SlideShare uma empresa Scribd logo
Em Lógica, estudamos como demonstrar a
validade de argumentos formais na forma P → Q.
Neste contexto, a validade do argumento é
absoluta (depende apenas da forma ou estrutura
do argumento e não do conteúdo ou significado
das proposições).
No entanto, muitas vezes queremos provar
argumentos que são verdadeiros em um determinado
contexto (para uma interpretação particular).
Queremos provar que P → Q é verdadeiro para um
contexto específico. Podemos usar fatos que
dependem do contexto como hipóteses e então
provar que o argumento é verdadeiro (Teorema).
Não existe uma receita para demonstração de
Teoremas. Muitas vezes, é muito difícil demonstrar
teoremas utilizando Lógica Formal.
Existem técnicas de demonstração “menos formais”:
‣ não usam elementos das lógicas proposicional e de
predicados;
‣ não são escritas passo a passo, com justificativas formais a
cada passo.
‣ os passos de dedução e raciocínio são explicados em
linguagem natural.
Entretanto, essas demonstrações podem ser descritas com
Lógica Formal.
Conjectura
• Podemos formular uma conjectura por
meio de raciocínio indutivo
‣ concluir algo baseado na experiência
• Podemos entender uma conjectura como
um argumento que não se sabe se é
verdadeiro ou não.
Teorema
• Se provamos que uma conjectura é
verdadeira, então ela se torna um Teorema.
‣ Para isso podemos usar raciocínio dedutivo
(técnicas de demonstração)
• Podemos provar que uma conjectura é falsa
encontrando um contra-exemplo (um caso
em que P é verdadeiro e Q é falso)
Exemplo
• Prove ou encontre um contra-exemplo
para a seguinte conjectura:
‣ “Para todo número inteiro positivo n, n! ≤ n2”.
Técnicas de
Demonstração
Sumário
• Técnicas básicas de demonstração
• Primeiro Princípio da Indução
• Segundo Princípio da Indução
Técnicas Básicas de
Demonstração
• Demonstração por Exaustão
• Demonstração Direta
• Demonstração por Contraposição
• Demonstração por Absurdo
Demonstração
Exaustiva
• Se uma conjectura é uma asserção sobre
uma coleção finita de elementos, sua
validade pode ser provada verificando-se se
ela é verdadeira para cada elemento
coleção.
‣ consiste em exaurir todos os casos possíveis.
Exemplo
• Prove a conjectura:
‣ “Se um inteiro entre 1 e 20 é divisível por 6,
então ele é também divisível por 3”
Demonstração Direta
• Consiste em supor que a hipótese P é
verdadeira e então deduzir a conclusão Q
Exemplo
• Prove a conjectura:
‣ Se x e y são números inteiros pares, então o
produto xy é um número inteiro par.
Sabemos que se z é um número inteiro par,
então existe um número inteiro k,
tal que z = 2k. (definição de um número par).
Sejam x = 2m e y = 2n,
onde m e n são inteiros.
Então xy = (2m)(2n) = 2(2mn),
onde 2mn é um inteiro.
Logo o produto xy tem a forma 2k,
onde k = 2mn é um inteiro,
e, portanto, é par, como queríamos
demonstrar
Contraposição
• Demonstração por contraposição consiste
na técnica de provar P → Q através da
demonstração direta de Q′ → P′.
‣ Sabemos que (Q′ → P′) → (P → Q)
‣ Q′ → P′ é a contrapositiva de (P → Q)
Exemplo
• Prove que a seguinte conjectura:
‣ Se n2 é ímpar, então n é ímpar.
n2 é ímpar → n é ímpar
A contrapositiva é:
n é par → n2 é par
Temos que n2 = nn
Como n é par, n = 2k.
Assim, n2 = 2k 2k = 2(k+k).
Portanto, n2 é par.
Demonstração por
Absurdo
• (P ∧ Q′ → 0) → (P → Q) é uma tautologia
• Assim, para provar a conjectura P → Q,
basta provar que P ∧ Q′ → 0
• Ou seja, em uma demonstração por
absurdo, supomos que a hipótese e a
negação da conclusão são ambas
verdadeiras e tentamos deduzir uma
contradição.
Exemplo
• Prove por absurdo a proposição:
‣ “Se um número somado a ele mesmo é igual a
ele mesmo, então esse número é 0.”
‣ Se x+x=x, então x=0.
‣ x+x=x → x=0
Proposição: x+x=x → x=0
Suponhamos P ∧ Q′ → 0:
(x+x=x) ∧ (x≠0) → 0
Ou seja, x+x=x e x é diferente de zero.
Assim, 2x=x e x≠0.
Como x≠0, podemos dividir ambos os lados da primeira
equação por x. Logo,
2x/x = x/x
2 = 1
O que é uma contradição, portando x+x=x → x=0.
Técnica
Abordagem para provar
P → Q
Observações
Exaustão
Demonstrar P → Q
para todos os casos.
É viável apenas para
um número finito de
casos.
Direta Suponha P, deduza Q.
Contraposição Suponha Q′, deduza P′.
Absurdo
Suponha P ∧ Q′,
chegue a uma
contradição.
Indicada para os
casos em que Q diz
que algo não é
verdade.
Exercício
• Prove as seguintes conjecturas:
‣ “Para todo inteiro positivo n, n2+n+1 é primo”;
‣ “Se n=25, 100 ou 169, então n é um quadrado
perfeito e também é uma soma de dois
quadrados perfeitos”;
‣ “a soma de dois inteiros ímpares é par”.
Exercício
• Demonstre que, dados dois números
inteiros positivos x e y,
‣ x < y se, e somente se, x2 < y2
Resumo
• O raciocínio indutivo é usado para formular
uma conjectura baseada na experiência.
• O raciocínio dedutivo é usado para provar
uma conjectura ou refutá-la através de um
contra-exemplo.
• Ao provar uma conjectura sobre algum
assunto, pode-se usar fatos sobre o assunto.
Problema?
• Demonstre que:
‣ 1+2+3+...+n = [n(n+1)]/2
• Podemos usar demonstração exaustiva ou
direta?
Sumário
• Técnicas básicas de demonstração
• Primeiro Princípio da Indução
• Segundo Princípio da Indução
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
a) Eu consigo subir até o primeiro degrau.
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
b) Estando no primeiro degrau, eu consigo
subir até o segundo.
a) Eu consigo subir até o primeiro degrau.
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
b) Estando no primeiro degrau, eu consigo
subir até o segundo.
a) Eu consigo subir até o primeiro degrau.
c) Estando no segundo degrau, eu consigo
subir até o terceiro.
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
b) Estando no primeiro degrau, eu consigo
subir até o segundo.
a) Eu consigo subir até o primeiro degrau.
c) Estando no segundo degrau, eu consigo
subir até o terceiro.
...
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
a) Eu consigo subir até o primeiro degrau.
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
b) Se eu estou em algum degrau, eu
consigo subir até o próximo.
a) Eu consigo subir até o primeiro degrau.
Demonstre que você consegue subir até
o n-ésimo degrau de uma escada!
b) Se eu estou em algum degrau, eu
consigo subir até o próximo.
a) Eu consigo subir até o primeiro degrau.
Portanto, eu consigo subir n degraus.
Primeiro Princípio de
Indução Matemática
P(1) ∧ (∀k)[P(k)→P(k+1)] →(∀n)P(n),
k, n são inteiros positivos
P(1) é a base da indução;
(∀k)[P(k)→P(k+1)] é o passo indutivo,
onde P(k) é a hipótese de indução.
Passos para demonstração
usando o primeiro princípio
indução
1. Prove a base da indução
2. Suponha P(k)
3. Prove P(k+1)
Exemplo
• Demonstre que:
‣ 1+2+3+...+n = [n(n+1)]/2
Exercício
• Usando o primeiro princípio de indução,
demonstre que:
‣ A soma dos n primeiros números ímpares é
igual a n2.
‣ Para qualquer inteiro positivo n, o número 22n-1
é divisível por 3.
Sumário
• Técnicas básicas de demonstração
• Primeiro Princípio da Indução
• Segundo Princípio da Indução
Segundo Princípio de
Indução
Se
P(1) é verdade e
(∀k)[P(r) → P(k+1), 1≤ r ≤ k,
então
(∀n)P(n)
• Em geral, as propriedades podem ser
demonstradas por ambas as formas de
indução. Mas, para a maioria dos problemas,
existe uma forma mais apropriada.
‣ A diferença entre as formas está apenas na
hipótese de indução
• Usamos a segunda forma quando:
‣ o problema se divide no meio ao invés de
crescer em um dos lados.
‣ o caso k+1 depende de resultados anteriores a k
Exemplo
• Demonstre que para n ≥ 2, n é um número
primo ou é um produto de números
primos.
Exemplo 2
• Prove que qualquer franquia postal, maior
ou igual a 8 centavos, pode ser obtida
usando-se selos de 3 e 5 centavos.
‣ P(n): para se obter n centavos em selos precisa-
se apenas de selos de 3 e 5 centavos (n ≥ 8)
Resumo
• A Indução Matemática é uma técnica para
provar propriedades de números inteiros
positivos
• Uma demonstração por indução não precisa
começar com 1.
• As propriedades podem ser demonstradas
por qualquer um dos princípios de indução,
mas uma das formas pode ser mais
apropriada em cada caso.

