SlideShare uma empresa Scribd logo
REGRESSÃO LINEAR
Parte II
Vitor Vieira Vasconcelos
Flávia da Fonseca Feitosa
BH1350 – Métodos e Técnicas de Análise da Informação para o Planejamento
Julho de 2017
Leitura de Referência
Capítulo 5
Regressão
(p. 156-168)
Análise de regressão é uma ferramenta estatística
que utiliza a relação entre duas ou mais variáveis tal
que uma variável possa ser explicada (Y  variável
resposta/ dependente) pela outra ou outras (X 
variáveis indicadoras/ preditoras/ explicativas/
independentes).
Y = aX + b
NETER J. et al. Applied Linear Statistical Models. Boston, MA: McGraw-Hill, 1996.
ANÁLISE DE REGRESSÃO
Um modelo de regressão contendo somente
uma variável preditora (X) é denominado
modelo de regressão simples.
Um modelo com mais de uma variável
preditora (X) é denominado modelo de
regressão múltiplo.
Modelos de Regressão
onde:
Yi é o valor da variável resposta na i-ésima observação;
β0 e β1 são parâmetros;
Xi é uma constante conhecida; é o valor da variável
preditora na i-ésima observação;
ξi é um termo de erro aleatório com média zero e variância
constante σ2 (E(ξi)=0 e σ2 (ξi)= σ2 )
ξi e ξj são não correlacionados (independentes) para i j
(σ2 (ξi,ξj)= 0 )
Regressão Linear Simples
Saídai = (Modeloi) + erroi
Lembrando:
Yi
ξi
X
Y
β0
β1
Coeficiente
angular
µY = E(Y) = β0 + β1 X
Inclinação
Populacional
Intercepto
Populacional
Erro
Aleatório
Variável Preditora
Variável
Resposta Yi=β0+β1Xi +εi
Ŷi=b0+b1Xi
εi =Yi-Ŷi
Modelo estimado
Resíduo
Regressão Linear Simples
Yi=β0+β1Xi1 + β2Xi2 +…+ βpXip + εi
Yi é o valor da variável resposta na i-ésima observação
β0, …, βp são parâmetros
Xi1 ,…,Xip são os valores das variáveis preditoras na i-ésima
observação
ξi é um termo de erro aleatório com distribuição normal, média
zero e variância constante σ2 (E(ξi )=0 e σ2 (ξi )= σ2 )
ξi e ξj são não correlacionados (independentes) para i j
Regressão Linear Múltipla
β0
Plano de Regressão
•
(1,33;1,67)
E(Yi) = 20,00
Yi
•
εi
Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
Superfície de Resposta:
Função de Regressão na Regressão Linear
Múltipla
O parâmetro β0 é o intercepto do plano de regressão.
Se a abrangência do modelo inclui X1=0 e X2=0 então
β0=10 representa a resposta média E(Y) neste ponto.
Em outras situações, β0 não tem qualquer outro
significado como um termo separado no modelo de
regressão.
Significado dos Coeficientes de regressão:
β0, β1, β2,.., βp
Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
Parâmetro β1 indica a mudança na resposta média
E(Y) por unidade de acréscimo em X1 quando X2 é
mantido constante.
Da mesma forma, β2 indica a mudança na resposta
média por unidade de aumento em X2 quando X1 é
mantido constante.
“Ceteris Paribus”
Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
Significado dos Coeficientes de regressão:
β0, β1, β2,.., βp
Por exemplo,
este é o cachorro Hottie
Hottie é um cachorro
bonzinho quando vai
caminhar, CETERIS PARIBUS
Hottie é um cachorro
bonzinho quando
vai caminhar,
desde que...
O Sol permanece brilhando, e
nenhum esquilo atravesse o seu caminho
Conceitualmente, a interpretação de SQTotal,
SQResíduos e SQModelo permanece a mesma
SQT = SQM + SQR
Soma dos Quadrados
Quando existem vários previsores (X), utilizamos um
coeficiente de correlação múltiplo, denominado
R Múltiplo.
R Múltiplo: É a correlação (R) entre os valores
observados de Y e os de Ŷ previstos pelo modelo de
regressão múltiplo
Valores Grandes de R múltiplo  Alta correlação entre
os valores previstos e observados da variável de saída.
R Múltiplo & R2
Resumindo: R Múltiplo é uma medida do qual bem o
modelo prevê os dados observados.
E o R2 resultante?
Pode ser interpretado da mesma forma que na
regressão simples:
É a quantidade de variação em Y que pode ser
capturada pelo modelo.
R Múltiplo & R2
Se estamos interessados em construir um modelo
complexo com vários previsores (X1, X2, ..., Xn),
como decidir qual deles considerar???
1. Avalie a importância teórica de cada variável
incluída no modelo
2. Explore a relação entre Y e os previsores
3. Utilize um método de seleção dos previsores:
Hierárquico (entrada em blocos), Entrada
Forçada (Enter), Métodos por passos (Stepwise)
Métodos de Regressão
1. HIERÁRQUICO (ENTRADA EM BLOCOS)
Previsores selecionados com base em trabalhos
anteriores. Pesquisador decide em que ordem devem
ser colocados no modelo.
2. ENTRADA FORÇADA (ENTER)
Todos os previsores são “forçados” no modelo ao
mesmo tempo. Deve basear-se em boas razões
teóricas para incluir os previsores escolhidos.
Diferentemente da hierárquica, pesquisador não toma
decisões sobre a ordem em que variáveis serão
acrescentadas.
Métodos de Regressão
3. MÉTODOS POR PASSOS (Stepwise)
Decisão sobre a ordem em que os previsores são
acrescentados ao modelo é baseada em critérios
matemáticos.
Método Forward (Para frente)
Modelo inicial contem apenas a constante (b0). Então procura-se o
previsor que melhor “prevê” a variável de saída (maior coef. de
correlação) e se ele aumenta significativamente o ajuste do modelo,
ele é mantido. Procura-se então um segundo previsor e é verificada
sua capacidade de melhor significativamente o ajuste do modelo...
E assim por diante.
Métodos de Regressão
3. MÉTODOS POR PASSOS (Stepwise)
Decisão sobre a ordem em que os previsores são
acrescentados ao modelo é baseada em critérios
matemáticos.
Método Passo a Passo (Stepwise)
Semelhante ao Forward. No entanto, cada vez que um previsor é
adicionado ao modelo, um teste de remoção é feito sobre o previsor
menos útil. Assim, a equação de regressão é acessada
constantemente para ver se algum previsor redundante pode ser
removido.
Métodos de Regressão
3. MÉTODOS POR PASSOS (Stepwise)
Decisão sobre a ordem em que os previsores são
acrescentados ao modelo é baseada em critérios
matemáticos.
** Método Backward (Para trás) **
Oposto do método Forward (para frente). Inicia considerando todos
os previsores no modelo e vai retirando os previsores que não
contribuem significativamente para o qual bem o modelo “explica” a
variável de saída (Y).
É preferível em relação ao método Forward, já que o Forward
promove um maior risco de eliminar um previsor que de fato
contribui para o modelo.
Métodos de Regressão
Seja seletivo na inclusão de variáveis no modelo!
Priorize justificativas teóricas, baseadas em estudos
anteriores, literatura...
Como regra geral, quanto menos, melhor!!!
Métodos de Regressão
O quão acurado é meu
modelo de regressão???
(1) O modelo representa bem os meus dados, ou ele é
influenciado por um número pequeno de casos
(valores atípicos e casos influentes)?
(2) O modelo pode ser generalizado para outras amostras?
O quão acurado é meu
modelo de regressão???
(1) O modelo representa bem os meus dados, ou ele é
influenciado por um número pequeno de casos (valores
atípicos e casos influentes)?
(2) O modelo pode ser generalizado para outras amostras?
Diagnósticos: Valores Atípicos
Um valor atípico (outlier) é um caso que difere
substancialmente da maioria dos dados
Podem introduzir
tendenciosidade no
modelo, pois
afetarão os valores
dos coeficientes de
regressão estimados
É importante
detectar os valores
atípicos para ver se o
modelo é
tendencioso!
Diagnósticos: Valores Atípicos
RESÍDUOS: Diferença entre valores previstos pelo modelo e
os valores observados na amostra
Resíduos apresentam o erro que está presente no modelo.
Modelo com bom ajuste  Resíduos pequenos
Se qualquer caso destacar-se por ter um grande resíduo,
ele poderá ser ATÍPICO
MAS COMO ESTABELECER O QUE SERIA
UM “GRANDE” RESÍDUO???
Diagnósticos: Valores Atípicos
Converter os resíduos (Yobservado – Yestimado) em
escores-z. Ou seja, padronizar os resíduos.
LEMBRETE: Escore-z
REGRAS GERAIS PARA RESÍDUOS PADRONIZADOS:
- Resíduos padronizados com valor maior do que
3,29 (3) são preocupantes porque, em uma
amostra, dificilmente acontecem por acaso
- Se mais do que 1% da nossa amostra padronizada
apresenta erros maiores do que 2,58 (2,5), há
evidências de que o nível de erro dentro do nosso
modelo é inaceitável (modelo não se ajusta bem).
- Se mais do que 5% da nossa amostra tem resíduos
padronizados maiores do que 1,96 (2), também há
evidências de que nosso modelo é uma
representação ruim dos dados.
Numa amostra
normalmente
distribuída:
95% dos escores-z
estão entre
-1,96 e +1,96
99% estão entre
-2,58 e +2,58
99,9% estão entre
-3,29 e +3,29
Diagnósticos: Casos Influentes
Além de procurar valores atípicos olhando para os erros do
modelo, também é possível buscar os casos que influenciam
demasiadamente os parâmetros do modelo
Se retirássemos determinados casos, teríamos
coeficientes de regressão diferentes???
Objetivo da análise: determinar se o modelo de regressão é
estável para toda a amostra ou se ele pode estar sendo
influenciado somente por poucos casos (atípicos).
Diagnósticos: Casos Influentes
Alguns métodos para determinação de casos influentes:
1. VALOR PREVISTO AJUSTADO
Calcula-se um novo modelo sem o caso em questão e usa-se
este novo modelo para “prever” o valor que este caso teria.
Se o caso não tem grande influência: Pouca diferença entre
valor previsto (pelo modelo que considera o caso) e valor previsto
ajustado (pelo modelo que NÃO considera o caso)  Modelo Estável
DFFIT  Diferença entre valor previsto ajustado e valor
previsto original
(DFFit padronizado)
Diagnósticos: Casos Influentes
Alguns métodos para determinação de casos influentes:
2. DFBETA (DFBETA PADRONIZADO)
Diferença entre 1 parâmetro estimado utilizando todos os casos
e estimado quando um caso é excluído. É calculado para cada
caso e para cada um dos parâmetros do modelo.
Valores do DFBETA padronizado acima de 1 indicam casos que
substancialmente influenciam os parâmetros do modelo
Diagnósticos: Casos Influentes
Alguns métodos para determinação de casos influentes:
3. DISTÂNCIA DE COOK
Medida da influência global de um caso sobre o modelo.
4. INFLUÊNCIA (LEVERAGE) – Valores Chapéu (Hat Values)
Mede o quanto um valor observado influencia o valor previsto
na saída.
Os valores de “influência” variam entre 0 (caso sem influência)
e 1 (caso com total influência sobre a previsão)
Diferença entre Resíduos e
Estatísticas de Influência
O Caso 8, que é um valor atípico muito influente,
mas apresenta um resíduo bem pequeno (está
próximo da linha que foi ajustada aos dados).
Por isso é importante analisar tanto os resíduos
quanto as estatísticas de influência.
O quão acurado é meu
modelo de regressão???
(1) O modelo representa bem os meus dados, ou ele é
influenciado por um número pequeno de casos (valores
atípicos e casos influentes)?
