LÓGICA MATEMÁTICA 
CURSO: SISTEMAS DE INFORMAÇÃO 
1º PERÍODO 
Prof.: Hugo Souza 
hugo.souza@cesmac.com.br 
CENTRO UNIVERSITÁRIO – CESMAC 
FACULDADE DE CIÊNCIAS EXATAS - FACET
Objetivo da aula de hoje... 
•Continuaremos os conceitos de Lógica Proposicional 
•Conheceremos os conceitos de Implicação Lógica 
LÓGICA MATEMÁTICA 
2
Sumário 
•Correção do Exercício passado 
•Implicação Lógica 
•Exercícios 
•Iniciar Revisão para a Avaliação 1 – 2014.1 
LÓGICA MATEMÁTICA 
3
Ementa 
•Lógica Proposicional: 
–Sintaxe 
–Semântica 
–Propriedades Semânticas 
–Método para determinação da validade de fórmulas 
•Lógica de Predicados: 
–Sintaxe 
–Semântica 
–Propriedades Semânticas 
–Resolução. 
LÓGICA MATEMÁTICA 
4
Aviso! 
•Avaliação 1 
•02/09/2014 
•Assuntos: 
–Introdução e história de lógica 
–Lógica Proposicional 
•Sintaxe 
•Semântica (Operações Lógicas; Tabela Verdade; Tautologia, Contradição e Contingência) 
LÓGICA MATEMÁTICA 
5
Implicação 
•Definição: 
Dadas as proposições compostas P e Q, diz-se que ocorre uma implicação lógica (ou relação de implicação) entre P e Q quando a proposição condicional P  Q é uma tautologia. 
•Notação: P  Q 
LÓGICA MATEMÁTICA 
6
Implicação 
LÓGICA MATEMÁTICA 
7 
-Portanto, dizemos que P  Q quando nas respectivas tabelas verdade dessas duas proposições não aparece V na última coluna de P e F na última coluna de Q, com V e F em uma mesma linha, isto é, não ocorre P e Q com valores lógicos simultâneos respectivamente V e F. 
- Em particular, toda proposição implica uma tautologia e somente uma contradição implica outra contradição.
Implicação 
LÓGICA MATEMÁTICA 
8 
Exemplos: 
a) 4 x 5 = 20  (2 + 1)² = 3². 
Podemos usar o símbolo , pois a proposição condicional: 4 x 5 = 20  3²= (2 + 1)² é verdadeira. 
b) Não podemos escrever que 3 > 2  3 > 4, pois a proposição condicional: 3 > 2  3 > 4 é falsa.
Implicação 
LÓGICA MATEMÁTICA 
9 
•Observação: 
 DIFERENTE  
•O símbolo  entre duas proposições dadas indica uma relação, isto é, que a proposição condicional associada é uma tautologia, enquanto  realiza uma operação entre proposições dando origem a uma nova proposição p  q (que pode conter valores lógicos V ou F).
Implicação 
LÓGICA MATEMÁTICA 
10 
Propriedade Reflexiva: 
P(p,q,r,...)  P(p,q,r,...) 
Propriedade Transitiva: 
SE P(p,q,r,...)  Q(p,q,r,...) E 
Q(p,q,r,...)  R(p,q,r,...), ENTÃO 
P(p,q,r,...)  R(p,q,r,...)
Implicação 
LÓGICA MATEMÁTICA 
11 
p ^ q, p v q, p  q 
p q p ^ q p v q p  q 
V V V V V 
V F F V F 
F V F V F 
F F F F V 
Assim, diz-se que p ^ q  p v q e p ^ q  p  q
Implicação 
LÓGICA MATEMÁTICA 
12 
p ^ q, p v q, p  q 
p q p ^ q p v q p  q 
V V V V V 
V F F V F 
F V F V F 
F F F F V 
REGRA DE INFERÊNCIA: p  p v q 
(Adição)
Implicação 
LÓGICA MATEMÁTICA 
13 
p ^ q, p v q, p  q 
p q p ^ q p v q p  q 
V V V V V 
V F F V F 
F V F V F 
F F F F V 
REGRA DE INFERÊNCIA: p ^ q  p (Simplificação)
Implicação 
LÓGICA MATEMÁTICA 
14 
p ^ q, p v q, p  q 
p q p ^ q p v q p  q 
V V V V V 
V F F V F 
F V F V F 
F F F F V 
REGRA DE INFERÊNCIA: p ^ q  q 
(Simplificação)
Implicação 
LÓGICA MATEMÁTICA 
15 
(p v q) ^ ~p  q 
(p v q) ^ ~q  p 
REGRA DE INFERÊNCIA: SILOGISMO DISJUNTIVO
Implicação 
LÓGICA MATEMÁTICA 
16 
(p  q) ^ p  q 
REGRA MODUS ponens 
(p  q) ^ ~q  ~p 
REGRA MODUS tollens
Implicação 
LÓGICA MATEMÁTICA 
17 
•Teorema: 
- A proposição P(p,q,r,...) IMPLICA a proposição Q(p,q,r,...) se e somente se a condicional P  Q é tautológica. 
