SlideShare uma empresa Scribd logo
MONÓMIOS  E POLINÓMIOS
Problema: Observa as figuras. x - 9   x – 4 Sabendo que as figuras são equivalentes, determina as dimensões do rectângulo. 6 6 Se as figuras são equivalentes significa que têm a mesma área, logo podemos formar a seguinte equação: Resolução: No 1.º membro da equação surge um produto que ainda não sabem efectuar. Portanto, torna-se necessário estudar novas expressões e suas operações  que nos permitam dar resposta a alguns problemas.
  POLINÓMIOS
Um  polinómio  é uma soma algébrica de vários monómios . No polinómio  , às parcelas,  ,  e  chamam-se  termos ou monómios . Exemplos:  Trinómio  porque é constituído por 3 monómios Binómio , porque é constituído por dois monómios.
Curiosidade: Monómio  é uma palavra de origem grega, derivada de  monos , que significa  único . Monómio significa  único termo . Um  monómio  é uma expressão que pode ser constituída por um número ou por um  produto de números em que alguns podem ser representados por letras. MONÓMIOS Exemplos: M 3 -xy 6 23x x Nota: Num monómio não aparecem adições nem subtracções.
Constituição de um monómio Exemplo: -7y 3 Neste monómio podemos distinguir uma  parte numérica  ou  coeficiente  (-7) e  uma  parte literal  (y 3 ). Exercício: Completa a tabela seguinte : Monómio Coeficiente Parte literal
Como escrever correctamente um monómio? A área do maior rectângulo da figura ao lado pode ser dada pela expressão: mas deve escrever-se:  Exemplo II Observa a figura: Qual a sua área? 7x    2x = 14x 2 Exemplo I
O produto de dois monómios é um monómio cujo coeficiente é o produto dos coeficientes e cuja parte literal é o produto das partes literais. Convencionou-se que para escrever um produto de vários factores (um monómio)  escreve-se primeiro os números, e, em seguida, as letras por ordem alfabética. Por exemplo: Monómio Escrita correcta
Grau de um monómio grau 1 grau 2 grau 4   grau 7 6 grau 3 grau   0 Então, como se determina o grau de um monómio? O  grau de um monómio  é igual à soma dos expoentes da parte literal.
Completa a tabela: Monómios semelhantes Considera o seguinte polinómio: Este polinómio é constituído por 4 monómios  ,  ,  e  .  e  Os monómios  e  são semelhantes. Monómios semelhantes  – são aqueles que têm a mesma parte literal.  Monómios Grau
Os monómios  e  não são semelhantes porque não têm a  mesma parte literal. Grau de um polinómio Consideremos o polinómio  .  O grau deste polinómio é 4. Chama-se  grau de um polinómio  ao maior grau dos monómios que o constituem.
Adição algébrica de polinómios Nos monómios as letras representam números e as operações têm as mesmas propriedades que as operações com números. Por exemplo: Propriedade comutativa Propriedade associativa Aritmética  Álgebra Tal como na aritmética, é possível simplificar expressões quando estas têm termos semelhantes.
Tal como na aritmética, é possível simplificar expressões quando estas têm termos semelhantes. A soma de vários monómios semelhantes é um monómio semelhante com  coeficiente igual à soma algébrica dos coeficientes dos monómios das parcelas. Aritmética Álgebra 3 + 3 + 3 + 3 = 4  3 a + a + a + a =4  a = 4a 5  4 +  6  4 = 11  4 5 a +  6 a = 11a 3  7 +  2  7 +  4  7 = 9  7 3a + 2a + 4a = 9a
[object Object],[object Object],Polinómio reduzido   porque não tem termos semelhantes 2.  Transforma num polinómio reduzido os seguintes polinómios:
OPERAÇÕES COM POLINÓMIOS
Produto de um mon ó mio por um polin ó mio
b a  c A  á rea  é  dada pela expressão:   ab bc b b  c b 2 bc Como escrever correctamente, sem utilizar parênteses,  á rea do maior  rectângulo da figura?
Para multiplicar um mon ó mio por um polin ó mio, aplica-se a propriedade distributiva da multiplica ç ão em rela ç ão  à  adi ç ão, isto  é , multiplica-se o mon ó mio por cada um dos termos do polin ó mio.