Mais conteúdo relacionado

Mais procurados

Regra de três simples e composta
Regra de três simples e compostaRegra de três simples e composta
Regra de três simples e composta
Marcelo Pinheiro
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
demervalm
 
Cap4 - Parte 3 - Distribuição Binomial
Cap4 - Parte 3 - Distribuição BinomialCap4 - Parte 3 - Distribuição Binomial
Cap4 - Parte 3 - Distribuição Binomial
Regis Andrade
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
estrelaeia
 
Triângulos
TriângulosTriângulos
Triângulos
Rodrigo Carvalho
 
Volume e capacidade
Volume e capacidadeVolume e capacidade
Volume e capacidade
Professor Carlinhos
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
Herlan Ribeiro de Souza
 
Razao e proporção
Razao e proporçãoRazao e proporção
Razao e proporção
Jéssica Oliveira
 
Quadriláteros
Quadriláteros Quadriláteros
Quadriláteros
Rodrigo Carvalho
 
Notação cientifica
Notação cientificaNotação cientifica
Notação cientifica
Murilo Martins
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
Ubirajara Neves
 
Algebra Linear cap 07
Algebra Linear cap 07Algebra Linear cap 07
Algebra Linear cap 07
Andrei Bastos
 
TERMOLOGIA
TERMOLOGIATERMOLOGIA
Aula de fração
Aula de fraçãoAula de fração
Aula de fração
Neilor
 
Expressões numéricas
Expressões numéricasExpressões numéricas
Expressões numéricas
Helena Borralho
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
giselelamas
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
Ariosvaldo Carvalho
 