•P(p,q,r,...)  Q(p,q,r,...) se e somente se: 
P  Q = V (tautológica)
Implicação 
LÓGICA MATEMÁTICA 
18 
•P(p,q,r,...)  Q(p,q,r,...) se e somente se: 
P  Q = V (tautológica). 
•A condicional: 
(p  q) ^ (q ^ r)  (p  r) é Tautologia. 
•Logo, deduz-se a implicação lógica: 
(p  q) ^ (q ^ r)  p  r 
- (Regra do SILOGISMO HIPOTÉTICO)
Implicação 
LÓGICA MATEMÁTICA 
19 
Exemplo: Mostrar que (p ^ q)  p 
p 
q 
p ^ q 
V 
V 
V 
V 
F 
F 
F 
V 
F 
F 
F 
F 
- Como (p ^ q)  p é uma tautologia, então (p ^ q)  p, isto é, ocorre a implicação lógica. 
(p ^ q)  p 
V 
V 
V 
V
Implicação 
LÓGICA MATEMÁTICA 
20 
1. As tabelas-verdade das proposições p ^ q, p v q, p  q são: 
p ^ q  p v q e p ^ q  p  q 
- A proposição “p ^ q” é verdadeira (V) 
somente na linha 1 e, nesta linha, as 
proposições “p v q” e “p  q” também 
são verdadeiras (V). Logo, a primeira 
posição implica cada uma das outras 
posições, isto é:
Implicação 
LÓGICA MATEMÁTICA 
21 
- As mesmas tabelas-verdade também demonstram as importantes Regras de Inferência: 
p  p v q e q  p v q (Adição) 
p ^ q  p e p ^ q  q (Simplificação)
Implicação 
LÓGICA MATEMÁTICA 
22 
Regras de Inferência 
Adição disjuntiva (AD) 
p  p  q 
Simplificação conjuntiva(SIM) 
p  q  p ou p  q  q 
Modus Ponens(MP) 
( p  q )  p  q 
Modus Tollens(MT) 
( p  q )  ~q  ~p 
Silogismo Disjuntivo(SD) 
( p  q )  ~q  p 
Silogismo Hipotético(SH) 
( p  q )  ( q  r )  p  r 
Dilema Construtivo(DC) 
( p  q )  ( r  s )  ( p  r )  q  s 
Dilema Destrutivo(DD) 
( p  q )  ( r  s )  ( ~q  ~s )  ~p  ~r 
Absorção(ABS) 
p  q  p  ( p  q )
E por hoje... 
LÓGICA MATEMÁTICA 
23 
•Vamos ter uma revisão para a Avaliação 1 
•Obrigado! 
•Até a próxima aula!

Implicação Lógica

  • 1.
    LÓGICA MATEMÁTICA CURSO:SISTEMAS DE INFORMAÇÃO 1º PERÍODO Prof.: Hugo Souza hugo.souza@cesmac.com.br CENTRO UNIVERSITÁRIO – CESMAC FACULDADE DE CIÊNCIAS EXATAS - FACET
  • 2.
    Objetivo da aulade hoje... •Continuaremos os conceitos de Lógica Proposicional •Conheceremos os conceitos de Implicação Lógica LÓGICA MATEMÁTICA 2
  • 3.
    Sumário •Correção doExercício passado •Implicação Lógica •Exercícios •Iniciar Revisão para a Avaliação 1 – 2014.1 LÓGICA MATEMÁTICA 3
  • 4.
    Ementa •Lógica Proposicional: –Sintaxe –Semântica –Propriedades Semânticas –Método para determinação da validade de fórmulas •Lógica de Predicados: –Sintaxe –Semântica –Propriedades Semânticas –Resolução. LÓGICA MATEMÁTICA 4
  • 5.
    Aviso! •Avaliação 1 •02/09/2014 •Assuntos: –Introdução e história de lógica –Lógica Proposicional •Sintaxe •Semântica (Operações Lógicas; Tabela Verdade; Tautologia, Contradição e Contingência) LÓGICA MATEMÁTICA 5
  • 6.
    Implicação •Definição: Dadasas proposições compostas P e Q, diz-se que ocorre uma implicação lógica (ou relação de implicação) entre P e Q quando a proposição condicional P  Q é uma tautologia. •Notação: P  Q LÓGICA MATEMÁTICA 6
  • 7.
    Implicação LÓGICA MATEMÁTICA 7 -Portanto, dizemos que P  Q quando nas respectivas tabelas verdade dessas duas proposições não aparece V na última coluna de P e F na última coluna de Q, com V e F em uma mesma linha, isto é, não ocorre P e Q com valores lógicos simultâneos respectivamente V e F. - Em particular, toda proposição implica uma tautologia e somente uma contradição implica outra contradição.
  • 8.
    Implicação LÓGICA MATEMÁTICA 8 Exemplos: a) 4 x 5 = 20  (2 + 1)² = 3². Podemos usar o símbolo , pois a proposição condicional: 4 x 5 = 20  3²= (2 + 1)² é verdadeira. b) Não podemos escrever que 3 > 2  3 > 4, pois a proposição condicional: 3 > 2  3 > 4 é falsa.
