Regressão LinearDiagnósticos do Modelo Clássico de Regressão Linear
Diagnósticos do Modelo Clássico de Regressão LinearFelipe Pontes
 
Introdução à Regressão Linear Simples e Múltipla
Introdução à Regressão Linear Simples e MúltiplaIntrodução à Regressão Linear Simples e Múltipla
Introdução à Regressão Linear Simples e MúltiplaCélia M. D. Sales
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoAntonio Mankumbani Chora
 

Mais procurados (20)

Testes parametricos e nao parametricos
Testes parametricos e nao parametricosTestes parametricos e nao parametricos
Testes parametricos e nao parametricos
 
Modelo de regressão linear: aspectos teóricos e computacionais
Modelo de regressão linear: aspectos teóricos e computacionais Modelo de regressão linear: aspectos teóricos e computacionais
Modelo de regressão linear: aspectos teóricos e computacionais
 
Correlação
CorrelaçãoCorrelação
Correlação
 
amostragem
amostragemamostragem
amostragem
 
Teste de hipoteses
Teste de hipotesesTeste de hipoteses
Teste de hipoteses
 
Estatistica resumo
Estatistica   resumoEstatistica   resumo
Estatistica resumo
 
Testes de hipóteses
Testes de hipótesesTestes de hipóteses
Testes de hipóteses
 
Prática de Regressão no SPSS
Prática de Regressão no SPSSPrática de Regressão no SPSS
Prática de Regressão no SPSS
 
Aula 01 introdução a estatística
Aula 01   introdução a estatísticaAula 01   introdução a estatística
Aula 01 introdução a estatística
 
Análise de Componentes Principais
Análise de Componentes PrincipaisAnálise de Componentes Principais
Análise de Componentes Principais
 
Econometria modelos de_regressao_linear
Econometria modelos de_regressao_linearEconometria modelos de_regressao_linear
Econometria modelos de_regressao_linear
 
Diagnósticos do Modelo Clássico de Regressão Linear
Diagnósticos do Modelo Clássico de Regressão LinearDiagnósticos do Modelo Clássico de Regressão Linear
Diagnósticos do Modelo Clássico de Regressão Linear
 
Introdução à Regressão Linear Simples e Múltipla
Introdução à Regressão Linear Simples e MúltiplaIntrodução à Regressão Linear Simples e Múltipla
Introdução à Regressão Linear Simples e Múltipla
 
Regressao linear multipla
Regressao linear multiplaRegressao linear multipla
Regressao linear multipla
 
Estatística Descritiva
Estatística DescritivaEstatística Descritiva
Estatística Descritiva
 
02 tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA
02   tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA02   tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA
02 tópico 1 - regressão linear simples 01 - Econometria - Graduação - UFPA
 
Teoria da Amostragem - Profa. Rilva - GESME
Teoria da Amostragem - Profa. Rilva - GESMETeoria da Amostragem - Profa. Rilva - GESME
Teoria da Amostragem - Profa. Rilva - GESME
 
Distribuição binomial, poisson e hipergeométrica - Estatística I
Distribuição binomial, poisson e hipergeométrica - Estatística IDistribuição binomial, poisson e hipergeométrica - Estatística I
Distribuição binomial, poisson e hipergeométrica - Estatística I
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formando
 
Aula 12 intervalo de confiança
Aula 12   intervalo de confiançaAula 12   intervalo de confiança
Aula 12 intervalo de confiança
 

Semelhante a Regressão Linear I

Apostila regressao linear
Apostila regressao linearApostila regressao linear
Apostila regressao linearcoelhojmm
 
Apostila de metodos_quantitativos_-_prof._joao_furtado
Apostila de metodos_quantitativos_-_prof._joao_furtadoApostila de metodos_quantitativos_-_prof._joao_furtado
Apostila de metodos_quantitativos_-_prof._joao_furtadoWannessa Souza
 
AMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptxAMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptxNunoSilva599593
 
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...Daniel Brandão de Castro
 
5.1 correlaoduasvariaveis 1_20151006145332
5.1 correlaoduasvariaveis 1_201510061453325.1 correlaoduasvariaveis 1_20151006145332
5.1 correlaoduasvariaveis 1_20151006145332Samuel Ferreira da Silva
 
Universidade Privada de Angola bioestatistica.pdf
Universidade Privada de Angola bioestatistica.pdfUniversidade Privada de Angola bioestatistica.pdf
Universidade Privada de Angola bioestatistica.pdfamaroalmeida74
 