AULÃO DE MATEMÁTICA PARA O ENEM.pptx
AULÃO DE MATEMÁTICA PARA O ENEM.pptxAULÃO DE MATEMÁTICA PARA O ENEM.pptx
AULÃO DE MATEMÁTICA PARA O ENEM.pptx
rildenir
 
Plano cartesiano ppt
Plano cartesiano pptPlano cartesiano ppt
Plano cartesiano ppt
Newton Sérgio Lima
 
Aula 22 probabilidade - parte 1
Aula 22   probabilidade - parte 1Aula 22   probabilidade - parte 1

Mais procurados (20)

Regra de três simples e composta
Regra de três simples e compostaRegra de três simples e composta
Regra de três simples e composta
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Cap4 - Parte 3 - Distribuição Binomial
Cap4 - Parte 3 - Distribuição BinomialCap4 - Parte 3 - Distribuição Binomial
Cap4 - Parte 3 - Distribuição Binomial
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 
Triângulos
TriângulosTriângulos
Triângulos
 
Volume e capacidade
Volume e capacidadeVolume e capacidade
Volume e capacidade
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
 
Razao e proporção
Razao e proporçãoRazao e proporção
Razao e proporção
 
Quadriláteros
Quadriláteros Quadriláteros
Quadriláteros
 
Notação cientifica
Notação cientificaNotação cientifica
Notação cientifica
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
 
Algebra Linear cap 07
Algebra Linear cap 07Algebra Linear cap 07
Algebra Linear cap 07
 
TERMOLOGIA
TERMOLOGIATERMOLOGIA
TERMOLOGIA
 
Aula de fração
Aula de fraçãoAula de fração
Aula de fração
 
Expressões numéricas
Expressões numéricasExpressões numéricas
Expressões numéricas
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
AULÃO DE MATEMÁTICA PARA O ENEM.pptx
AULÃO DE MATEMÁTICA PARA O ENEM.pptxAULÃO DE MATEMÁTICA PARA O ENEM.pptx
AULÃO DE MATEMÁTICA PARA O ENEM.pptx
 
Plano cartesiano ppt
Plano cartesiano pptPlano cartesiano ppt
Plano cartesiano ppt
 
Aula 22 probabilidade - parte 1
Aula 22   probabilidade - parte 1Aula 22   probabilidade - parte 1
Aula 22 probabilidade - parte 1
 

Destaque

Matemática Discreta - Parte III definicoes indutivas
Matemática Discreta - Parte III definicoes indutivasMatemática Discreta - Parte III definicoes indutivas
Matemática Discreta - Parte III definicoes indutivas
Ulrich Schiel
 
Matemática Discreta - Introdução
Matemática Discreta - IntroduçãoMatemática Discreta - Introdução
Matemática Discreta - Introdução
Ulrich Schiel
 
Lista 1 - FUV - Resolução
Lista 1 - FUV - ResoluçãoLista 1 - FUV - Resolução
Lista 1 - FUV - Resolução
Rodrigo Thiago Passos Silva
 
Matemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntosMatemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntos
Ulrich Schiel
 
Logica
LogicaLogica
Logica
Lyn Takenaka
 
Drummond
DrummondDrummond
Drummond
Erica Frau
 
Marcio ufms
Marcio  ufmsMarcio  ufms
Marcio ufms
Neon Online
 
Windows 7
Windows 7Windows 7
Windows 7
Chromus Master
 
05 raciocínio lógico 2014 - agente-pf
05 raciocínio lógico 2014 - agente-pf05 raciocínio lógico 2014 - agente-pf
05 raciocínio lógico 2014 - agente-pf
Neon Online
 
4 Hume
4 Hume 4 Hume
4 Hume
Erica Frau
 
Lista 3 - Bases Matemáticas - Indução
Lista 3  - Bases Matemáticas - InduçãoLista 3  - Bases Matemáticas - Indução
Lista 3 - Bases Matemáticas - Indução
Rodrigo Thiago Passos Silva
 
06.4 informática questões + provas_2014 - agente-pf
06.4 informática questões + provas_2014 - agente-pf06.4 informática questões + provas_2014 - agente-pf
06.4 informática questões + provas_2014 - agente-pf
Neon Online
 
Matemática Discreta - Parte VI funções
Matemática Discreta - Parte VI funçõesMatemática Discreta - Parte VI funções
Matemática Discreta - Parte VI funções
Ulrich Schiel
 
Lingua portuguesa - pf
Lingua portuguesa  - pfLingua portuguesa  - pf
Lingua portuguesa - pf
Neon Online
 
Nc mat. básica teoria e questões_2015.1 - completa
Nc mat. básica teoria e questões_2015.1 -  completaNc mat. básica teoria e questões_2015.1 -  completa
Nc mat. básica teoria e questões_2015.1 - completa
Neon Online
 
Ronaldo ufms
Ronaldo  ufmsRonaldo  ufms
Ronaldo ufms
Neon Online
 
05 raciocínio lógico 2014 - agente-pf
05 raciocínio lógico 2014 - agente-pf05 raciocínio lógico 2014 - agente-pf
05 raciocínio lógico 2014 - agente-pf
Neon Online
 
Língua portuguesa msgás - completa
Língua  portuguesa   msgás - completaLíngua  portuguesa   msgás - completa
Língua portuguesa msgás - completa
Neon Online
 
Lógica Matemática: Proposição I
Lógica Matemática: Proposição ILógica Matemática: Proposição I
Lógica Matemática: Proposição I
qieducacao
 
Inss raciocinio-garcia
Inss raciocinio-garciaInss raciocinio-garcia
Inss raciocinio-garcia
Neon Online
 

Destaque (20)