(2) O modelo pode ser generalizado para outras amostras?
Quando realizamos uma análise de regressão, estimamos os
parâmetros de uma equação a partir dos dados de nossa amostra.
Mas será que podemos generalizar nosso modelo, ou
seja, tirar conclusões (fazer inferências) para além da
nossa amostra?
 Para generalizar um modelo de regressão, devemos estar
seguros de que certas suposições foram satisfeitas, e para
testar se o modelo de fato é generalizável, podemos fazer uma
validação cruzada.
 Se acharmos que nosso modelo não é generalizável, devemos
restringir qualquer conclusão baseada no modelo à amostra
utilizada
Generalização
Para tirar conclusões sobre uma população com base em um
modelo de regressão realizado sobre uma amostra, algumas
suposições devem ser verdadeiras.
1. Tipos de Variáveis
Variáveis explicativas (X) devem ser quantitativas ou categóricas;
enquanto a variável de resposta (Y) deve ser quantitativa,
contínua e não limitada.
Não limitada significa que não deve haver restrições na
variabilidade da saída. Se a saída é uma medida que varia de 1 a 10
e os dados coletados variam entre 3 e 7, então esses dados são
restritos.
Suposições
MEU HOBBY: EXTRAPOLAÇÃO
Número
de
Maridos
Como você pode ver,
pelo fim do mês você
terá mais que quatro
dúzias de maridos.
É melhor
pedir um
desconto por
atacado para
bolos de
casamento.
2. Distribuição Normal
Para um valor fixo da variável aleatória X, Y é uma variável
aleatória com distribuição Normal (com média e variâncias finitas);
Yi ~ N(E(y/x); σ2)
OBS: Os previsores (X) não precisam ser normalmente distribuídos
 Resíduos do modelo deverão ser normalmente distribuídos,
com média zero (variável aleatória)
Suposições
Regressão Linear Múltipla
3. Linearidade
Todos os valores médios de Y (E(y/x)=μY/x) permanecem sobre
uma reta, para um particular valor de X.
E(y/x)=μy/x = β0 + β1x
Em outras palavras, assumimos que o relacionamento que
estamos modelando é do tipo linear
Suposições
Esclarecimentos sobre a
“linearidade” do modelo
O Termo “linear” representa a forma como os
parâmetros entram no modelo.
O modelo Yi=β0+β1X1i+β2X2i
2 embora
graficamente represente uma parábola, é um
modelo linear em β0, β1 e β2 .
Já o modelo Yi=β0eβ1Xi não é um modelo linear
em β0 e β1 .
4. Independência
Os valores de Yi e Yj são estatisticamente independentes (falta de
autocorrelação).
 Resíduos do modelo deverão ser independentes
(falta de autocorrelação).
Teste de Durbin-Watson pode ser aplicado sobre os resíduos da
regressão, para testar a correlação serial entre erros. A estatística
teste pode variar entre 0 e 4, com 2 indicando que os erros não são
correlacionados. Se maior que 2, indicação de correlação negativa
entre resíduos adjacentes. Se menor que 2, indicação de correlação
positiva.
Suposições
Resíduos Independentes
Resíduos
Autocorrelacionados
Resumo da situação: para qualquer valor Xi, a média de Yi é µi =
β0 + β1Xi + ... + βnXn. As médias estão sobre a linha reta para
todos os valores de X. Devido aos erros aleatórios, os valores de
Yi se distribuem ao redor da reta.
Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
5. Homocedasticidade
A variância de Y é igual, qualquer que seja X.
 A cada nível de X, a variância do termo residual deve ser
constante.
Quando as variâncias são desiguais, diz-se que existe
heterocedasticidade.
Suposições
A figura mostra a distribuição de Y para vários valores de X.
Mostra onde cai a observação Y1. Mostra que o erro é a
diferença entre Y1 e E(Y1). Observe que as distribuições de
probabilidade apresentam a mesma variabilidade.
Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
6. Multicolinearidade
As variáveis previsoras (X) incluídas no modelo não devem
apresentar correlação muito alta entre si.
Exemplo (extremo) : Se existir uma colinearidade (c0rrelação) perfeita entre X1 e
X2, torna-se impossível obter uma estimativa única dos coeficientes de regressão.
Existirá um número infinito de coeficientes que funcionarão igualmente bem!
A medida que a colinearidade aumenta, também aumenta o erro
padrão dos coeficientes b, o que afeta a significância estatística
destes coeficientes. Ou seja, aumentam a probabilidade de que
um bom previsor (X) seja declarado não significativo e excluído do
modelo
Suposições
6. Multicolinearidade
Como identificar???
 Analisar correlação entre variáveis previsoras (X): matriz de
correlação
 Diagnóstico FIV (Fator de Inflação da Variância)
Indica se um previsor tem um relacionamento linear forte com
outro(s) previsor(es).
Suposições
População Domicílios Renda Familiar
Taxade
Emprego
Renda
Familiar
Renda
FamiliarDomicílios
Multicolinearidade
Resumo:
1. Variáveis explicativas (X) quantitativas ou
categóricas; e variável de resposta (Y) quantitativa,
contínua e não limitada.
2. Distribuição Normal de Y e dos erros
3. Linearidade
4. Independência de autocorrelação em Y e nos erros
5. Homocedasticidade
6. Multicolinearidade
Suposições
Quando as suposições são consideradas, o modelo que obtemos
de uma amostra pode ser aplicado para a população de interesse
(os coeficientes da equação não são tendenciosos).
Modelo não tendencioso  Nos diz que, em média, o modelo de
regressão obtido a partir de uma amostra é o mesmo que o
modelo populacional.
Entretanto, mesmo quando as suposições são satisfeitas, é
possível que um modelo obtido a partir de uma amostra não seja
igual ao modelo populacional.
Suposições
Existem maneiras de determinar o quão bem nosso modelo pode
prever a saída em uma amostra diferente.
Validação Cruzada  técnica para determinar a precisão de
um modelo entre diferentes amostras.
Se o modelo é aplicado a uma amostra distinta e existe uma grande
diferença na sua capacidade de previsão, então o modelo não é
generalizável.
DIVISÃO DOS DADOS: Dividir ao acaso o conjunto de dados em
dois, determinar a equação de regressão em cada uma das 2
metades e comparar os modelos resultantes.
Validação Cruzada
Regressão Linear Múltipla
Atenção!!!
Os próximos slides são bem
importantes!
1. Seleção e Preparação das Variáveis
Selecionar variáveis previsoras (X) para as quais existem razões
teóricas para esperar que prevejam bem o resultado.
Diagramas de Dispersão e Matriz de Correlações
Verificar as correlações entre variáveis: As variáveis X devem ser
correlacionadas com Y, mas não entre si  primeira análise de
multicolinearidade
Verificar se as relações entre X e Y são lineares  Transformações
podem ser necessárias para linearizar relações.
Etapas da Análise de Regressão
Diagramas de Dispersão:
Por que são tão importantes?
Quarteto de Anscombe: Esses quatro conjuntos de dados
possuem as mesmas propriedades estatísticas...
I II III IV
x y x y x y x y
10,0 8,04 10,0 9,14 10,0 7,46 8,0 6,58
8,0 6,95 8,0 8,14 8,0 6,77 8,0 5,76
13,0 7,58 13,0 8,74 13,0 12,74 8,0 7,71
9,0 8,81 9,0 8,77 9,0 7,11 8,0 8,84
11,0 8,33 11,0 9,26 11,0 7,81 8,0 8,47
14,0 9,96 14,0 8,10 14,0 8,84 8,0 7,04
6,0 7,24 6,0 6,13 6,0 6,08 8,0 5,25
4,0 4,26 4,0 3,10 4,0 5,39 19,0 12,50
12,0 10,84 12,0 9,13 12,0 8,15 8,0 5,56
7,0 4,82 7,0 7,26 7,0 6,42 8,0 7,91
5,0 5,68 5,0 4,74 5,0 5,73 8,0 6,89
Propriedade Valor
Média de x 9,00
Variância de x 10,00
Média de y 7,50
Variância de y 3,75
Correlação 0,898
Regressão
linear
y = 2,50 + 0,500x
Slides: Marcos Pó
F.J. Anscombe, "Graphs in Statistical Analysis,"
American Statistician, 27 (February 1973), 17-21.
Diagramas de Dispersão:
Por que são tão importantes?
Slides:
Marcos Pó
... mas são bem diferentes graficamente.
1. Seleção e Preparação das Variáveis
Selecionar variáveis previsoras (X) para as quais existem razões
teóricas para esperar que prevejam bem o resultado.
Diagramas de Dispersão e Matriz de Correlações
Verificar as correlações entre variáveis: As variáveis X devem ser
correlacionadas com Y, mas não entre si  primeira análise de
multicolinearidade
Verificar se as relações entre X e Y são lineares  Transformações
podem ser necessárias para linearizar relações.
Etapas da Análise de Regressão
Transformações quando a distribuição dos erros é
aproximadamente normal e com variância constante. Deve-se
realizar uma transformação apenas na variável X.
Padrões de relação entre X e Y:
Transformações para
não-linearidade do modelo
XX
XX
=
=
'
log10
'
)exp('
2'
XX
XX
=
=
Regressão Linear Múltipla
Regressão Linear Múltipla
1. Seleção e Preparação das Variáveis
2. Escolha e Ajuste do Modelo de Regressão
 Uma estratégia seria executar a regressão para todos os
previsores (X) selecionados e examinar a saída para ver quais
contribuem substancialmente para o modelo.
 Uma vez determinada quais são as variáveis importantes,
execute novamente a análise incluindo somente essas
variáveis e utilize as estimativas dos parâmetros resultantes
para definir o modelo de regressão.
Etapas da Análise de Regressão
1. Seleção e Preparação das Variáveis
2. Escolha e Ajuste do Modelo de Regressão
 Se a análise inicial revelar que existem 2 ou mais previsores
significativos, pode-se considerar a execução de uma análise
stepwise, ao invés de uma entrada forçada (Enter) a fim de
encontrar a contribuição individual de cada previsor.
Etapas da Análise de Regressão
1. Seleção e Preparação das Variáveis
2. Escolha e Ajuste do Modelo de Regressão
3. Diagnóstico para verificar se o modelo ajustado é
adequado
 Ajuste do modelo (R2, Teste F, Testes t para coef.)
 Multicolinearidade (FIV)
 Análise dos Resíduos
Etapas da Análise de Regressão
Se modelo for adequado, resíduos devem refletir as
propriedades impostas pelo termo de erro do modelo.
LINEARIDADE DO MODELO
Análise dos Resíduos
Não Linearidade
0
X
Resíduo
NORMALIDADE DOS RESÍDUOS: Suposição essencial para
que os resultados do ajuste do modelo sejam confiáveis.
Análise dos Resíduos
Outros diagnósticos: Shapiro-Wilk, Anderson-Darling,
Kolmogorov-Smirnov
HOMOCEDASTICIDADE (Variância Constante)
Análise dos Resíduos
Outros diagnósticos: Teste de Breush-Pagan.
0
X
Variância Não Constante
(heterocedasticidade)
Resíduo
PRESENÇA DE OUTLIERS
Gráfico resíduos padronizados vs. Valores Ajustados
Análise dos Resíduos
Pontos Influentes: DFFITS, DFBETA, Distância de Cook.
-0,4
-0,2
0
0,2
0,4
0,6
0,8
1
150 155 160 165 170 175 180 185
X
ResíduosPadronizados
INDEPENDÊNCIA
Gráfico resíduos padronizados vs. Valores Ajustados
Análise dos Resíduos
Outros Diagnósticos: Teste de Durbin-Watson
Autocorrelação espacial: Mapa dos resíduos, Índice de Moran
X
0
Erros Correlacionados
Resíduo
Análise dos Resíduos
Quais dessas plotagens mostram normalidade dos resíduos?
Quais os problemas das outras?
Bussab;Morettin,2002:456
Slide: Marcos Pó
MODELO ADEQUADO
Análise dos Resíduos