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...Kleverton Saath
 
IESB Logística Empresarial - Métodos Quantitativos - Volume III (incompleta)
IESB Logística Empresarial - Métodos Quantitativos - Volume III (incompleta)IESB Logística Empresarial - Métodos Quantitativos - Volume III (incompleta)
IESB Logística Empresarial - Métodos Quantitativos - Volume III (incompleta)Rafael José Rorato
 
Ap 6 Correlação Linear.pdf
Ap 6 Correlação Linear.pdfAp 6 Correlação Linear.pdf
Ap 6 Correlação Linear.pdfHelcioSuguiyama2
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptssuser2b53fe
 
SIF - Sistemas de Informacao e Regressao Linear
SIF - Sistemas de Informacao e Regressao LinearSIF - Sistemas de Informacao e Regressao Linear
SIF - Sistemas de Informacao e Regressao LinearTiago Antônio da Silva
 

Semelhante a Regressão Linear I (20)

Regressao
RegressaoRegressao
Regressao
 
Aula13-15.pdf
Aula13-15.pdfAula13-15.pdf
Aula13-15.pdf
 
Unidade 5 - estastitica
Unidade 5 - estastiticaUnidade 5 - estastitica
Unidade 5 - estastitica
 
Apostila regressao linear
Apostila regressao linearApostila regressao linear
Apostila regressao linear
 
Regressao linear
Regressao linearRegressao linear
Regressao linear
 
Apostila de metodos_quantitativos_-_prof._joao_furtado
Apostila de metodos_quantitativos_-_prof._joao_furtadoApostila de metodos_quantitativos_-_prof._joao_furtado
Apostila de metodos_quantitativos_-_prof._joao_furtado
 
Regressão aula
Regressão aulaRegressão aula
Regressão aula
 
AMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptxAMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptx
 
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
 
5.1 correlaoduasvariaveis 1_20151006145332
5.1 correlaoduasvariaveis 1_201510061453325.1 correlaoduasvariaveis 1_20151006145332
5.1 correlaoduasvariaveis 1_20151006145332
 
Universidade Privada de Angola bioestatistica.pdf
Universidade Privada de Angola bioestatistica.pdfUniversidade Privada de Angola bioestatistica.pdf
Universidade Privada de Angola bioestatistica.pdf
 
Bioestatística
 Bioestatística Bioestatística
Bioestatística
 
Introdução à Regressão Linear
Introdução à Regressão LinearIntrodução à Regressão Linear
Introdução à Regressão Linear
 
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
 
IESB Logística Empresarial - Métodos Quantitativos - Volume III (incompleta)
IESB Logística Empresarial - Métodos Quantitativos - Volume III (incompleta)IESB Logística Empresarial - Métodos Quantitativos - Volume III (incompleta)
IESB Logística Empresarial - Métodos Quantitativos - Volume III (incompleta)
 
Ap 6 Correlação Linear.pdf
Ap 6 Correlação Linear.pdfAp 6 Correlação Linear.pdf
Ap 6 Correlação Linear.pdf
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
 
analise estatistica: Correlacao canonica
analise estatistica: Correlacao canonicaanalise estatistica: Correlacao canonica
analise estatistica: Correlacao canonica
 
SIF - Sistemas de Informacao e Regressao Linear
SIF - Sistemas de Informacao e Regressao LinearSIF - Sistemas de Informacao e Regressao Linear
SIF - Sistemas de Informacao e Regressao Linear
 
04 tópico 3 - regressão multipla
04   tópico 3 - regressão multipla04   tópico 3 - regressão multipla
04 tópico 3 - regressão multipla
 

Mais de Vitor Vieira Vasconcelos

Relationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversityRelationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversityVitor Vieira Vasconcelos
 
Análise espacial de doenças transmissíveis
Análise espacial de doenças transmissíveisAnálise espacial de doenças transmissíveis
Análise espacial de doenças transmissíveisVitor Vieira Vasconcelos
 
Fishbanks! Jogo de simulação de gestão de recursos renováveis
Fishbanks! Jogo de simulação de gestão de recursos renováveisFishbanks! Jogo de simulação de gestão de recursos renováveis
Fishbanks! Jogo de simulação de gestão de recursos renováveisVitor Vieira Vasconcelos
 
Regimes de Apropriação de Recursos Naturais
Regimes de Apropriação de Recursos NaturaisRegimes de Apropriação de Recursos Naturais
Regimes de Apropriação de Recursos NaturaisVitor Vieira Vasconcelos
 