Matemática Discreta - Parte III definicoes indutivas
Matemática Discreta - Parte III definicoes indutivasMatemática Discreta - Parte III definicoes indutivas
Matemática Discreta - Parte III definicoes indutivas
 
Matemática Discreta - Introdução
Matemática Discreta - IntroduçãoMatemática Discreta - Introdução
Matemática Discreta - Introdução
 
Lista 1 - FUV - Resolução
Lista 1 - FUV - ResoluçãoLista 1 - FUV - Resolução
Lista 1 - FUV - Resolução
 
Matemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntosMatemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntos
 
Logica
LogicaLogica
Logica
 
Drummond
DrummondDrummond
Drummond
 
Marcio ufms
Marcio  ufmsMarcio  ufms
Marcio ufms
 
Windows 7
Windows 7Windows 7
Windows 7
 
05 raciocínio lógico 2014 - agente-pf
05 raciocínio lógico 2014 - agente-pf05 raciocínio lógico 2014 - agente-pf
05 raciocínio lógico 2014 - agente-pf
 
4 Hume
4 Hume 4 Hume
4 Hume
 
Lista 3 - Bases Matemáticas - Indução
Lista 3  - Bases Matemáticas - InduçãoLista 3  - Bases Matemáticas - Indução
Lista 3 - Bases Matemáticas - Indução
 
06.4 informática questões + provas_2014 - agente-pf
06.4 informática questões + provas_2014 - agente-pf06.4 informática questões + provas_2014 - agente-pf
06.4 informática questões + provas_2014 - agente-pf
 
Matemática Discreta - Parte VI funções
Matemática Discreta - Parte VI funçõesMatemática Discreta - Parte VI funções
Matemática Discreta - Parte VI funções
 
Lingua portuguesa - pf
Lingua portuguesa  - pfLingua portuguesa  - pf
Lingua portuguesa - pf
 
Nc mat. básica teoria e questões_2015.1 - completa
Nc mat. básica teoria e questões_2015.1 -  completaNc mat. básica teoria e questões_2015.1 -  completa
Nc mat. básica teoria e questões_2015.1 - completa
 
Ronaldo ufms
Ronaldo  ufmsRonaldo  ufms
Ronaldo ufms
 
05 raciocínio lógico 2014 - agente-pf
05 raciocínio lógico 2014 - agente-pf05 raciocínio lógico 2014 - agente-pf
05 raciocínio lógico 2014 - agente-pf
 
Língua portuguesa msgás - completa
Língua  portuguesa   msgás - completaLíngua  portuguesa   msgás - completa
Língua portuguesa msgás - completa
 
Lógica Matemática: Proposição I
Lógica Matemática: Proposição ILógica Matemática: Proposição I
Lógica Matemática: Proposição I
 
Inss raciocinio-garcia
Inss raciocinio-garciaInss raciocinio-garcia
Inss raciocinio-garcia
 

Semelhante a Demonstrações

Aula sobre prova de teoremas
Aula sobre prova de teoremasAula sobre prova de teoremas
Aula sobre prova de teoremas
Carlos Campani
 
Aula 7 inducao matematica-primeiroprincipio
Aula 7   inducao matematica-primeiroprincipioAula 7   inducao matematica-primeiroprincipio
Aula 7 inducao matematica-primeiroprincipio
wab030
 
Aula 8 inducao matematica
Aula 8   inducao matematicaAula 8   inducao matematica
Aula 8 inducao matematica
wab030
 
PROVAS DE TEOREMAS
PROVAS DE TEOREMASPROVAS DE TEOREMAS
PROVAS DE TEOREMAS
Carlos Campani
 
Notas de aula 01 2015-2
Notas de aula 01 2015-2Notas de aula 01 2015-2
Notas de aula 01 2015-2
bonesea
 
Condições
CondiçõesCondições
Apostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursosApostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursos
iran rodrigues
 
Apostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursosApostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursos
Lizandra Guarnieri Gomes
 
Apostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursosApostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursos
Lauda Produções Kátia Guedes
 
Indução Matemática
Indução MatemáticaIndução Matemática
Indução Matemática
djacisilva
 
Indução
InduçãoIndução
Indução
djacisilva
 
Indução Matemática
Indução MatemáticaIndução Matemática
Indução Matemática
djacisilva
 
Pincipio da indução
Pincipio da induçãoPincipio da indução
Pincipio da indução
Bruno Araujo Lima
 
Intro teoria dos números cap2
Intro teoria dos  números cap2Intro teoria dos  números cap2
Intro teoria dos números cap2
Paulo Martins
 
Teoria dos numeros primos i
Teoria dos numeros primos iTeoria dos numeros primos i
Teoria dos numeros primos i
Paulo Martins
 
Intro teoria dos numerros cap5
Intro teoria dos numerros cap5Intro teoria dos numerros cap5
Intro teoria dos numerros cap5
Paulo Martins
 
Caracterização dos inteiros
Caracterização dos inteirosCaracterização dos inteiros
Caracterização dos inteiros
Jose Geraldo Salvador Silva
 
1 -logica_proposicional
1  -logica_proposicional1  -logica_proposicional
1 -logica_proposicional
Udasul
 
Caderno - Lógica
Caderno - LógicaCaderno - Lógica
Caderno - Lógica
Cadernos PPT
 
Lógica
LógicaLógica

Semelhante a Demonstrações (20)

Aula sobre prova de teoremas
Aula sobre prova de teoremasAula sobre prova de teoremas
Aula sobre prova de teoremas
 