Mais conteúdo relacionado

Mais procurados

Aula inferencia
Aula inferenciaAula inferencia
Aula inferencia
Fernando Bortolozo
 
Análise de Componentes Principais
Análise de Componentes PrincipaisAnálise de Componentes Principais
Análise de Componentes Principais
Célia M. D. Sales
 
Análise de Agrupamentos (Clusters)
Análise de Agrupamentos (Clusters)Análise de Agrupamentos (Clusters)
Análise de Agrupamentos (Clusters)
Vitor Vieira Vasconcelos
 
SPSS – Tutorial para Iniciantes
SPSS – Tutorial para IniciantesSPSS – Tutorial para Iniciantes
SPSS – Tutorial para Iniciantes
Rilva Lopes de Sousa Muñoz
 
Análise exploratória de dados no SPSS
Análise exploratória de dados no SPSSAnálise exploratória de dados no SPSS
Análise exploratória de dados no SPSS
Vitor Vieira Vasconcelos
 
Aula 7 análise fatorial
Aula 7  análise fatorialAula 7  análise fatorial
Aula 7 análise fatorial
Rodrigo Rodrigues
 
03 tópico 2 - regressão multipla
03   tópico 2 - regressão multipla03   tópico 2 - regressão multipla
03 tópico 2 - regressão multipla
Ricardo Bruno - Universidade Federal do Pará
 
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Kleverton Saath
 
Tabelas do teste f, 10, 5, 1%
Tabelas do teste f, 10, 5, 1%Tabelas do teste f, 10, 5, 1%
Tabelas do teste f, 10, 5, 1%
thiago carnevali
 
Aula 30 testes de hipóteses
Aula 30   testes de hipótesesAula 30   testes de hipóteses
Problema de Pesquisa e Hipóteses Científicas - Profa.Rilva - GESME
Problema de Pesquisa e Hipóteses Científicas - Profa.Rilva - GESMEProblema de Pesquisa e Hipóteses Científicas - Profa.Rilva - GESME
Problema de Pesquisa e Hipóteses Científicas - Profa.Rilva - GESME
Rilva Lopes de Sousa Muñoz
 
Delineamento experimental básico
Delineamento experimental básicoDelineamento experimental básico
Delineamento experimental básico
Caio Maximino
 
Coeficiente de variação
Coeficiente de variaçãoCoeficiente de variação
Coeficiente de variação
Tuane Paixão
 
Aula 12 medidas de dispersão
Aula 12   medidas de dispersãoAula 12   medidas de dispersão
Autocorrelação espacial
Autocorrelação espacialAutocorrelação espacial
Autocorrelação espacial
Vitor Vieira Vasconcelos
 
06 tópico 5 - heterocedasticidade
06   tópico 5 - heterocedasticidade06   tópico 5 - heterocedasticidade
06 tópico 5 - heterocedasticidade
Ricardo Bruno - Universidade Federal do Pará
 
17 hipóteses e variáveis
17 hipóteses e variáveis17 hipóteses e variáveis
17 hipóteses e variáveis
Joao Balbi
 
Estatistica descritiva
Estatistica descritiva Estatistica descritiva
Estatistica descritiva
Geisla Maia Gomes
 
Pesquisa Qualitativa: Uma Introdução. Profa. Rilva
Pesquisa Qualitativa: Uma Introdução. Profa. RilvaPesquisa Qualitativa: Uma Introdução. Profa. Rilva
Pesquisa Qualitativa: Uma Introdução. Profa. Rilva
Rilva Lopes de Sousa Muñoz
 
Pesquisa Qualitativa e Quantitativa
Pesquisa Qualitativa e QuantitativaPesquisa Qualitativa e Quantitativa
Pesquisa Qualitativa e Quantitativa
jlpaesjr
 

Mais procurados (20)

Aula inferencia
Aula inferenciaAula inferencia
Aula inferencia
 
Análise de Componentes Principais
Análise de Componentes PrincipaisAnálise de Componentes Principais
Análise de Componentes Principais
 
Análise de Agrupamentos (Clusters)
Análise de Agrupamentos (Clusters)Análise de Agrupamentos (Clusters)
Análise de Agrupamentos (Clusters)
 
SPSS – Tutorial para Iniciantes
SPSS – Tutorial para IniciantesSPSS – Tutorial para Iniciantes
SPSS – Tutorial para Iniciantes
 
Análise exploratória de dados no SPSS
Análise exploratória de dados no SPSSAnálise exploratória de dados no SPSS
Análise exploratória de dados no SPSS
 
Aula 7 análise fatorial
Aula 7  análise fatorialAula 7  análise fatorial
Aula 7 análise fatorial
 
03 tópico 2 - regressão multipla
03   tópico 2 - regressão multipla03   tópico 2 - regressão multipla
03 tópico 2 - regressão multipla
 
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
 
Tabelas do teste f, 10, 5, 1%
Tabelas do teste f, 10, 5, 1%Tabelas do teste f, 10, 5, 1%
Tabelas do teste f, 10, 5, 1%
 
Aula 30 testes de hipóteses
Aula 30   testes de hipótesesAula 30   testes de hipóteses
Aula 30 testes de hipóteses
 
Problema de Pesquisa e Hipóteses Científicas - Profa.Rilva - GESME
Problema de Pesquisa e Hipóteses Científicas - Profa.Rilva - GESMEProblema de Pesquisa e Hipóteses Científicas - Profa.Rilva - GESME
Problema de Pesquisa e Hipóteses Científicas - Profa.Rilva - GESME
 
Delineamento experimental básico
Delineamento experimental básicoDelineamento experimental básico
Delineamento experimental básico
 
Coeficiente de variação
Coeficiente de variaçãoCoeficiente de variação
Coeficiente de variação
 
Aula 12 medidas de dispersão
Aula 12   medidas de dispersãoAula 12   medidas de dispersão
Aula 12 medidas de dispersão
 
Autocorrelação espacial
Autocorrelação espacialAutocorrelação espacial
Autocorrelação espacial
 
06 tópico 5 - heterocedasticidade
06   tópico 5 - heterocedasticidade06   tópico 5 - heterocedasticidade
06 tópico 5 - heterocedasticidade
 
17 hipóteses e variáveis
17 hipóteses e variáveis17 hipóteses e variáveis
17 hipóteses e variáveis
 
Estatistica descritiva
Estatistica descritiva Estatistica descritiva
Estatistica descritiva
 
Pesquisa Qualitativa: Uma Introdução. Profa. Rilva
Pesquisa Qualitativa: Uma Introdução. Profa. RilvaPesquisa Qualitativa: Uma Introdução. Profa. Rilva
Pesquisa Qualitativa: Uma Introdução. Profa. Rilva
 