Relações entre sistemas naturais e sociais
Relações entre sistemas naturais e sociaisRelações entre sistemas naturais e sociais
Relações entre sistemas naturais e sociaisVitor Vieira Vasconcelos
 
Recursos Naturais e Serviços Ecossistêmicos
Recursos Naturais e Serviços EcossistêmicosRecursos Naturais e Serviços Ecossistêmicos
Recursos Naturais e Serviços EcossistêmicosVitor Vieira Vasconcelos
 
Bases teóricas e conceituais do Planejamento e da Política Ambiental
Bases teóricas e conceituais do Planejamento e da Política AmbientalBases teóricas e conceituais do Planejamento e da Política Ambiental
Bases teóricas e conceituais do Planejamento e da Política AmbientalVitor Vieira Vasconcelos
 
Operações com dados espaciais (Vetor) em R
Operações com dados espaciais (Vetor) em ROperações com dados espaciais (Vetor) em R
Operações com dados espaciais (Vetor) em RVitor Vieira Vasconcelos
 

Mais de Vitor Vieira Vasconcelos (20)

Relationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversityRelationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversity
 
Análise espacial de doenças transmissíveis
Análise espacial de doenças transmissíveisAnálise espacial de doenças transmissíveis
Análise espacial de doenças transmissíveis
 
Fishbanks! Jogo de simulação de gestão de recursos renováveis
Fishbanks! Jogo de simulação de gestão de recursos renováveisFishbanks! Jogo de simulação de gestão de recursos renováveis
Fishbanks! Jogo de simulação de gestão de recursos renováveis
 
Regimes de Apropriação de Recursos Naturais
Regimes de Apropriação de Recursos NaturaisRegimes de Apropriação de Recursos Naturais
Regimes de Apropriação de Recursos Naturais
 
Recursos Comuns e Tragédia dos Comuns
Recursos Comuns e Tragédia dos ComunsRecursos Comuns e Tragédia dos Comuns
Recursos Comuns e Tragédia dos Comuns
 
Relações entre sistemas naturais e sociais
Relações entre sistemas naturais e sociaisRelações entre sistemas naturais e sociais
Relações entre sistemas naturais e sociais
 
Valoração de Serviços Ecossistêmicos
Valoração de Serviços EcossistêmicosValoração de Serviços Ecossistêmicos
Valoração de Serviços Ecossistêmicos
 
Recursos Naturais e Serviços Ecossistêmicos
Recursos Naturais e Serviços EcossistêmicosRecursos Naturais e Serviços Ecossistêmicos
Recursos Naturais e Serviços Ecossistêmicos
 
Bases teóricas e conceituais do Planejamento e da Política Ambiental
Bases teóricas e conceituais do Planejamento e da Política AmbientalBases teóricas e conceituais do Planejamento e da Política Ambiental
Bases teóricas e conceituais do Planejamento e da Política Ambiental
 
Planejamento territorial
Planejamento territorialPlanejamento territorial
Planejamento territorial
 
Coremática e Mapeamento Participativo
Coremática e Mapeamento ParticipativoCoremática e Mapeamento Participativo
Coremática e Mapeamento Participativo
 
Cartografia Social
Cartografia SocialCartografia Social
Cartografia Social
 
MIgrações
MIgraçõesMIgrações
MIgrações
 
Conflitos fundiários
Conflitos fundiáriosConflitos fundiários
Conflitos fundiários
 
Conflitos Territoriais
Conflitos TerritoriaisConflitos Territoriais
Conflitos Territoriais
 
Chácara Baronesa - Haras São Bernardo
Chácara Baronesa - Haras São BernardoChácara Baronesa - Haras São Bernardo
Chácara Baronesa - Haras São Bernardo
 
Governo e Território
Governo e TerritórioGoverno e Território
Governo e Território
 
Segregação e Interação Territorial
Segregação e Interação TerritorialSegregação e Interação Territorial
Segregação e Interação Territorial
 
Território e Poder
Território e PoderTerritório e Poder
Território e Poder
 
Operações com dados espaciais (Vetor) em R
Operações com dados espaciais (Vetor) em ROperações com dados espaciais (Vetor) em R
Operações com dados espaciais (Vetor) em R
 

Último

Apresentação de vocabulário fundamental em contexto de atendimento
Apresentação de vocabulário fundamental em contexto de atendimentoApresentação de vocabulário fundamental em contexto de atendimento
Apresentação de vocabulário fundamental em contexto de atendimentoPedroFerreira53928
 
Evangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdfEvangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdfPastor Robson Colaço
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assisbrunocali007
 
Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-carloseduardogonalve36
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - FalamansaMary Alvarenga
 
Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40vitoriaalyce2011
 
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxSão Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxMartin M Flynn
 
Poema - Reciclar é preciso
Poema            -        Reciclar é precisoPoema            -        Reciclar é preciso
Poema - Reciclar é precisoMary Alvarenga
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxLuizHenriquedeAlmeid6
 
América Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados NacionaisAmérica Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados NacionaisValéria Shoujofan
 
Exercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfExercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfRILTONNOGUEIRADOSSAN
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfManuais Formação
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilMariaHelena293800
 
hereditariedade é variabilidade genetic
hereditariedade é variabilidade  genetichereditariedade é variabilidade  genetic
hereditariedade é variabilidade geneticMrMartnoficial
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfrarakey779
 
Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Rosana Andrea Miranda
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxGraycyelleCavalcanti
 
Recurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/AcumuladorRecurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/AcumuladorCasa Ciências
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptxlucioalmeida2702
 
Junho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na IgrejaJunho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na IgrejaComando Resgatai
 

Último (20)

Apresentação de vocabulário fundamental em contexto de atendimento
Apresentação de vocabulário fundamental em contexto de atendimentoApresentação de vocabulário fundamental em contexto de atendimento
Apresentação de vocabulário fundamental em contexto de atendimento
 
Evangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdfEvangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdf
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
 
Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - Falamansa
 
Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40
 
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxSão Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
 
Poema - Reciclar é preciso
Poema            -        Reciclar é precisoPoema            -        Reciclar é preciso
Poema - Reciclar é preciso
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
 
América Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados NacionaisAmérica Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados Nacionais
 
Exercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfExercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdf
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantil
 
hereditariedade é variabilidade genetic
hereditariedade é variabilidade  genetichereditariedade é variabilidade  genetic
hereditariedade é variabilidade genetic
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
 
Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptx
 
Recurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/AcumuladorRecurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/Acumulador
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptx
 
Junho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na IgrejaJunho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na Igreja
 