Aula 7 inducao matematica-primeiroprincipio
Aula 7   inducao matematica-primeiroprincipioAula 7   inducao matematica-primeiroprincipio
Aula 7 inducao matematica-primeiroprincipio
 
Aula 8 inducao matematica
Aula 8   inducao matematicaAula 8   inducao matematica
Aula 8 inducao matematica
 
PROVAS DE TEOREMAS
PROVAS DE TEOREMASPROVAS DE TEOREMAS
PROVAS DE TEOREMAS
 
Notas de aula 01 2015-2
Notas de aula 01 2015-2Notas de aula 01 2015-2
Notas de aula 01 2015-2
 
Condições
CondiçõesCondições
Condições
 
Apostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursosApostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursos
 
Apostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursosApostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursos
 
Apostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursosApostila raciocicnio-logico-para-concursos
Apostila raciocicnio-logico-para-concursos
 
Indução Matemática
Indução MatemáticaIndução Matemática
Indução Matemática
 
Indução
InduçãoIndução
Indução
 
Indução Matemática
Indução MatemáticaIndução Matemática
Indução Matemática
 
Pincipio da indução
Pincipio da induçãoPincipio da indução
Pincipio da indução
 
Intro teoria dos números cap2
Intro teoria dos  números cap2Intro teoria dos  números cap2
Intro teoria dos números cap2
 
Teoria dos numeros primos i
Teoria dos numeros primos iTeoria dos numeros primos i
Teoria dos numeros primos i
 
Intro teoria dos numerros cap5
Intro teoria dos numerros cap5Intro teoria dos numerros cap5
Intro teoria dos numerros cap5
 
Caracterização dos inteiros
Caracterização dos inteirosCaracterização dos inteiros
Caracterização dos inteiros
 
1 -logica_proposicional
1  -logica_proposicional1  -logica_proposicional
1 -logica_proposicional
 
Caderno - Lógica
Caderno - LógicaCaderno - Lógica
Caderno - Lógica
 
Lógica
LógicaLógica
Lógica
 

Mais de Chromus Master

Webservice
WebserviceWebservice
Webservice
Chromus Master
 
Usb remoção
Usb remoçãoUsb remoção
Usb remoção
Chromus Master
 
Disco rígido
Disco rígidoDisco rígido
Disco rígido
Chromus Master
 
Windows x Linux
Windows x LinuxWindows x Linux
Windows x Linux
Chromus Master
 
Licenças de software
Licenças de softwareLicenças de software
Licenças de software
Chromus Master
 
Arquiteturas PC X MAC
Arquiteturas PC X MACArquiteturas PC X MAC
Arquiteturas PC X MAC
Chromus Master
 
Álgebra de Boole
Álgebra de BooleÁlgebra de Boole
Álgebra de Boole
Chromus Master
 
Relações
RelaçõesRelações
Relações
Chromus Master
 
Análise Combinatória
Análise CombinatóriaAnálise Combinatória
Análise Combinatória
Chromus Master
 
Princípios de Contagem
Princípios de ContagemPrincípios de Contagem
Princípios de Contagem
Chromus Master
 
Teoria dos Conjuntos
Teoria dos ConjuntosTeoria dos Conjuntos
Teoria dos Conjuntos
Chromus Master
 
Recorrência
RecorrênciaRecorrência
Recorrência
Chromus Master
 
Lógica Formal
Lógica FormalLógica Formal
Lógica Formal
Chromus Master
 
Introdução a Teoria dos Grafos
Introdução a Teoria dos GrafosIntrodução a Teoria dos Grafos
Introdução a Teoria dos Grafos
Chromus Master
 
Urbanização
UrbanizaçãoUrbanização
Urbanização
Chromus Master
 
Guerra fria
Guerra friaGuerra fria
Guerra fria
Chromus Master
 
Guerra mascates
Guerra mascatesGuerra mascates
Guerra mascates
Chromus Master
 
Reformas pombalinas
Reformas pombalinasReformas pombalinas
Reformas pombalinas
Chromus Master
 
Economia colonial
Economia colonialEconomia colonial
Economia colonial
Chromus Master
 
Crise sistema colonial
Crise sistema colonialCrise sistema colonial
Crise sistema colonial
Chromus Master
 

Mais de Chromus Master (20)

Webservice
WebserviceWebservice
Webservice
 
Usb remoção
Usb remoçãoUsb remoção
Usb remoção
 
Disco rígido
Disco rígidoDisco rígido
Disco rígido
 
Windows x Linux
Windows x LinuxWindows x Linux
Windows x Linux
 
Licenças de software
Licenças de softwareLicenças de software
Licenças de software
 
Arquiteturas PC X MAC
Arquiteturas PC X MACArquiteturas PC X MAC
Arquiteturas PC X MAC
 
Álgebra de Boole
Álgebra de BooleÁlgebra de Boole
Álgebra de Boole
 
Relações
RelaçõesRelações
Relações
 
Análise Combinatória
Análise CombinatóriaAnálise Combinatória
Análise Combinatória
 
Princípios de Contagem
Princípios de ContagemPrincípios de Contagem
Princípios de Contagem
 
Teoria dos Conjuntos
Teoria dos ConjuntosTeoria dos Conjuntos
Teoria dos Conjuntos
 
Recorrência
RecorrênciaRecorrência
Recorrência
 
Lógica Formal
Lógica FormalLógica Formal
Lógica Formal
 
Introdução a Teoria dos Grafos
Introdução a Teoria dos GrafosIntrodução a Teoria dos Grafos
Introdução a Teoria dos Grafos
 