Pesquisa Qualitativa e Quantitativa
Pesquisa Qualitativa e QuantitativaPesquisa Qualitativa e Quantitativa
Pesquisa Qualitativa e Quantitativa
 

Destaque

Prática de Regressão Espacial
Prática de Regressão EspacialPrática de Regressão Espacial
Prática de Regressão Espacial
Vitor Vieira Vasconcelos
 
Análise de Agrupamentos e Regionalização
Análise de Agrupamentos e RegionalizaçãoAnálise de Agrupamentos e Regionalização
Análise de Agrupamentos e Regionalização
Vitor Vieira Vasconcelos
 
Elaboração de Mapas no QGIS
Elaboração de Mapas no QGISElaboração de Mapas no QGIS
Elaboração de Mapas no QGIS
Vitor Vieira Vasconcelos
 
Informática Aplicada ao Planejamento Territorial - Apresentação
Informática Aplicada ao Planejamento Territorial - ApresentaçãoInformática Aplicada ao Planejamento Territorial - Apresentação
Informática Aplicada ao Planejamento Territorial - Apresentação
Vitor Vieira Vasconcelos
 
Análise Espacial de Eventos Pontuais
Análise Espacial de Eventos PontuaisAnálise Espacial de Eventos Pontuais
Análise Espacial de Eventos Pontuais
Vitor Vieira Vasconcelos
 
Georreferenciamento de fotos (geotagging) no Geosetter
Georreferenciamento de fotos (geotagging) no GeosetterGeorreferenciamento de fotos (geotagging) no Geosetter
Georreferenciamento de fotos (geotagging) no Geosetter
Vitor Vieira Vasconcelos
 
Religião e Sociologia
Religião e SociologiaReligião e Sociologia
Religião e Sociologia
Vitor Vieira Vasconcelos
 
Regressão Espacial
Regressão EspacialRegressão Espacial
Regressão Espacial
Vitor Vieira Vasconcelos
 
Geovisualização Multivariada, Temporal e de Incerteza
Geovisualização Multivariada, Temporal e de IncertezaGeovisualização Multivariada, Temporal e de Incerteza
Geovisualização Multivariada, Temporal e de Incerteza
Vitor Vieira Vasconcelos
 
Autocorrelação espacial - Prática no GEODA
Autocorrelação espacial - Prática no GEODAAutocorrelação espacial - Prática no GEODA
Autocorrelação espacial - Prática no GEODA
Vitor Vieira Vasconcelos
 
Escalas: Conceitos e Aplicações
Escalas: Conceitos e AplicaçõesEscalas: Conceitos e Aplicações
Escalas: Conceitos e Aplicações
Vitor Vieira Vasconcelos
 
Prática com Infraworks 360 Autodesk
Prática com Infraworks 360 AutodeskPrática com Infraworks 360 Autodesk
Prática com Infraworks 360 Autodesk
Vitor Vieira Vasconcelos
 
Aprendizes e Feiticeiros - A Era dos Extremos - Eric Hobsbawn
Aprendizes e Feiticeiros - A Era dos Extremos - Eric HobsbawnAprendizes e Feiticeiros - A Era dos Extremos - Eric Hobsbawn
Aprendizes e Feiticeiros - A Era dos Extremos - Eric Hobsbawn
Vitor Vieira Vasconcelos
 
Robert Merton - Cência, Tecnologia e Sociedade
Robert Merton - Cência, Tecnologia e SociedadeRobert Merton - Cência, Tecnologia e Sociedade
Robert Merton - Cência, Tecnologia e Sociedade
Vitor Vieira Vasconcelos
 
Ciência, Tecnologia e Sociedade - CTS
Ciência, Tecnologia e Sociedade - CTSCiência, Tecnologia e Sociedade - CTS
Ciência, Tecnologia e Sociedade - CTS
Vitor Vieira Vasconcelos
 
Infraestrutura de Dados Espaciais - IDE
Infraestrutura de Dados Espaciais - IDEInfraestrutura de Dados Espaciais - IDE
Infraestrutura de Dados Espaciais - IDE
Vitor Vieira Vasconcelos
 
Análise Espacial Baseada em Localização
Análise Espacial Baseada em LocalizaçãoAnálise Espacial Baseada em Localização
Análise Espacial Baseada em Localização
Vitor Vieira Vasconcelos
 
Análise Espacial Baseada em Distância
Análise Espacial Baseada em DistânciaAnálise Espacial Baseada em Distância
Análise Espacial Baseada em Distância
Vitor Vieira Vasconcelos
 
ျမစ၀္၀္၀ွမွမွမ္း္း္းေဒသ အဖဲြ႔အဲြ႔အ႔ စည္း္းမ်ား (River Basin Organizations) ဘရ...
ျမစ၀္၀္၀ွမွမွမ္း္း္းေဒသ အဖဲြ႔အဲြ႔အ႔ စည္း္းမ်ား (River Basin Organizations) ဘရ...ျမစ၀္၀္၀ွမွမွမ္း္း္းေဒသ အဖဲြ႔အဲြ႔အ႔ စည္း္းမ်ား (River Basin Organizations) ဘရ...
ျမစ၀္၀္၀ွမွမွမ္း္း္းေဒသ အဖဲြ႔အဲြ႔အ႔ စည္း္းမ်ား (River Basin Organizations) ဘရ...
Vitor Vieira Vasconcelos
 
Tutorial de econometria espacial utilizando o stata
Tutorial de econometria espacial utilizando o stataTutorial de econometria espacial utilizando o stata
Tutorial de econometria espacial utilizando o stata
Ricardo Schuch
 

Destaque (20)

Prática de Regressão Espacial
Prática de Regressão EspacialPrática de Regressão Espacial
Prática de Regressão Espacial
 
Análise de Agrupamentos e Regionalização
Análise de Agrupamentos e RegionalizaçãoAnálise de Agrupamentos e Regionalização
Análise de Agrupamentos e Regionalização
 
Elaboração de Mapas no QGIS
Elaboração de Mapas no QGISElaboração de Mapas no QGIS
Elaboração de Mapas no QGIS
 
Informática Aplicada ao Planejamento Territorial - Apresentação
Informática Aplicada ao Planejamento Territorial - ApresentaçãoInformática Aplicada ao Planejamento Territorial - Apresentação
Informática Aplicada ao Planejamento Territorial - Apresentação
 
Análise Espacial de Eventos Pontuais
Análise Espacial de Eventos PontuaisAnálise Espacial de Eventos Pontuais
Análise Espacial de Eventos Pontuais
 
Georreferenciamento de fotos (geotagging) no Geosetter
Georreferenciamento de fotos (geotagging) no GeosetterGeorreferenciamento de fotos (geotagging) no Geosetter
Georreferenciamento de fotos (geotagging) no Geosetter
 
Religião e Sociologia
Religião e SociologiaReligião e Sociologia
Religião e Sociologia
 
Regressão Espacial
Regressão EspacialRegressão Espacial
Regressão Espacial
 
Geovisualização Multivariada, Temporal e de Incerteza
Geovisualização Multivariada, Temporal e de IncertezaGeovisualização Multivariada, Temporal e de Incerteza
Geovisualização Multivariada, Temporal e de Incerteza
 
Autocorrelação espacial - Prática no GEODA
Autocorrelação espacial - Prática no GEODAAutocorrelação espacial - Prática no GEODA
Autocorrelação espacial - Prática no GEODA
 
Escalas: Conceitos e Aplicações
Escalas: Conceitos e AplicaçõesEscalas: Conceitos e Aplicações
Escalas: Conceitos e Aplicações
 
Prática com Infraworks 360 Autodesk
Prática com Infraworks 360 AutodeskPrática com Infraworks 360 Autodesk
Prática com Infraworks 360 Autodesk
 
Aprendizes e Feiticeiros - A Era dos Extremos - Eric Hobsbawn
Aprendizes e Feiticeiros - A Era dos Extremos - Eric HobsbawnAprendizes e Feiticeiros - A Era dos Extremos - Eric Hobsbawn
Aprendizes e Feiticeiros - A Era dos Extremos - Eric Hobsbawn
 
Robert Merton - Cência, Tecnologia e Sociedade
Robert Merton - Cência, Tecnologia e SociedadeRobert Merton - Cência, Tecnologia e Sociedade
Robert Merton - Cência, Tecnologia e Sociedade
 
Ciência, Tecnologia e Sociedade - CTS
Ciência, Tecnologia e Sociedade - CTSCiência, Tecnologia e Sociedade - CTS
Ciência, Tecnologia e Sociedade - CTS
 
Infraestrutura de Dados Espaciais - IDE
Infraestrutura de Dados Espaciais - IDEInfraestrutura de Dados Espaciais - IDE
Infraestrutura de Dados Espaciais - IDE
 
Análise Espacial Baseada em Localização
Análise Espacial Baseada em LocalizaçãoAnálise Espacial Baseada em Localização
Análise Espacial Baseada em Localização
 
Análise Espacial Baseada em Distância
Análise Espacial Baseada em DistânciaAnálise Espacial Baseada em Distância
Análise Espacial Baseada em Distância
 
ျမစ၀္၀္၀ွမွမွမ္း္း္းေဒသ အဖဲြ႔အဲြ႔အ႔ စည္း္းမ်ား (River Basin Organizations) ဘရ...
ျမစ၀္၀္၀ွမွမွမ္း္း္းေဒသ အဖဲြ႔အဲြ႔အ႔ စည္း္းမ်ား (River Basin Organizations) ဘရ...ျမစ၀္၀္၀ွမွမွမ္း္း္းေဒသ အဖဲြ႔အဲြ႔အ႔ စည္း္းမ်ား (River Basin Organizations) ဘရ...
ျမစ၀္၀္၀ွမွမွမ္း္း္းေဒသ အဖဲြ႔အဲြ႔အ႔ စည္း္းမ်ား (River Basin Organizations) ဘရ...
 