Regressão Linear I

  • 1. REGRESSÃO LINEAR Parte I Vitor Vieira Vasconcelos Flávia da Fonseca Feitosa BH1350 – Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2017
  • 2. Conteúdo • Revisão  Modelos  Correlação  Teste de Significância • Regressão Linear  Estimação dos parâmetros  Avaliação do ajuste do modelo  Interpretação dos resultados
  • 3. Leitura de Referência Capítulo 5 Regressão (p. 156-168)
  • 4. Inferência Estatística se resumindo a uma equação… Saídai = (Modeloi) + erroi Ou seja, os dados que observamos podem ser previstos pelo modelo que escolhemos para ajustar os dados mais um erro
  • 5. Média como um modelo estatístico Uma maneira útil de descrever um grupo como um todo: • Qual é a renda média das famílias residentes na Mooca? • Qual é a altura média dos edifícios em São Caetano? • Qual é o PIB médio dos municípios localizados no arco do desmatamento?
  • 6. Para além de médias… Modelos Lineares  São modelos baseados sobre uma linha reta, utilizados para representar a relação entre variáveis  Ou seja, geralmente estamos tentando resumir as RELAÇÕES observadas a partir de nossos dados observados em termos de uma linha reta. ConsumodeÁguaper Capita(m3/dia/ano) Renda per Capita (R$) RELAÇÃO ENTRE CONSUMO DE ÁGUA E RENDA
  • 7. CORRELAÇÃO É uma medida do relacionamento linear entre duas variáveis Duas variáveis podem estar: (a)Positivamente relacionadas  quando maior a renda, maior o consumo de água (b)Negativamente relacionadas  quanto maior a renda, menor o consumo de água (c)Não há relação entre as variáveis
  • 8. Correlação de Pearson Medida padronizada da correlação entre variáveis Valor de r situa-se entre -1 e +1 r = +1  duas variáveis estão perfeitamente correlacionadas de forma positiva (se uma aumenta, a outra aumenta proporcionalmente) r = -1  relacionamento negativo perfeito (se uma aumenta, a outra diminui em valor proporcional r = 0  indica ausência de relacionamento linear COEFICIENTE DE CORRELAÇÃO DE PEARSON
  • 9. Teste de Significância do r de Pearson Para testar a significância do r, calculamos uma estatística teste conhecida como “razão t”, com graus de liberdade igual a N-2. Olhar na tabela o valor crítico de t, com graus de liberdade “N-2” e α=0,05 Se tcalculado > tcrítico, podemos rejeitar a hipótese nula de que ρ=0. Neste caso, os graus de liberdade indicam o quão próxima a distribuição t está da distribuição normal. Qto maior, mais póximo da dist. normal.
  • 10. ANÁLISE DE REGRESSÃO CORRELAÇÃO: Indica a força e a direção do relacionamento linear entre duas variáveis aleatórias Vamos avançar um passo: Obter uma equação matemática que descreva a relação entre duas ou mais variáveis. Esta é a essência da (Lembrando que não estamos lidando com relações de causa-efeito)
  • 11. Análise de regressão é uma ferramenta estatística que permite explorar e inferir a relação de uma variável dependente (Y  variável resposta/ dependente/ saída) com variáveis independentes específicas (X  variáveis indicadoras/ previsoras/ explicativas/ independentes). Y = aX + b NETER J. et al. Applied Linear Statistical Models. Boston, MA: McGraw-Hill, 1996. ANÁLISE DE REGRESSÃO
  • 12.  Criminalidade (+) X Renda (-), Investimentos (-)  Longevidade (+) X Escolaridade (+), Renda (+)  Consumo de Água (+) X Renda per Capita (+)  Outros exemplos? ... Exemplo
  • 13. 1. Determinar como duas ou mais variáveis se relacionam. 2. Estimar a função que determina a relação entre duas variáveis. 3. Usar a equação para projetar/estimar valores da variável dependente. Lembrete importante: A existência de uma relação estatística entre a variável resposta Y e a variável explicativa X não implica na existência de uma relação causal entre elas. Objetivos da Análise de Regressão
  • 14. Os dados para a análise de regressão são da forma: (x1, y1), (x2, y2), ..., (xi, yi), ... (xn, yn) Com os dados constrói-se o diagrama de dispersão. Este deve exibir uma tendência linear para que se possa usar a regressão linear. Ou seja, o diagrama permite decidir empiricamente se um relacionamento linear entre X e Y deve ser assumido. Diagrama de Dispersão
  • 15. Sugerem uma regressão/relação linear. Assim, a relação entre as variáveis poderá ser descrita por uma equação linear. Diagrama de Dispersão