Urbanização
UrbanizaçãoUrbanização
Urbanização
 
Guerra fria
Guerra friaGuerra fria
Guerra fria
 
Guerra mascates
Guerra mascatesGuerra mascates
Guerra mascates
 
Reformas pombalinas
Reformas pombalinasReformas pombalinas
Reformas pombalinas
 
Economia colonial
Economia colonialEconomia colonial
Economia colonial
 
Crise sistema colonial
Crise sistema colonialCrise sistema colonial
Crise sistema colonial
 

Último

Redação e Leitura_7º ano_58_Produção de cordel .pptx
Redação e Leitura_7º ano_58_Produção de cordel .pptxRedação e Leitura_7º ano_58_Produção de cordel .pptx
Redação e Leitura_7º ano_58_Produção de cordel .pptx
DECIOMAURINARAMOS
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
TomasSousa7
 
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
AntnioManuelAgdoma
 
livro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdflivro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdf
cmeioctaciliabetesch
 
Caderno de Formação_PORTUGUÊS ESTRAN.pdf
Caderno de Formação_PORTUGUÊS ESTRAN.pdfCaderno de Formação_PORTUGUÊS ESTRAN.pdf
Caderno de Formação_PORTUGUÊS ESTRAN.pdf
carlaslr1
 
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdfiNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
andressacastro36
 
Sócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slidesSócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slides
jbellas2
 
759-fortaleza-resultado-definitivo-prova-objetiva-2024-05-28.pdf
759-fortaleza-resultado-definitivo-prova-objetiva-2024-05-28.pdf759-fortaleza-resultado-definitivo-prova-objetiva-2024-05-28.pdf
759-fortaleza-resultado-definitivo-prova-objetiva-2024-05-28.pdf
MessiasMarianoG
 
Famílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do AssaréFamílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do Assaré
profesfrancleite
 
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptxSlides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.pptEstrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
livrosjovert
 
educação inclusiva na atualidade como ela se estabelece atualmente
educação inclusiva na atualidade como ela se estabelece atualmenteeducação inclusiva na atualidade como ela se estabelece atualmente
educação inclusiva na atualidade como ela se estabelece atualmente
DeuzinhaAzevedo
 
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdfAPOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
RenanSilva991968
 
Leonardo da Vinci .pptx
Leonardo da Vinci                  .pptxLeonardo da Vinci                  .pptx
Leonardo da Vinci .pptx
TomasSousa7
 
.Template .padrao .slides .TCC .2024 ppt
.Template .padrao .slides .TCC .2024 ppt.Template .padrao .slides .TCC .2024 ppt
.Template .padrao .slides .TCC .2024 ppt
IslanderAndrade
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
MarcosPaulo777883
 
UFCD_10949_Lojas e-commerce no-code_índice.pdf
UFCD_10949_Lojas e-commerce no-code_índice.pdfUFCD_10949_Lojas e-commerce no-code_índice.pdf
UFCD_10949_Lojas e-commerce no-code_índice.pdf
Manuais Formação
 
Rimas, Luís Vaz de Camões. pptx
Rimas, Luís Vaz de Camões.          pptxRimas, Luís Vaz de Camões.          pptx
Rimas, Luís Vaz de Camões. pptx
TomasSousa7
 
O que é um Ménage a Trois Contemporâneo .pdf
O que é um Ménage a Trois Contemporâneo .pdfO que é um Ménage a Trois Contemporâneo .pdf
O que é um Ménage a Trois Contemporâneo .pdf
Pastor Robson Colaço
 
Livro: Pedagogia do Oprimido - Paulo Freire
Livro: Pedagogia do Oprimido - Paulo FreireLivro: Pedagogia do Oprimido - Paulo Freire
Livro: Pedagogia do Oprimido - Paulo Freire
WelberMerlinCardoso
 

Último (20)

Redação e Leitura_7º ano_58_Produção de cordel .pptx
Redação e Leitura_7º ano_58_Produção de cordel .pptxRedação e Leitura_7º ano_58_Produção de cordel .pptx
Redação e Leitura_7º ano_58_Produção de cordel .pptx
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
 
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
 
livro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdflivro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdf
 
Caderno de Formação_PORTUGUÊS ESTRAN.pdf
Caderno de Formação_PORTUGUÊS ESTRAN.pdfCaderno de Formação_PORTUGUÊS ESTRAN.pdf
Caderno de Formação_PORTUGUÊS ESTRAN.pdf
 
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdfiNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
 
Sócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slidesSócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slides
 
759-fortaleza-resultado-definitivo-prova-objetiva-2024-05-28.pdf
759-fortaleza-resultado-definitivo-prova-objetiva-2024-05-28.pdf759-fortaleza-resultado-definitivo-prova-objetiva-2024-05-28.pdf
759-fortaleza-resultado-definitivo-prova-objetiva-2024-05-28.pdf
 
Famílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do AssaréFamílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do Assaré
 
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptxSlides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
 
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.pptEstrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
 
educação inclusiva na atualidade como ela se estabelece atualmente
educação inclusiva na atualidade como ela se estabelece atualmenteeducação inclusiva na atualidade como ela se estabelece atualmente
educação inclusiva na atualidade como ela se estabelece atualmente
 
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdfAPOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
 
Leonardo da Vinci .pptx
Leonardo da Vinci                  .pptxLeonardo da Vinci                  .pptx
Leonardo da Vinci .pptx
 
.Template .padrao .slides .TCC .2024 ppt
.Template .padrao .slides .TCC .2024 ppt.Template .padrao .slides .TCC .2024 ppt
.Template .padrao .slides .TCC .2024 ppt
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
 