  • 9.
    Implicação LÓGICA MATEMÁTICA 9 •Observação:  DIFERENTE  •O símbolo  entre duas proposições dadas indica uma relação, isto é, que a proposição condicional associada é uma tautologia, enquanto  realiza uma operação entre proposições dando origem a uma nova proposição p  q (que pode conter valores lógicos V ou F).
  • 10.
    Implicação LÓGICA MATEMÁTICA 10 Propriedade Reflexiva: P(p,q,r,...)  P(p,q,r,...) Propriedade Transitiva: SE P(p,q,r,...)  Q(p,q,r,...) E Q(p,q,r,...)  R(p,q,r,...), ENTÃO P(p,q,r,...)  R(p,q,r,...)
  • 11.
    Implicação LÓGICA MATEMÁTICA 11 p ^ q, p v q, p  q p q p ^ q p v q p  q V V V V V V F F V F F V F V F F F F F V Assim, diz-se que p ^ q  p v q e p ^ q  p  q
  • 12.
    Implicação LÓGICA MATEMÁTICA 12 p ^ q, p v q, p  q p q p ^ q p v q p  q V V V V V V F F V F F V F V F F F F F V REGRA DE INFERÊNCIA: p  p v q (Adição)
  • 13.
    Implicação LÓGICA MATEMÁTICA 13 p ^ q, p v q, p  q p q p ^ q p v q p  q V V V V V V F F V F F V F V F F F F F V REGRA DE INFERÊNCIA: p ^ q  p (Simplificação)
  • 14.
    Implicação LÓGICA MATEMÁTICA 14 p ^ q, p v q, p  q p q p ^ q p v q p  q V V V V V V F F V F F V F V F F F F F V REGRA DE INFERÊNCIA: p ^ q  q (Simplificação)
  • 15.
    Implicação LÓGICA MATEMÁTICA 15 (p v q) ^ ~p  q (p v q) ^ ~q  p REGRA DE INFERÊNCIA: SILOGISMO DISJUNTIVO
  • 16.
    Implicação LÓGICA MATEMÁTICA 16 (p  q) ^ p  q REGRA MODUS ponens (p  q) ^ ~q  ~p REGRA MODUS tollens
  • 17.
    Implicação LÓGICA MATEMÁTICA 17 •Teorema: - A proposição P(p,q,r,...) IMPLICA a proposição Q(p,q,r,...) se e somente se a condicional P  Q é tautológica. •P(p,q,r,...)  Q(p,q,r,...) se e somente se: P  Q = V (tautológica)
  • 18.
    Implicação LÓGICA MATEMÁTICA 18 •P(p,q,r,...)  Q(p,q,r,...) se e somente se: P  Q = V (tautológica). •A condicional: (p  q) ^ (q ^ r)  (p  r) é Tautologia. •Logo, deduz-se a implicação lógica: (p  q) ^ (q ^ r)  p  r - (Regra do SILOGISMO HIPOTÉTICO)
  • 19.
    Implicação LÓGICA MATEMÁTICA 19 Exemplo: Mostrar que (p ^ q)  p p q p ^ q V V V V F F F V F F F F - Como (p ^ q)  p é uma tautologia, então (p ^ q)  p, isto é, ocorre a implicação lógica. (p ^ q)  p V V V V
  • 20.
    Implicação LÓGICA MATEMÁTICA 20 1. As tabelas-verdade das proposições p ^ q, p v q, p  q são: p ^ q  p v q e p ^ q  p  q - A proposição “p ^ q” é verdadeira (V) somente na linha 1 e, nesta linha, as proposições “p v q” e “p  q” também são verdadeiras (V). Logo, a primeira posição implica cada uma das outras posições, isto é:
  • 21.
    Implicação LÓGICA MATEMÁTICA 21 - As mesmas tabelas-verdade também demonstram as importantes Regras de Inferência: p  p v q e q  p v q (Adição) p ^ q  p e p ^ q  q (Simplificação)
  • 22.
    Implicação LÓGICA MATEMÁTICA 22 Regras de Inferência Adição disjuntiva (AD) p  p  q Simplificação conjuntiva(SIM) p  q  p ou p  q  q Modus Ponens(MP) ( p  q )  p  q Modus Tollens(MT) ( p  q )  ~q  ~p Silogismo Disjuntivo(SD) ( p  q )  ~q  p Silogismo Hipotético(SH) ( p  q )  ( q  r )  p  r Dilema Construtivo(DC) ( p  q )  ( r  s )  ( p  r )  q  s Dilema Destrutivo(DD) ( p  q )  ( r  s )  ( ~q  ~s )  ~p  ~r Absorção(ABS) p  q  p  ( p  q )
  • 23.
    E por hoje... LÓGICA MATEMÁTICA 23 •Vamos ter uma revisão para a Avaliação 1 •Obrigado! •Até a próxima aula!