  • 16. Sugerem uma regressão/relação não linear. Assim, a relação entre as variáveis poderá ser descrita por uma equação não linear. (ou podemos verificar a possibilidade de “linearizar” a relação através de transformações nas variáveis) Diagrama de Dispersão
  • 17. Por análise do diagrama de dispersão pode-se também concluir (empiricamente) se o grau de relacionamento linear entre as variáveis é forte ou fraco, conforme o modo como se situam os pontos ao redor de uma reta imaginária que passa através da concentração de pontos. Diagrama de Dispersão
  • 18. Diagrama de Dispersão Existência de correlação linear positiva: em média, quanto maior o X, maior será o Y Existência de correlação linear negativa: em média, quanto maior o X, menor será o Y
  • 19. Um modelo de regressão contendo somente uma variável preditora (X) é denominado modelo de regressão simples. Um modelo com mais de uma variável preditora (X) é denominado modelo de regressão múltiplo. Modelos de Regressão
  • 20. onde: Yi é o valor da variável resposta na i-ésima observação; β0 e β1 são parâmetros; Xi é uma constante conhecida; é o valor da variável preditora na i-ésima observação; ξi é um termo de erro aleatório com média zero e variância constante σ2 (E(ξi)=0 e σ2 (ξi)= σ2 ) ξi e ξj são não correlacionados (independentes) para i j (σ2 (ξi,ξj)= 0 ) Regressão Linear Simples Saídai = (Modeloi) + erroi Lembrando:
  • 21. Yi ξi X Y β0 β1 Coeficiente angular µY = E(Y) = β0 + β1 X Inclinação Populacional Intercepto Populacional Erro Aleatório Variável Preditora Variável Resposta Yi=β0+β1Xi +εi Ŷi=b0+b1Xi εi =Yi-Ŷi Modelo estimado Resíduo Regressão Linear Simples
  • 22. Os parâmetros β0 e β1 são denominados coeficientes de regressão: 1. β1 é a inclinação da reta de regressão. Ela indica a mudança na média de Y quando X é acrescido de uma unidade. 2. β0 é o intercepto em Y da equação de regressão (é o valor de Y quando X = 0.) β0 só tem significado se o modelo incluir X = 0. Significado de β0 e β1 0β 1β Y X 0
  • 23. β0 θ x x+1 ∆x=1 ∆y yi = β0 + β1xi x y ∆ ∆ =1β β0 (intercepto): quando a região experimental inclui X=0, β0 é o valor da média da distribuição de Y em X=0, cc, não tem significado prático como um termo separado (isolado) no modelo; β1 (inclinação): expressa a taxa de mudança em Y, isto é, é a mudança em Y quando ocorre a mudança de uma unidade em X. Ele indica a mudança na média da distribuição de probabilidade de Y por unidade de acréscimo em X. Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
  • 24. Como encontrar a “linha” que melhor se ajusta aos nossos dados? Ou seja: Como estimar os valores de β0 e β1? Yi ξi X Y β0 β1 Coeficiente angular Y = β0 + β1 X
  • 25. Em geral não se conhece os valores de β0 e β1 . Eles podem ser estimados através de dados obtidos por amostras. O método utilizado na estimação dos parâmetros é o método dos mínimos quadrados, o qual considera os desvios dos Yi de seu valor esperado (E(Yi )): ξi = Yi – (β0 + β1 Xi) Estimação dos Parâmetros Ŷi Ŷi=b0+b1Xi εi =Yi-Ŷi
  • 26. Em particular, o método dos mínimos quadrados requer que a soma dos n desvios quadrados, denotado por Q, seja mínima: 2 10 1 ][ ii n i XYQ ββ −−= ∑= Estimação dos Parâmetros
  • 27. Procedimento matemático para minimizar Q (soma dos desvios quadrados): (1) Q deve ser derivado em relação a β0 e β1: (1) Com derivadas parciais igualadas à zero, obtêm-se os valores estimados de β0 e β1: ∑ ∑ = = − −− = n i i n i ii XX YYXX 1 2 1 1 )( ))(( ˆβ XY 10 ˆˆ ββ −= ∑ ∑ = ∂ ∂ = ∂ ∂ −−−= −−−= n i iii Q n i ii Q XYX XY 1 10 1 10 )(2 )(2 1 0 ββ ββ β β Estimação dos Parâmetros Os estimadores β0 e β1 possuem distribuição normal e intervalos de confiança com uma distribuição t, com n-2 graus de liberdade Derivação 1ˆβ Q
  • 28. Correlação linear  Não determina causalidade, mas pode dar pistas.  Pode ser testada estatisticamente.  Identifica se duas variáveis se relacionam de forma linear.  Determina o quão mais próximo de uma reta é a relação entre as variáveis.  0: não há relação linear  1: relação linear perfeita  Não indica o quanto uma variável pode estar influenciando a outra. Regressão linear  Não determina causalidade, mas pode dar pistas.  Pode ser testada estatisticamente  Determina uma relação linear entre duas variáveis.  Traz elementos que permitem fazer predições.  Identifica o quanto uma variável afeta a outra.  Necessita de uma análise dos resíduos para decidir sobre sua adequação. Slides: Marcos Pó Correlação vs. Regressão