UFCD_10949_Lojas e-commerce no-code_índice.pdf
UFCD_10949_Lojas e-commerce no-code_índice.pdfUFCD_10949_Lojas e-commerce no-code_índice.pdf
UFCD_10949_Lojas e-commerce no-code_índice.pdf
 
Rimas, Luís Vaz de Camões. pptx
Rimas, Luís Vaz de Camões.          pptxRimas, Luís Vaz de Camões.          pptx
Rimas, Luís Vaz de Camões. pptx
 
O que é um Ménage a Trois Contemporâneo .pdf
O que é um Ménage a Trois Contemporâneo .pdfO que é um Ménage a Trois Contemporâneo .pdf
O que é um Ménage a Trois Contemporâneo .pdf
 
Livro: Pedagogia do Oprimido - Paulo Freire
Livro: Pedagogia do Oprimido - Paulo FreireLivro: Pedagogia do Oprimido - Paulo Freire
Livro: Pedagogia do Oprimido - Paulo Freire
 

Demonstrações

  • 1. Em Lógica, estudamos como demonstrar a validade de argumentos formais na forma P → Q. Neste contexto, a validade do argumento é absoluta (depende apenas da forma ou estrutura do argumento e não do conteúdo ou significado das proposições).
  • 2. No entanto, muitas vezes queremos provar argumentos que são verdadeiros em um determinado contexto (para uma interpretação particular). Queremos provar que P → Q é verdadeiro para um contexto específico. Podemos usar fatos que dependem do contexto como hipóteses e então provar que o argumento é verdadeiro (Teorema).
  • 3. Não existe uma receita para demonstração de Teoremas. Muitas vezes, é muito difícil demonstrar teoremas utilizando Lógica Formal. Existem técnicas de demonstração “menos formais”: ‣ não usam elementos das lógicas proposicional e de predicados; ‣ não são escritas passo a passo, com justificativas formais a cada passo. ‣ os passos de dedução e raciocínio são explicados em linguagem natural. Entretanto, essas demonstrações podem ser descritas com Lógica Formal.
  • 4. Conjectura • Podemos formular uma conjectura por meio de raciocínio indutivo ‣ concluir algo baseado na experiência • Podemos entender uma conjectura como um argumento que não se sabe se é verdadeiro ou não.
  • 5. Teorema • Se provamos que uma conjectura é verdadeira, então ela se torna um Teorema. ‣ Para isso podemos usar raciocínio dedutivo (técnicas de demonstração) • Podemos provar que uma conjectura é falsa encontrando um contra-exemplo (um caso em que P é verdadeiro e Q é falso)
  • 6. Exemplo • Prove ou encontre um contra-exemplo para a seguinte conjectura: ‣ “Para todo número inteiro positivo n, n! ≤ n2”.
  • 8. Sumário • Técnicas básicas de demonstração • Primeiro Princípio da Indução • Segundo Princípio da Indução
  • 9. Técnicas Básicas de Demonstração • Demonstração por Exaustão • Demonstração Direta • Demonstração por Contraposição • Demonstração por Absurdo
  • 10. Demonstração Exaustiva • Se uma conjectura é uma asserção sobre uma coleção finita de elementos, sua validade pode ser provada verificando-se se ela é verdadeira para cada elemento coleção. ‣ consiste em exaurir todos os casos possíveis.
  • 11. Exemplo • Prove a conjectura: ‣ “Se um inteiro entre 1 e 20 é divisível por 6, então ele é também divisível por 3”
  • 12. Demonstração Direta • Consiste em supor que a hipótese P é verdadeira e então deduzir a conclusão Q
  • 13. Exemplo • Prove a conjectura: ‣ Se x e y são números inteiros pares, então o produto xy é um número inteiro par.
  • 14. Sabemos que se z é um número inteiro par, então existe um número inteiro k, tal que z = 2k. (definição de um número par). Sejam x = 2m e y = 2n, onde m e n são inteiros. Então xy = (2m)(2n) = 2(2mn), onde 2mn é um inteiro. Logo o produto xy tem a forma 2k, onde k = 2mn é um inteiro, e, portanto, é par, como queríamos demonstrar
  • 15. Contraposição • Demonstração por contraposição consiste na técnica de provar P → Q através da demonstração direta de Q′ → P′. ‣ Sabemos que (Q′ → P′) → (P → Q) ‣ Q′ → P′ é a contrapositiva de (P → Q)
  • 16. Exemplo • Prove que a seguinte conjectura: ‣ Se n2 é ímpar, então n é ímpar.
  • 17. n2 é ímpar → n é ímpar A contrapositiva é: n é par → n2 é par Temos que n2 = nn Como n é par, n = 2k. Assim, n2 = 2k 2k = 2(k+k). Portanto, n2 é par.
  • 18. Demonstração por Absurdo • (P ∧ Q′ → 0) → (P → Q) é uma tautologia • Assim, para provar a conjectura P → Q, basta provar que P ∧ Q′ → 0 • Ou seja, em uma demonstração por absurdo, supomos que a hipótese e a negação da conclusão são ambas verdadeiras e tentamos deduzir uma contradição.
  • 19. Exemplo • Prove por absurdo a proposição: ‣ “Se um número somado a ele mesmo é igual a ele mesmo, então esse número é 0.” ‣ Se x+x=x, então x=0. ‣ x+x=x → x=0
  • 20. Proposição: x+x=x → x=0 Suponhamos P ∧ Q′ → 0: (x+x=x) ∧ (x≠0) → 0 Ou seja, x+x=x e x é diferente de zero. Assim, 2x=x e x≠0. Como x≠0, podemos dividir ambos os lados da primeira equação por x. Logo, 2x/x = x/x 2 = 1 O que é uma contradição, portando x+x=x → x=0.