Tutorial de econometria espacial utilizando o stata
Tutorial de econometria espacial utilizando o stataTutorial de econometria espacial utilizando o stata
Tutorial de econometria espacial utilizando o stata
 

Semelhante a Regressão Linear Múltipla

Regressao linear
Regressao linearRegressao linear
Regressao linear
Mitsubishi Motors Brasil
 
Bioestatística
 Bioestatística Bioestatística
Bioestatística
felipethoaldo
 
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
Daniel Brandão de Castro
 
Introdução à Regressão Linear
Introdução à Regressão LinearIntrodução à Regressão Linear
Introdução à Regressão Linear
Fernando A. B. Sabino da Silva
 
04 tópico 3 - regressão multipla
04   tópico 3 - regressão multipla04   tópico 3 - regressão multipla
04 tópico 3 - regressão multipla
Ricardo Bruno - Universidade Federal do Pará
 
AMD - Aula n.º 9 - regressão linear múltipla.pptx
AMD - Aula n.º 9 - regressão linear múltipla.pptxAMD - Aula n.º 9 - regressão linear múltipla.pptx
AMD - Aula n.º 9 - regressão linear múltipla.pptx
NunoSilva599593
 
Modelos lineares mistos aplicados em ciências atuariais.
Modelos lineares mistos aplicados em ciências atuariais.Modelos lineares mistos aplicados em ciências atuariais.
Modelos lineares mistos aplicados em ciências atuariais.
Universidade Federal Fluminense
 
Mle Enquadramento Teorico Aula8
Mle Enquadramento Teorico Aula8Mle Enquadramento Teorico Aula8
Mle Enquadramento Teorico Aula8
damas2003
 
Trabalho de analise de regressao 2012 trab2
Trabalho de analise de regressao 2012 trab2Trabalho de analise de regressao 2012 trab2
Trabalho de analise de regressao 2012 trab2
Samuel Orlando Nhantumbo
 
Apresentação contabilometria 6
Apresentação contabilometria 6Apresentação contabilometria 6
Apresentação contabilometria 6
Ingrid M
 
Programa de Equalização em Estatística - 2014 A
Programa de Equalização em Estatística - 2014 APrograma de Equalização em Estatística - 2014 A
Programa de Equalização em Estatística - 2014 A
Sustentare Escola de Negócios
 
Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatística
Juliano van Melis
 
Física experimental - Aula 1.pptx
Física experimental - Aula 1.pptxFísica experimental - Aula 1.pptx
Física experimental - Aula 1.pptx
ssuser3d1cd51
 
2012 - Tese - Análise multivariada e filtros de graham
2012 - Tese - Análise multivariada e filtros de graham2012 - Tese - Análise multivariada e filtros de graham
2012 - Tese - Análise multivariada e filtros de graham
Alysson Ramos Artuso
 
Regressao Linear Simples - Pessupostos
Regressao Linear Simples - PessupostosRegressao Linear Simples - Pessupostos
Regressao Linear Simples - Pessupostos
Anselmo Alves de Sousa
 
Gestão da evasão na EAD: discussão a partir de um modelo preditivo
Gestão da evasão na EAD: discussão a partir de um modelo preditivoGestão da evasão na EAD: discussão a partir de um modelo preditivo
Gestão da evasão na EAD: discussão a partir de um modelo preditivo
ANGRAD
 
Artigos de revisão e metanálise
Artigos de revisão e metanáliseArtigos de revisão e metanálise
Artigos de revisão e metanálise
ESTeSC
 
Introdução à Análise Estatística Multivariada
Introdução à Análise Estatística MultivariadaIntrodução à Análise Estatística Multivariada
Introdução à Análise Estatística Multivariada
Célia M. D. Sales
 
Regressao linear multipla
Regressao linear multiplaRegressao linear multipla
Regressao linear multipla
aniziorochaaraujo
 
Apresentação: OTIMIZAÇÃO DE MÉTODOS DE PROVA EM TABLÔS KE ATRAVÉS DA APLICAÇÃ...
Apresentação: OTIMIZAÇÃO DE MÉTODOS DE PROVA EM TABLÔS KE ATRAVÉS DA APLICAÇÃ...Apresentação: OTIMIZAÇÃO DE MÉTODOS DE PROVA EM TABLÔS KE ATRAVÉS DA APLICAÇÃ...
Apresentação: OTIMIZAÇÃO DE MÉTODOS DE PROVA EM TABLÔS KE ATRAVÉS DA APLICAÇÃ...
surfx
 

Semelhante a Regressão Linear Múltipla (20)

Regressao linear
Regressao linearRegressao linear
Regressao linear
 
Bioestatística
 Bioestatística Bioestatística
Bioestatística
 
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
 
Introdução à Regressão Linear
Introdução à Regressão LinearIntrodução à Regressão Linear
Introdução à Regressão Linear
 
04 tópico 3 - regressão multipla
04   tópico 3 - regressão multipla04   tópico 3 - regressão multipla
04 tópico 3 - regressão multipla
 
AMD - Aula n.º 9 - regressão linear múltipla.pptx
AMD - Aula n.º 9 - regressão linear múltipla.pptxAMD - Aula n.º 9 - regressão linear múltipla.pptx
AMD - Aula n.º 9 - regressão linear múltipla.pptx
 
Modelos lineares mistos aplicados em ciências atuariais.
Modelos lineares mistos aplicados em ciências atuariais.Modelos lineares mistos aplicados em ciências atuariais.
Modelos lineares mistos aplicados em ciências atuariais.
 
Mle Enquadramento Teorico Aula8
Mle Enquadramento Teorico Aula8Mle Enquadramento Teorico Aula8
Mle Enquadramento Teorico Aula8
 
Trabalho de analise de regressao 2012 trab2
Trabalho de analise de regressao 2012 trab2Trabalho de analise de regressao 2012 trab2
Trabalho de analise de regressao 2012 trab2
 
Apresentação contabilometria 6
Apresentação contabilometria 6Apresentação contabilometria 6
Apresentação contabilometria 6
 
Programa de Equalização em Estatística - 2014 A
Programa de Equalização em Estatística - 2014 APrograma de Equalização em Estatística - 2014 A
Programa de Equalização em Estatística - 2014 A
 
Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatística
 
Física experimental - Aula 1.pptx
Física experimental - Aula 1.pptxFísica experimental - Aula 1.pptx
Física experimental - Aula 1.pptx
 
2012 - Tese - Análise multivariada e filtros de graham
2012 - Tese - Análise multivariada e filtros de graham2012 - Tese - Análise multivariada e filtros de graham
2012 - Tese - Análise multivariada e filtros de graham
 
Regressao Linear Simples - Pessupostos
Regressao Linear Simples - PessupostosRegressao Linear Simples - Pessupostos
Regressao Linear Simples - Pessupostos
 
Gestão da evasão na EAD: discussão a partir de um modelo preditivo
Gestão da evasão na EAD: discussão a partir de um modelo preditivoGestão da evasão na EAD: discussão a partir de um modelo preditivo
Gestão da evasão na EAD: discussão a partir de um modelo preditivo
 
Artigos de revisão e metanálise
Artigos de revisão e metanáliseArtigos de revisão e metanálise
Artigos de revisão e metanálise
 
Introdução à Análise Estatística Multivariada
Introdução à Análise Estatística MultivariadaIntrodução à Análise Estatística Multivariada
Introdução à Análise Estatística Multivariada
 
Regressao linear multipla
Regressao linear multiplaRegressao linear multipla
Regressao linear multipla
 
Apresentação: OTIMIZAÇÃO DE MÉTODOS DE PROVA EM TABLÔS KE ATRAVÉS DA APLICAÇÃ...
Apresentação: OTIMIZAÇÃO DE MÉTODOS DE PROVA EM TABLÔS KE ATRAVÉS DA APLICAÇÃ...Apresentação: OTIMIZAÇÃO DE MÉTODOS DE PROVA EM TABLÔS KE ATRAVÉS DA APLICAÇÃ...
Apresentação: OTIMIZAÇÃO DE MÉTODOS DE PROVA EM TABLÔS KE ATRAVÉS DA APLICAÇÃ...
 

Mais de Vitor Vieira Vasconcelos

Relationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversityRelationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversity
Vitor Vieira Vasconcelos
 
Análise espacial de doenças transmissíveis
Análise espacial de doenças transmissíveisAnálise espacial de doenças transmissíveis
Análise espacial de doenças transmissíveis
Vitor Vieira Vasconcelos
 
Fishbanks! Jogo de simulação de gestão de recursos renováveis
Fishbanks! Jogo de simulação de gestão de recursos renováveisFishbanks! Jogo de simulação de gestão de recursos renováveis
Fishbanks! Jogo de simulação de gestão de recursos renováveis
Vitor Vieira Vasconcelos
 
Regimes de Apropriação de Recursos Naturais
Regimes de Apropriação de Recursos NaturaisRegimes de Apropriação de Recursos Naturais
Regimes de Apropriação de Recursos Naturais
Vitor Vieira Vasconcelos
 
Recursos Comuns e Tragédia dos Comuns
Recursos Comuns e Tragédia dos ComunsRecursos Comuns e Tragédia dos Comuns
Recursos Comuns e Tragédia dos Comuns
Vitor Vieira Vasconcelos
 
Relações entre sistemas naturais e sociais
Relações entre sistemas naturais e sociaisRelações entre sistemas naturais e sociais
Relações entre sistemas naturais e sociais
Vitor Vieira Vasconcelos
 
Valoração de Serviços Ecossistêmicos
Valoração de Serviços EcossistêmicosValoração de Serviços Ecossistêmicos
Valoração de Serviços Ecossistêmicos
Vitor Vieira Vasconcelos
 
Recursos Naturais e Serviços Ecossistêmicos
Recursos Naturais e Serviços EcossistêmicosRecursos Naturais e Serviços Ecossistêmicos
Recursos Naturais e Serviços Ecossistêmicos
Vitor Vieira Vasconcelos
 
Bases teóricas e conceituais do Planejamento e da Política Ambiental
Bases teóricas e conceituais do Planejamento e da Política AmbientalBases teóricas e conceituais do Planejamento e da Política Ambiental
Bases teóricas e conceituais do Planejamento e da Política Ambiental
Vitor Vieira Vasconcelos
 
Planejamento territorial
Planejamento territorialPlanejamento territorial
Planejamento territorial
Vitor Vieira Vasconcelos
 