  • 29. Como avaliar o quão bem nossa “linha” adere aos dados? Ou seja: Como avaliar a qualidade de ajuste do modelo?
  • 30. Análise da Variância da Regressão
  • 31. Análise da Variância da Regressão Desvio Total Diferença entre dados observados (Yi) e média de Y Desvio não Explicado pelo Modelo Diferença entre dados observados (Yi) e o modelo (linha de regressão) Desvio Explicado Pelo Modelo Diferença entre média de Y e Modelo (linha de regressão) Desvio Total = Desvio Explicado pelo Modelo + Desvio Não Explicado pelo Modelo Ŷi
  • 32. Análise da Variância da Regressão
  • 33. )ˆ()ˆ( YYYYYY iii −+−=− Elevando-se ao quadrado os dois lados da igualdade e fazendo-se a soma para todas as observações de uma determinada amostra tem-se que: Soma dos quadrados total (SQT) Soma dos quadrados do modelo (SQM) Soma dos quadrados residual (SQR) Desvio Total Desvio Explicado pelo Modelo Desvio Não-explicado pelo Modelo Inferência: Análise da Variância
  • 34. Se SQT=0, então todas as observações Y são iguais. Quanto maior for SQT, maior será a variação entre os Y’s. SQT é uma medida da variação dos Y’s quando não se leva em consideração a variável independente X. Se SQR = 0, então as observações caem na linha de regressão. Quanto maior SQR, maior será a variação das observações Y ao redor da linha de regressão. Se a linha de regressão for horizontal, de modo que então SQM = 0. 0 ^ =− − YYi Particionando a Soma dos Quadrados SQT SQM SQR
  • 35. SQTotal = SQModelo + SQResíduos. Um modo de se saber quão útil será a linha de regressão para a predição é verificar quanto da SQT está na SQM e quanto está na SQR. Idealmente, gostaríamos que SQM fosse muito maior que SQR. Gostaríamos, portanto, que fosse próximo de 1. SQT SQM Particionando a Soma dos Quadrados
  • 36. Uma medida do efeito de X em reduzir a variabilidade do Y é: Note que: 0 ≤ R2 ≤ 1 R2 é denominado coeficiente de determinação. Em um modelo de regressão simples, o coeficiente de determinação é o quadrado do coeficiente de correlação de Pearson (r) entre Y e X. Note que em um modelo de regressão simples SQT SQR 1 SQT SQR-SQT SQT SQM2 −===R 112 ≤≤−⇒±= rRr Coeficiente de Determinação SQTotal = SQModelo + SQResíduos
  • 37. Temos dois casos extremos: R2 = 1 todas as observações caem na linha de regressão ajustada. A variável preditora X explica toda a variação nas observações. R2 = 0 isto ocorre quando b1 = 0. Não existe relação linear em Y e X. A variável X não ajuda a explicar a variação dos Yi . Coeficiente de Determinação
  • 38. Outra maneira de avaliar o modelo utilizando a soma dos quadrados é por meio do Teste F O Teste F tem por base a razão F, que é a razão de melhoria devida ao modelo e a diferença entre o modelo e os dados observados A razão F é uma medida do quanto o modelo melhorou na previsão de valores comparado com o nível de não precisão do modelo
  • 39. Graus de Liberdade (df) Soma dos quadrados (SQ) Quadrado médio QM=SQ/df Razão da variância (F) Regressão(X) Resíduo 1 (p-1) 28 (n-p) SQT-SQR= SQM= 6394.02 SQR=8393.44 6394.02 (QMModelo) 299.77 (QMResíduo) 21.33 (p<0.001) Total 29 (n-1) SQT = 14787.46 43.0 46.14787 02.63942 == − = SQT SQRSQT R Tabela ANOVA - F
  • 40. Graus de Liberdade (df) Soma dos quadrados (SQ) Quadrado médio QM=SQ/df Razão da variância (F) Regressão(X) Resíduo 1 (p-1) 28 (n-p) SQT-SQR= SQM= 6394.02 SQR=8393.44 6394.02 (QMModelo) 299.77 (QMResíduo) 21.33(p<0.001) Total 29 (n-1) SQT = 14787.46 43.0 46.14787 02.63942 == − = SQT SQRSQT R Tabela ANOVA - F Importante Lembrar! A razão F é uma medida do quanto o modelo melhorou na previsão de valores comparado com o nível de não precisão do modelo Um bom modelo deverá ter uma razão F grande
  • 41. 0: 0ˆ...ˆˆ: 210 ≠ === jdosummenospeloexisteH H a k β βββ onde Fc ~ F p-1, n-p Se F*> F (α; p-1,n-p), rejeitamos a hipótese nula, caso contrário, aceitamos a hipótese. Inferência: Teste F (Adequação Global)
  • 42. -∞ +∞0 t1-a/2;n-2 tn-2 -t1-a/2;n-2 1 α− a/2a/2 1. Construir intervalos de confiança para : 2. Teste de hipótese para : 0ˆ: 0ˆ: 1 10 ≠ = β β aH H Se = 0 , significa que não há correlação entre X e Y. Rejeitar , significa que o modelo que inclui X é melhor do que o modelo que não inclui X, mesmo que a linha reta não seja a relação mais apropriada. 1ˆβTestando se a inclinação é zero. 0H Inferência: Significância de b