  • 21. Técnica Abordagem para provar P → Q Observações Exaustão Demonstrar P → Q para todos os casos. É viável apenas para um número finito de casos. Direta Suponha P, deduza Q. Contraposição Suponha Q′, deduza P′. Absurdo Suponha P ∧ Q′, chegue a uma contradição. Indicada para os casos em que Q diz que algo não é verdade.
  • 22. Exercício • Prove as seguintes conjecturas: ‣ “Para todo inteiro positivo n, n2+n+1 é primo”; ‣ “Se n=25, 100 ou 169, então n é um quadrado perfeito e também é uma soma de dois quadrados perfeitos”; ‣ “a soma de dois inteiros ímpares é par”.
  • 23. Exercício • Demonstre que, dados dois números inteiros positivos x e y, ‣ x < y se, e somente se, x2 < y2
  • 24. Resumo • O raciocínio indutivo é usado para formular uma conjectura baseada na experiência. • O raciocínio dedutivo é usado para provar uma conjectura ou refutá-la através de um contra-exemplo. • Ao provar uma conjectura sobre algum assunto, pode-se usar fatos sobre o assunto.
  • 25. Problema? • Demonstre que: ‣ 1+2+3+...+n = [n(n+1)]/2 • Podemos usar demonstração exaustiva ou direta?
  • 26. Sumário • Técnicas básicas de demonstração • Primeiro Princípio da Indução • Segundo Princípio da Indução
  • 27. Demonstre que você consegue subir até o n-ésimo degrau de uma escada!
  • 28. Demonstre que você consegue subir até o n-ésimo degrau de uma escada!
  • 29. Demonstre que você consegue subir até o n-ésimo degrau de uma escada! a) Eu consigo subir até o primeiro degrau.
  • 30. Demonstre que você consegue subir até o n-ésimo degrau de uma escada! b) Estando no primeiro degrau, eu consigo subir até o segundo. a) Eu consigo subir até o primeiro degrau.
  • 31. Demonstre que você consegue subir até o n-ésimo degrau de uma escada! b) Estando no primeiro degrau, eu consigo subir até o segundo. a) Eu consigo subir até o primeiro degrau. c) Estando no segundo degrau, eu consigo subir até o terceiro.
  • 32. Demonstre que você consegue subir até o n-ésimo degrau de uma escada! b) Estando no primeiro degrau, eu consigo subir até o segundo. a) Eu consigo subir até o primeiro degrau. c) Estando no segundo degrau, eu consigo subir até o terceiro. ...
  • 33. Demonstre que você consegue subir até o n-ésimo degrau de uma escada!
  • 34. Demonstre que você consegue subir até o n-ésimo degrau de uma escada! a) Eu consigo subir até o primeiro degrau.
  • 35. Demonstre que você consegue subir até o n-ésimo degrau de uma escada! b) Se eu estou em algum degrau, eu consigo subir até o próximo. a) Eu consigo subir até o primeiro degrau.
  • 36. Demonstre que você consegue subir até o n-ésimo degrau de uma escada! b) Se eu estou em algum degrau, eu consigo subir até o próximo. a) Eu consigo subir até o primeiro degrau. Portanto, eu consigo subir n degraus.
  • 37. Primeiro Princípio de Indução Matemática P(1) ∧ (∀k)[P(k)→P(k+1)] →(∀n)P(n), k, n são inteiros positivos P(1) é a base da indução; (∀k)[P(k)→P(k+1)] é o passo indutivo, onde P(k) é a hipótese de indução.
  • 38. Passos para demonstração usando o primeiro princípio indução 1. Prove a base da indução 2. Suponha P(k) 3. Prove P(k+1)
  • 39. Exemplo • Demonstre que: ‣ 1+2+3+...+n = [n(n+1)]/2
  • 40. Exercício • Usando o primeiro princípio de indução, demonstre que: ‣ A soma dos n primeiros números ímpares é igual a n2. ‣ Para qualquer inteiro positivo n, o número 22n-1 é divisível por 3.
  • 41. Sumário • Técnicas básicas de demonstração • Primeiro Princípio da Indução • Segundo Princípio da Indução
  • 42. Segundo Princípio de Indução Se P(1) é verdade e (∀k)[P(r) → P(k+1), 1≤ r ≤ k, então (∀n)P(n)
  • 43. • Em geral, as propriedades podem ser demonstradas por ambas as formas de indução. Mas, para a maioria dos problemas, existe uma forma mais apropriada. ‣ A diferença entre as formas está apenas na hipótese de indução • Usamos a segunda forma quando: ‣ o problema se divide no meio ao invés de crescer em um dos lados. ‣ o caso k+1 depende de resultados anteriores a k
  • 44. Exemplo • Demonstre que para n ≥ 2, n é um número primo ou é um produto de números primos.
  • 45. Exemplo 2 • Prove que qualquer franquia postal, maior ou igual a 8 centavos, pode ser obtida usando-se selos de 3 e 5 centavos. ‣ P(n): para se obter n centavos em selos precisa- se apenas de selos de 3 e 5 centavos (n ≥ 8)
  • 46. Resumo • A Indução Matemática é uma técnica para provar propriedades de números inteiros positivos • Uma demonstração por indução não precisa começar com 1. • As propriedades podem ser demonstradas por qualquer um dos princípios de indução, mas uma das formas pode ser mais apropriada em cada caso.