Coremática e Mapeamento Participativo
Coremática e Mapeamento ParticipativoCoremática e Mapeamento Participativo
Coremática e Mapeamento Participativo
Vitor Vieira Vasconcelos
 
Cartografia Social
Cartografia SocialCartografia Social
Cartografia Social
Vitor Vieira Vasconcelos
 
MIgrações
MIgraçõesMIgrações
Conflitos fundiários
Conflitos fundiáriosConflitos fundiários
Conflitos fundiários
Vitor Vieira Vasconcelos
 
Conflitos Territoriais
Conflitos TerritoriaisConflitos Territoriais
Conflitos Territoriais
Vitor Vieira Vasconcelos
 
Chácara Baronesa - Haras São Bernardo
Chácara Baronesa - Haras São BernardoChácara Baronesa - Haras São Bernardo
Chácara Baronesa - Haras São Bernardo
Vitor Vieira Vasconcelos
 
Governo e Território
Governo e TerritórioGoverno e Território
Governo e Território
Vitor Vieira Vasconcelos
 
Segregação e Interação Territorial
Segregação e Interação TerritorialSegregação e Interação Territorial
Segregação e Interação Territorial
Vitor Vieira Vasconcelos
 
Território e Poder
Território e PoderTerritório e Poder
Território e Poder
Vitor Vieira Vasconcelos
 
Operações com dados espaciais (Vetor) em R
Operações com dados espaciais (Vetor) em ROperações com dados espaciais (Vetor) em R
Operações com dados espaciais (Vetor) em R
Vitor Vieira Vasconcelos
 

Mais de Vitor Vieira Vasconcelos (20)

Relationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversityRelationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversity
 
Análise espacial de doenças transmissíveis
Análise espacial de doenças transmissíveisAnálise espacial de doenças transmissíveis
Análise espacial de doenças transmissíveis
 
Fishbanks! Jogo de simulação de gestão de recursos renováveis
Fishbanks! Jogo de simulação de gestão de recursos renováveisFishbanks! Jogo de simulação de gestão de recursos renováveis
Fishbanks! Jogo de simulação de gestão de recursos renováveis
 
Regimes de Apropriação de Recursos Naturais
Regimes de Apropriação de Recursos NaturaisRegimes de Apropriação de Recursos Naturais
Regimes de Apropriação de Recursos Naturais
 
Recursos Comuns e Tragédia dos Comuns
Recursos Comuns e Tragédia dos ComunsRecursos Comuns e Tragédia dos Comuns
Recursos Comuns e Tragédia dos Comuns
 
Relações entre sistemas naturais e sociais
Relações entre sistemas naturais e sociaisRelações entre sistemas naturais e sociais
Relações entre sistemas naturais e sociais
 
Valoração de Serviços Ecossistêmicos
Valoração de Serviços EcossistêmicosValoração de Serviços Ecossistêmicos
Valoração de Serviços Ecossistêmicos
 
Recursos Naturais e Serviços Ecossistêmicos
Recursos Naturais e Serviços EcossistêmicosRecursos Naturais e Serviços Ecossistêmicos
Recursos Naturais e Serviços Ecossistêmicos
 
Bases teóricas e conceituais do Planejamento e da Política Ambiental
Bases teóricas e conceituais do Planejamento e da Política AmbientalBases teóricas e conceituais do Planejamento e da Política Ambiental
Bases teóricas e conceituais do Planejamento e da Política Ambiental
 
Planejamento territorial
Planejamento territorialPlanejamento territorial
Planejamento territorial
 
Coremática e Mapeamento Participativo
Coremática e Mapeamento ParticipativoCoremática e Mapeamento Participativo
Coremática e Mapeamento Participativo
 
Cartografia Social
Cartografia SocialCartografia Social
Cartografia Social
 
MIgrações
MIgraçõesMIgrações
MIgrações
 
Conflitos fundiários
Conflitos fundiáriosConflitos fundiários
Conflitos fundiários
 
Conflitos Territoriais
Conflitos TerritoriaisConflitos Territoriais
Conflitos Territoriais
 
Chácara Baronesa - Haras São Bernardo
Chácara Baronesa - Haras São BernardoChácara Baronesa - Haras São Bernardo
Chácara Baronesa - Haras São Bernardo
 
Governo e Território
Governo e TerritórioGoverno e Território
Governo e Território
 
Segregação e Interação Territorial
Segregação e Interação TerritorialSegregação e Interação Territorial
Segregação e Interação Territorial
 
Território e Poder
Território e PoderTerritório e Poder
Território e Poder
 
Operações com dados espaciais (Vetor) em R
Operações com dados espaciais (Vetor) em ROperações com dados espaciais (Vetor) em R
Operações com dados espaciais (Vetor) em R
 

Último

Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
felipescherner
 
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdfRelatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Falcão Brasil
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 
Relatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdfRelatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdf
Falcão Brasil
 
Planejamento_Anual_Ensino_Fundamental_2020.docx
Planejamento_Anual_Ensino_Fundamental_2020.docxPlanejamento_Anual_Ensino_Fundamental_2020.docx
Planejamento_Anual_Ensino_Fundamental_2020.docx
marcos oliveira
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
shirleisousa9166
 
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdfCALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CristviaFerreira
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Mary Alvarenga
 
A experiência do professor. Publicado EM 08.07.2024
A experiência do professor. Publicado EM 08.07.2024A experiência do professor. Publicado EM 08.07.2024
A experiência do professor. Publicado EM 08.07.2024
Espanhol Online
 
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Falcão Brasil
 
Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
Mary Alvarenga
 
Caderno 1 - Módulo Água JMS 2024 (1).pdf
Caderno 1 -  Módulo Água JMS 2024 (1).pdfCaderno 1 -  Módulo Água JMS 2024 (1).pdf
Caderno 1 - Módulo Água JMS 2024 (1).pdf
SupervisoEMAC
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
Falcão Brasil
 
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
AngelicaCostaMeirele2
 
Infografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UEInfografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UE
Centro Jacques Delors
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
Colaborar Educacional
 
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
Sandra Pratas
 
Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24
DirceuSilva26
 
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
Sandra Pratas
 

Último (20)

Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
 
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdfRelatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdf
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 
Relatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdfRelatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdf
 
Planejamento_Anual_Ensino_Fundamental_2020.docx
Planejamento_Anual_Ensino_Fundamental_2020.docxPlanejamento_Anual_Ensino_Fundamental_2020.docx
Planejamento_Anual_Ensino_Fundamental_2020.docx
 
FOTOS_AS CIÊNCIAS EM AÇÃO .
FOTOS_AS CIÊNCIAS EM AÇÃO                .FOTOS_AS CIÊNCIAS EM AÇÃO                .
FOTOS_AS CIÊNCIAS EM AÇÃO .
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
 
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdfCALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
 
A experiência do professor. Publicado EM 08.07.2024
A experiência do professor. Publicado EM 08.07.2024A experiência do professor. Publicado EM 08.07.2024
A experiência do professor. Publicado EM 08.07.2024
 
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
 
Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
 
Caderno 1 - Módulo Água JMS 2024 (1).pdf
Caderno 1 -  Módulo Água JMS 2024 (1).pdfCaderno 1 -  Módulo Água JMS 2024 (1).pdf
Caderno 1 - Módulo Água JMS 2024 (1).pdf
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
 
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
 
Infografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UEInfografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UE
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
 