  • 43. 1. Construir intervalos de confiança para:1ˆβ ∑ ∑ = = − −− = n i i n i ii XX YYXX 1 2 1 1 )( ))(( ˆβ Média: Variância estimada: ( )∑ = − 2)ˆ( 1 2 XX QMR i s β ).2(~ )ˆ( ˆ 1 11 − − nt s β ββ Distribuição da estatística studentizada (σ é desconhecido) Intervalo de confiança )ˆ()2;2/1(ˆ 11 βαβ snt −−± Inferência
  • 44. 2. Teste estatístico formal: feito de maneira padrão usando a distribuição de Student -∞ +∞0 t1-α/2;n-2 tn-2 -t1-α/2;n-2 1 α− α/2α/2 )ˆ( ˆ * 1 1 β ββ s t esperado− = 0 * 0 * Hrejeita),2;2/1(|| Hrejeitanão),2;2/1(|| −−> −−≤ nttSe nttSe α α Inferência )ˆ( ˆ * 1 1 β β s t = Qual a probabilidade de que t* tenha ocorrido por acaso se o valor de b1 fosse de fato zero? Se esse valor (significância) for menor do que 0,05 (5%), b1 é significativamente diferente de zero 0ˆ: 0ˆ: 1 10 ≠ = β β aH H
  • 45. 0:H 0:H 01 00 ≠ = β β Se a hipótese nula H0= 0 não for rejeitada, pode-se excluir a constante do modelo, já que a reta inclui a origem. 0 ˆβDe forma semelhante testamos se é zero Inferência
  • 47. Regressão Simples no SPSS 1. No SPSS, abra o arquivo “Agua2010_SNIS.sav” 1. Vá em Analisar > Regressão > Linear (Analyze > Regression > Linear ) Selecione a variável “dependente” e “independente” Existe uma variedade de opções disponíveis, mas serão exploradas no contexto da regressão múltipla.
  • 48. Ajuste Global do Modelo Resumo do Modelo R = 0,601  Como temos apenas um previsor, este valor representa a correlação simples entre Y (renda) e X (consumo). R2 = 0,362  Coeficiente de Determinação. Nos informa que nosso modelo consegue explicar 36,2% da variação do consumo de água. Devem existir muitos fatores que podem explicar esta variação, mas nosso modelo, que inclui somente a renda per capita, pode explicar 36,2% dela. No entanto, 63,8% da variação do consumo de água não pode ser explicada pela variação da renda per capita.
  • 49. Ajuste Global do Modelo Análise de Variância Soma dos Quadrados do Modelo (SQM), Soma dos Quadrados dos Resíduos (SQR) e Soma dos Quadrados Total (SQT) Lembrando: SQT = SQM + SQR Razão F = Quadrado Médio do Modelo / Quadrado Médio do Resíduo Razão F = 2499,709 (É um número bem grande!!! O que isso significa?)
  • 50. Ajuste Global do Modelo Análise de Variância Para estes dados, F é 2499.709, que é significativo ao nível de p<0,001 (pois o valor na coluna Sig. é menor do que 0,001) Esse resultado nos informa que existe uma probabilidade menor do que 0,1% de que um valor F tão alto tenha ocorrido apenas por acaso. Ou seja, pode-se concluir que nosso modelo de regressão representa melhor o consumo de água do que se tivéssemos usado apenas o valor médio do consumo.
  • 51. Parâmetros do Modelo A análise de variância apresentada na tabela ANOVA nos informa se o modelo, em geral, resulta em um grau de previsão significativamente bom dos valores da variável de saída (no caso, consumo de água). No entanto, a ANOVA não nos informa sobre a contribuição individual das variáveis no modelo (embora neste caso simples exista uma única variável X no modelo e, assim, podemos inferir que esta variável é um bom previsor.) A tabela dos coeficientes fornece detalhes dos parâmetros do modelo (os valores beta) e da significância desses valores.
  • 52. Parâmetros do Modelo b0= intercepto y (ponto onde a linha corta o eixo y)  b0= 4,252 (Valor que Y assume quando X=0) b1= inclinação reta de regressão  Mudança da variável de saída (Y) para cada alteração de uma unidade no previsor (X) b1= 0,041  Em média, um aumento de R$ 1 na renda per capita, está relacionado a um aumento de 0,041 m3/ano de consumo de água (41 litros/ano) Esta variável preditora (renda) está tendo impacto?
  • 53. Parâmetros do Modelo Esta variável preditora (renda) está tendo impacto? Para isso, b1 deve ser diferente de zero!!! O teste t nos informa se b1 difere de zero. Em “Sig.” temos a probabilidade de que o valor de t ocorra se o valor de b é zero. Se esta probabilidade é menor do 0,05 (5%) aceita-se que o resultado reflete um efeito genuíno, não é fruto do acaso. Como as probabilidades são próximas de 0,000 (zero até a terceira casa), podemos dizer que a esta probabilidade é menor do que 0,001 (p<0,001). Concluímos que a renda tem uma contribuição significativa (p<0,001) na explicação da variação do consumo de água.