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
 
Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24
 
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
 

Regressão Linear Múltipla

  • 1. REGRESSÃO LINEAR Parte II Vitor Vieira Vasconcelos Flávia da Fonseca Feitosa BH1350 – Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2017
  • 2. Leitura de Referência Capítulo 5 Regressão (p. 156-168)
  • 3. Análise de regressão é uma ferramenta estatística que utiliza a relação entre duas ou mais variáveis tal que uma variável possa ser explicada (Y  variável resposta/ dependente) pela outra ou outras (X  variáveis indicadoras/ preditoras/ explicativas/ independentes). Y = aX + b NETER J. et al. Applied Linear Statistical Models. Boston, MA: McGraw-Hill, 1996. ANÁLISE DE REGRESSÃO
  • 4. Um modelo de regressão contendo somente uma variável preditora (X) é denominado modelo de regressão simples. Um modelo com mais de uma variável preditora (X) é denominado modelo de regressão múltiplo. Modelos de Regressão
  • 5. onde: Yi é o valor da variável resposta na i-ésima observação; β0 e β1 são parâmetros; Xi é uma constante conhecida; é o valor da variável preditora na i-ésima observação; ξi é um termo de erro aleatório com média zero e variância constante σ2 (E(ξi)=0 e σ2 (ξi)= σ2 ) ξi e ξj são não correlacionados (independentes) para i j (σ2 (ξi,ξj)= 0 ) Regressão Linear Simples Saídai = (Modeloi) + erroi Lembrando:
  • 6. Yi ξi X Y β0 β1 Coeficiente angular µY = E(Y) = β0 + β1 X Inclinação Populacional Intercepto Populacional Erro Aleatório Variável Preditora Variável Resposta Yi=β0+β1Xi +εi Ŷi=b0+b1Xi εi =Yi-Ŷi Modelo estimado Resíduo Regressão Linear Simples
  • 7. Yi=β0+β1Xi1 + β2Xi2 +…+ βpXip + εi Yi é o valor da variável resposta na i-ésima observação β0, …, βp são parâmetros Xi1 ,…,Xip são os valores das variáveis preditoras na i-ésima observação ξi é um termo de erro aleatório com distribuição normal, média zero e variância constante σ2 (E(ξi )=0 e σ2 (ξi )= σ2 ) ξi e ξj são não correlacionados (independentes) para i j Regressão Linear Múltipla
  • 8. β0 Plano de Regressão • (1,33;1,67) E(Yi) = 20,00 Yi • εi Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html Superfície de Resposta: Função de Regressão na Regressão Linear Múltipla
  • 9. O parâmetro β0 é o intercepto do plano de regressão. Se a abrangência do modelo inclui X1=0 e X2=0 então β0=10 representa a resposta média E(Y) neste ponto. Em outras situações, β0 não tem qualquer outro significado como um termo separado no modelo de regressão. Significado dos Coeficientes de regressão: β0, β1, β2,.., βp Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
  • 10. Parâmetro β1 indica a mudança na resposta média E(Y) por unidade de acréscimo em X1 quando X2 é mantido constante. Da mesma forma, β2 indica a mudança na resposta média por unidade de aumento em X2 quando X1 é mantido constante. “Ceteris Paribus” Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html Significado dos Coeficientes de regressão: β0, β1, β2,.., βp
  • 11. Por exemplo, este é o cachorro Hottie Hottie é um cachorro bonzinho quando vai caminhar, CETERIS PARIBUS Hottie é um cachorro bonzinho quando vai caminhar, desde que... O Sol permanece brilhando, e nenhum esquilo atravesse o seu caminho
  • 12. Conceitualmente, a interpretação de SQTotal, SQResíduos e SQModelo permanece a mesma SQT = SQM + SQR Soma dos Quadrados
  • 13. Quando existem vários previsores (X), utilizamos um coeficiente de correlação múltiplo, denominado R Múltiplo. R Múltiplo: É a correlação (R) entre os valores observados de Y e os de Ŷ previstos pelo modelo de regressão múltiplo Valores Grandes de R múltiplo  Alta correlação entre os valores previstos e observados da variável de saída. R Múltiplo & R2
  • 14. Resumindo: R Múltiplo é uma medida do qual bem o modelo prevê os dados observados. E o R2 resultante? Pode ser interpretado da mesma forma que na regressão simples: É a quantidade de variação em Y que pode ser capturada pelo modelo. R Múltiplo & R2
  • 15. Se estamos interessados em construir um modelo complexo com vários previsores (X1, X2, ..., Xn), como decidir qual deles considerar??? 1. Avalie a importância teórica de cada variável incluída no modelo 2. Explore a relação entre Y e os previsores 3. Utilize um método de seleção dos previsores: Hierárquico (entrada em blocos), Entrada Forçada (Enter), Métodos por passos (Stepwise) Métodos de Regressão
  • 16. 1. HIERÁRQUICO (ENTRADA EM BLOCOS) Previsores selecionados com base em trabalhos anteriores. Pesquisador decide em que ordem devem ser colocados no modelo. 2. ENTRADA FORÇADA (ENTER) Todos os previsores são “forçados” no modelo ao mesmo tempo. Deve basear-se em boas razões teóricas para incluir os previsores escolhidos. Diferentemente da hierárquica, pesquisador não toma decisões sobre a ordem em que variáveis serão acrescentadas. Métodos de Regressão
  • 17. 3. MÉTODOS POR PASSOS (Stepwise) Decisão sobre a ordem em que os previsores são acrescentados ao modelo é baseada em critérios matemáticos. Método Forward (Para frente) Modelo inicial contem apenas a constante (b0). Então procura-se o previsor que melhor “prevê” a variável de saída (maior coef. de correlação) e se ele aumenta significativamente o ajuste do modelo, ele é mantido. Procura-se então um segundo previsor e é verificada sua capacidade de melhor significativamente o ajuste do modelo... E assim por diante. Métodos de Regressão
  • 18. 3. MÉTODOS POR PASSOS (Stepwise) Decisão sobre a ordem em que os previsores são acrescentados ao modelo é baseada em critérios matemáticos. Método Passo a Passo (Stepwise) Semelhante ao Forward. No entanto, cada vez que um previsor é adicionado ao modelo, um teste de remoção é feito sobre o previsor menos útil. Assim, a equação de regressão é acessada constantemente para ver se algum previsor redundante pode ser removido. Métodos de Regressão
  • 19. 3. MÉTODOS POR PASSOS (Stepwise) Decisão sobre a ordem em que os previsores são acrescentados ao modelo é baseada em critérios matemáticos. ** Método Backward (Para trás) ** Oposto do método Forward (para frente). Inicia considerando todos os previsores no modelo e vai retirando os previsores que não contribuem significativamente para o qual bem o modelo “explica” a variável de saída (Y). É preferível em relação ao método Forward, já que o Forward promove um maior risco de eliminar um previsor que de fato contribui para o modelo. Métodos de Regressão
  • 20. Seja seletivo na inclusão de variáveis no modelo! Priorize justificativas teóricas, baseadas em estudos anteriores, literatura... Como regra geral, quanto menos, melhor!!! Métodos de Regressão
  • 21. O quão acurado é meu modelo de regressão??? (1) O modelo representa bem os meus dados, ou ele é influenciado por um número pequeno de casos (valores atípicos e casos influentes)? (2) O modelo pode ser generalizado para outras amostras?
  • 22. O quão acurado é meu modelo de regressão??? (1) O modelo representa bem os meus dados, ou ele é influenciado por um número pequeno de casos (valores atípicos e casos influentes)? (2) O modelo pode ser generalizado para outras amostras?
  • 23. Diagnósticos: Valores Atípicos Um valor atípico (outlier) é um caso que difere substancialmente da maioria dos dados Podem introduzir tendenciosidade no modelo, pois afetarão os valores dos coeficientes de regressão estimados É importante detectar os valores atípicos para ver se o modelo é tendencioso!
  • 24. Diagnósticos: Valores Atípicos RESÍDUOS: Diferença entre valores previstos pelo modelo e os valores observados na amostra Resíduos apresentam o erro que está presente no modelo. Modelo com bom ajuste  Resíduos pequenos Se qualquer caso destacar-se por ter um grande resíduo, ele poderá ser ATÍPICO MAS COMO ESTABELECER O QUE SERIA UM “GRANDE” RESÍDUO???
  • 25. Diagnósticos: Valores Atípicos Converter os resíduos (Yobservado – Yestimado) em escores-z. Ou seja, padronizar os resíduos. LEMBRETE: Escore-z REGRAS GERAIS PARA RESÍDUOS PADRONIZADOS: - Resíduos padronizados com valor maior do que 3,29 (3) são preocupantes porque, em uma amostra, dificilmente acontecem por acaso - Se mais do que 1% da nossa amostra padronizada apresenta erros maiores do que 2,58 (2,5), há evidências de que o nível de erro dentro do nosso modelo é inaceitável (modelo não se ajusta bem). - Se mais do que 5% da nossa amostra tem resíduos padronizados maiores do que 1,96 (2), também há evidências de que nosso modelo é uma representação ruim dos dados. Numa amostra normalmente distribuída: 95% dos escores-z estão entre -1,96 e +1,96 99% estão entre -2,58 e +2,58 99,9% estão entre -3,29 e +3,29
  • 26. Diagnósticos: Casos Influentes Além de procurar valores atípicos olhando para os erros do modelo, também é possível buscar os casos que influenciam demasiadamente os parâmetros do modelo Se retirássemos determinados casos, teríamos coeficientes de regressão diferentes??? Objetivo da análise: determinar se o modelo de regressão é estável para toda a amostra ou se ele pode estar sendo influenciado somente por poucos casos (atípicos).
  • 27. Diagnósticos: Casos Influentes Alguns métodos para determinação de casos influentes: 1. VALOR PREVISTO AJUSTADO Calcula-se um novo modelo sem o caso em questão e usa-se este novo modelo para “prever” o valor que este caso teria. Se o caso não tem grande influência: Pouca diferença entre valor previsto (pelo modelo que considera o caso) e valor previsto ajustado (pelo modelo que NÃO considera o caso)  Modelo Estável DFFIT  Diferença entre valor previsto ajustado e valor previsto original (DFFit padronizado)
  • 28. Diagnósticos: Casos Influentes Alguns métodos para determinação de casos influentes: 2. DFBETA (DFBETA PADRONIZADO) Diferença entre 1 parâmetro estimado utilizando todos os casos e estimado quando um caso é excluído. É calculado para cada caso e para cada um dos parâmetros do modelo. Valores do DFBETA padronizado acima de 1 indicam casos que substancialmente influenciam os parâmetros do modelo
  • 29. Diagnósticos: Casos Influentes Alguns métodos para determinação de casos influentes: 3. DISTÂNCIA DE COOK Medida da influência global de um caso sobre o modelo. 4. INFLUÊNCIA (LEVERAGE) – Valores Chapéu (Hat Values) Mede o quanto um valor observado influencia o valor previsto na saída. Os valores de “influência” variam entre 0 (caso sem influência) e 1 (caso com total influência sobre a previsão)
  • 30. Diferença entre Resíduos e Estatísticas de Influência O Caso 8, que é um valor atípico muito influente, mas apresenta um resíduo bem pequeno (está próximo da linha que foi ajustada aos dados). Por isso é importante analisar tanto os resíduos quanto as estatísticas de influência.
  • 31. O quão acurado é meu modelo de regressão??? (1) O modelo representa bem os meus dados, ou ele é influenciado por um número pequeno de casos (valores atípicos e casos influentes)? (2) O modelo pode ser generalizado para outras amostras?
  • 32. Quando realizamos uma análise de regressão, estimamos os parâmetros de uma equação a partir dos dados de nossa amostra. Mas será que podemos generalizar nosso modelo, ou seja, tirar conclusões (fazer inferências) para além da nossa amostra?  Para generalizar um modelo de regressão, devemos estar seguros de que certas suposições foram satisfeitas, e para testar se o modelo de fato é generalizável, podemos fazer uma validação cruzada.  Se acharmos que nosso modelo não é generalizável, devemos restringir qualquer conclusão baseada no modelo à amostra utilizada Generalização
  • 33. Para tirar conclusões sobre uma população com base em um modelo de regressão realizado sobre uma amostra, algumas suposições devem ser verdadeiras. 1. Tipos de Variáveis Variáveis explicativas (X) devem ser quantitativas ou categóricas; enquanto a variável de resposta (Y) deve ser quantitativa, contínua e não limitada. Não limitada significa que não deve haver restrições na variabilidade da saída. Se a saída é uma medida que varia de 1 a 10 e os dados coletados variam entre 3 e 7, então esses dados são restritos. Suposições
  • 34. MEU HOBBY: EXTRAPOLAÇÃO Número de Maridos Como você pode ver, pelo fim do mês você terá mais que quatro dúzias de maridos. É melhor pedir um desconto por atacado para bolos de casamento.
  • 35. 2. Distribuição Normal Para um valor fixo da variável aleatória X, Y é uma variável aleatória com distribuição Normal (com média e variâncias finitas); Yi ~ N(E(y/x); σ2) OBS: Os previsores (X) não precisam ser normalmente distribuídos  Resíduos do modelo deverão ser normalmente distribuídos, com média zero (variável aleatória) Suposições
  • 37. 3. Linearidade Todos os valores médios de Y (E(y/x)=μY/x) permanecem sobre uma reta, para um particular valor de X. E(y/x)=μy/x = β0 + β1x Em outras palavras, assumimos que o relacionamento que estamos modelando é do tipo linear Suposições
  • 38. Esclarecimentos sobre a “linearidade” do modelo O Termo “linear” representa a forma como os parâmetros entram no modelo. O modelo Yi=β0+β1X1i+β2X2i 2 embora graficamente represente uma parábola, é um modelo linear em β0, β1 e β2 . Já o modelo Yi=β0eβ1Xi não é um modelo linear em β0 e β1 .
  • 39. 4. Independência Os valores de Yi e Yj são estatisticamente independentes (falta de autocorrelação).  Resíduos do modelo deverão ser independentes (falta de autocorrelação). Teste de Durbin-Watson pode ser aplicado sobre os resíduos da regressão, para testar a correlação serial entre erros. A estatística teste pode variar entre 0 e 4, com 2 indicando que os erros não são correlacionados. Se maior que 2, indicação de correlação negativa entre resíduos adjacentes. Se menor que 2, indicação de correlação positiva. Suposições
  • 41. Resumo da situação: para qualquer valor Xi, a média de Yi é µi = β0 + β1Xi + ... + βnXn. As médias estão sobre a linha reta para todos os valores de X. Devido aos erros aleatórios, os valores de Yi se distribuem ao redor da reta. Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
  • 42. 5. Homocedasticidade A variância de Y é igual, qualquer que seja X.  A cada nível de X, a variância do termo residual deve ser constante. Quando as variâncias são desiguais, diz-se que existe heterocedasticidade. Suposições
  • 43. A figura mostra a distribuição de Y para vários valores de X. Mostra onde cai a observação Y1. Mostra que o erro é a diferença entre Y1 e E(Y1). Observe que as distribuições de probabilidade apresentam a mesma variabilidade. Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html
  • 44. 6. Multicolinearidade As variáveis previsoras (X) incluídas no modelo não devem apresentar correlação muito alta entre si. Exemplo (extremo) : Se existir uma colinearidade (c0rrelação) perfeita entre X1 e X2, torna-se impossível obter uma estimativa única dos coeficientes de regressão. Existirá um número infinito de coeficientes que funcionarão igualmente bem! A medida que a colinearidade aumenta, também aumenta o erro padrão dos coeficientes b, o que afeta a significância estatística destes coeficientes. Ou seja, aumentam a probabilidade de que um bom previsor (X) seja declarado não significativo e excluído do modelo Suposições
  • 45. 6. Multicolinearidade Como identificar???  Analisar correlação entre variáveis previsoras (X): matriz de correlação  Diagnóstico FIV (Fator de Inflação da Variância) Indica se um previsor tem um relacionamento linear forte com outro(s) previsor(es). Suposições
  • 46. População Domicílios Renda Familiar Taxade Emprego Renda Familiar Renda FamiliarDomicílios
  • 48. Resumo: 1. Variáveis explicativas (X) quantitativas ou categóricas; e variável de resposta (Y) quantitativa, contínua e não limitada. 2. Distribuição Normal de Y e dos erros 3. Linearidade 4. Independência de autocorrelação em Y e nos erros 5. Homocedasticidade 6. Multicolinearidade Suposições
  • 49. Quando as suposições são consideradas, o modelo que obtemos de uma amostra pode ser aplicado para a população de interesse (os coeficientes da equação não são tendenciosos). Modelo não tendencioso  Nos diz que, em média, o modelo de regressão obtido a partir de uma amostra é o mesmo que o modelo populacional. Entretanto, mesmo quando as suposições são satisfeitas, é possível que um modelo obtido a partir de uma amostra não seja igual ao modelo populacional. Suposições
  • 50. Existem maneiras de determinar o quão bem nosso modelo pode prever a saída em uma amostra diferente. Validação Cruzada  técnica para determinar a precisão de um modelo entre diferentes amostras. Se o modelo é aplicado a uma amostra distinta e existe uma grande diferença na sua capacidade de previsão, então o modelo não é generalizável. DIVISÃO DOS DADOS: Dividir ao acaso o conjunto de dados em dois, determinar a equação de regressão em cada uma das 2 metades e comparar os modelos resultantes. Validação Cruzada
  • 52. Atenção!!! Os próximos slides são bem importantes!
  • 53. 1. Seleção e Preparação das Variáveis Selecionar variáveis previsoras (X) para as quais existem razões teóricas para esperar que prevejam bem o resultado. Diagramas de Dispersão e Matriz de Correlações Verificar as correlações entre variáveis: As variáveis X devem ser correlacionadas com Y, mas não entre si  primeira análise de multicolinearidade Verificar se as relações entre X e Y são lineares  Transformações podem ser necessárias para linearizar relações. Etapas da Análise de Regressão
  • 54. Diagramas de Dispersão: Por que são tão importantes? Quarteto de Anscombe: Esses quatro conjuntos de dados possuem as mesmas propriedades estatísticas... I II III IV x y x y x y x y 10,0 8,04 10,0 9,14 10,0 7,46 8,0 6,58 8,0 6,95 8,0 8,14 8,0 6,77 8,0 5,76 13,0 7,58 13,0 8,74 13,0 12,74 8,0 7,71 9,0 8,81 9,0 8,77 9,0 7,11 8,0 8,84 11,0 8,33 11,0 9,26 11,0 7,81 8,0 8,47 14,0 9,96 14,0 8,10 14,0 8,84 8,0 7,04 6,0 7,24 6,0 6,13 6,0 6,08 8,0 5,25 4,0 4,26 4,0 3,10 4,0 5,39 19,0 12,50 12,0 10,84 12,0 9,13 12,0 8,15 8,0 5,56 7,0 4,82 7,0 7,26 7,0 6,42 8,0 7,91 5,0 5,68 5,0 4,74 5,0 5,73 8,0 6,89 Propriedade Valor Média de x 9,00 Variância de x 10,00 Média de y 7,50 Variância de y 3,75 Correlação 0,898 Regressão linear y = 2,50 + 0,500x Slides: Marcos Pó F.J. Anscombe, "Graphs in Statistical Analysis," American Statistician, 27 (February 1973), 17-21.
  • 55. Diagramas de Dispersão: Por que são tão importantes? Slides: Marcos Pó ... mas são bem diferentes graficamente.
  • 56. 1. Seleção e Preparação das Variáveis Selecionar variáveis previsoras (X) para as quais existem razões teóricas para esperar que prevejam bem o resultado. Diagramas de Dispersão e Matriz de Correlações Verificar as correlações entre variáveis: As variáveis X devem ser correlacionadas com Y, mas não entre si  primeira análise de multicolinearidade Verificar se as relações entre X e Y são lineares  Transformações podem ser necessárias para linearizar relações. Etapas da Análise de Regressão
  • 57. Transformações quando a distribuição dos erros é aproximadamente normal e com variância constante. Deve-se realizar uma transformação apenas na variável X. Padrões de relação entre X e Y: Transformações para não-linearidade do modelo XX XX = = ' log10 ' )exp(' 2' XX XX = =
  • 60. 1. Seleção e Preparação das Variáveis 2. Escolha e Ajuste do Modelo de Regressão  Uma estratégia seria executar a regressão para todos os previsores (X) selecionados e examinar a saída para ver quais contribuem substancialmente para o modelo.  Uma vez determinada quais são as variáveis importantes, execute novamente a análise incluindo somente essas variáveis e utilize as estimativas dos parâmetros resultantes para definir o modelo de regressão. Etapas da Análise de Regressão
  • 61. 1. Seleção e Preparação das Variáveis 2. Escolha e Ajuste do Modelo de Regressão  Se a análise inicial revelar que existem 2 ou mais previsores significativos, pode-se considerar a execução de uma análise stepwise, ao invés de uma entrada forçada (Enter) a fim de encontrar a contribuição individual de cada previsor. Etapas da Análise de Regressão
  • 62. 1. Seleção e Preparação das Variáveis 2. Escolha e Ajuste do Modelo de Regressão 3. Diagnóstico para verificar se o modelo ajustado é adequado  Ajuste do modelo (R2, Teste F, Testes t para coef.)  Multicolinearidade (FIV)  Análise dos Resíduos Etapas da Análise de Regressão
  • 63. Se modelo for adequado, resíduos devem refletir as propriedades impostas pelo termo de erro do modelo. LINEARIDADE DO MODELO Análise dos Resíduos Não Linearidade 0 X Resíduo
  • 64. NORMALIDADE DOS RESÍDUOS: Suposição essencial para que os resultados do ajuste do modelo sejam confiáveis. Análise dos Resíduos Outros diagnósticos: Shapiro-Wilk, Anderson-Darling, Kolmogorov-Smirnov
  • 65. HOMOCEDASTICIDADE (Variância Constante) Análise dos Resíduos Outros diagnósticos: Teste de Breush-Pagan. 0 X Variância Não Constante (heterocedasticidade) Resíduo
  • 66. PRESENÇA DE OUTLIERS Gráfico resíduos padronizados vs. Valores Ajustados Análise dos Resíduos Pontos Influentes: DFFITS, DFBETA, Distância de Cook. -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 150 155 160 165 170 175 180 185 X ResíduosPadronizados
  • 67. INDEPENDÊNCIA Gráfico resíduos padronizados vs. Valores Ajustados Análise dos Resíduos Outros Diagnósticos: Teste de Durbin-Watson Autocorrelação espacial: Mapa dos resíduos, Índice de Moran X 0 Erros Correlacionados Resíduo
  • 68. Análise dos Resíduos Quais dessas plotagens mostram normalidade dos resíduos? Quais os problemas das outras? Bussab;Morettin,2002:456 Slide: Marcos Pó