Multiplica ç ão de polin ó mios A figura representa um rectângulo. A expressão que representa a sua  á rea  é : Como transformar esta expressão num polin ó mio reduzido? x+8 x+2 Produto de dois polin ó mios
1.ª processo: 2.ª processo: Expressão que representa a área do rectângulo dado. Polinómio reduzido Para multiplicar polin ó mios, multiplica-se cada termo de um, por todos os termos do outro, obtendo-se assim um novo polin ó mio.
Exerc í cio: Transforma num polin ó mio reduzido:
CASOS NOTÁVEIS DA MULTIPLICAÇÃO
Entre todos os produtos de polin ó mios h á  dois casos que têm um interesse particular,  não s ó  pela sua aplica ç ão a muitas situa ç ões, como pela sua liga ç ão  à  geometria. J á  vimos que um polin ó mio com dois termos, ou seja, com dois mon ó mios, tamb é m se pode chamar BIN Ó MIO. Se  é  um bin ó mio, então  representa o quadrado de um bin ó mio .
Exemplos ,[object Object]
Exemplos ,[object Object]
Diferença de quadrados
De um modo geral, Quadrado do 2. º  termo É  importante ler a igualdade nos dois sentidos. Quadrado do 1. º  termo
[object Object],[object Object],[object Object],[object Object],[object Object],Observa :   
Mais Exemplos ,[object Object]
Geometricamente:
As igualdades  são casos particulares da multiplica ç ão de polin ó mios.  Chamam-se por isso ,  CASOS NOT Á VEIS DA MULTIPLICA Ç ÃO .
Resumo ,[object Object],[object Object],+ +
Exercício 1 ,[object Object],[object Object]
Exercício 2 ,[object Object],[object Object]
FACTORIZAÇÃO DE POLINÓMIOS
DECOMPOSI Ç ÃO EM FACTORES A+B  é  uma soma A e B são parcelas A    B é um produto A e B são os factores Recordar … Factorizar um polin ó mio  é  escrevê-lo sob a forma de um produto de factores.  Para decompor um polin ó mio em factores, aplicando a propriedade distributiva, procuram-se os factores comuns e colocam-se em evidência.
J á  sabem transformar produtos em somas alg é bricas, agora pretende-se que  fa ç am o contr á rio.    A Propriedade distributiva na decomposição em factores     PRODUTO  SOMA Acab á mos de transformar a soma num produto de factores  –   factoriza ç ão do polin ó mio. Colocámos em evidência o factor comum  a Distribuímos o factor  a  pelas parcelas SOMA  PRODUTO
Factor comum Expressão obtida suprimindo o factor comum Factoriza a seguinte expressão: 4x+5xy  = ..........  x  ......................... x (4+5y) Se multiplicares o factor comum pela  expressão dada, terás de obter a expressão inicial. Caso contrário, a expressão está mal factorizada . = 4x+5xy x (4+5y) Colocámos em evidência o factor x.
Mais exemplos:
Os casos notáveis e a decomposição em factores ,[object Object]
Lei do anulamento do produto Reparem que: Assim, se o produto de dois (ou mais) factores  é  zero, então, pelo menos um dos  factores  é  zero. Ou seja ,  Esta propriedade  é  conhecida pela  LEI DO ANULAMENTO DO PODUTO .   Um produto  é  nulo se e só se (sse) pelo menos um dos seus factores  é  nulo. Nota:  O s í mbolo  lê-se  ou .
[object Object],[object Object],A lei do anulamento do produto permite resolver equa ç ões de grau superior ao primeiro. Mas, ser á  poss í vel aplicar a lei do anulamento do produto na resolu ç ão de qualquer equa ç ão? Aten ç ão , para aplicar a lei do anulamento do produto na resolu ç ão de equa ç ões,  é  necess á rio que:
Ao aplicar esta lei, obtemos uma  disjunção   de duas condições, a que corresponde a  reunião  de dois conjuntos-solução. Conseguirás descobrir mentalmente as soluções?
 
Para aplicar a lei do anulamento do produto, é necessário factorizar o 1.º membro da equação. Nota:  é uma equação de grau 2,  completa  (porque tem o termo de grau 2, de grau um e de grau zero). Está  escrita na forma canónica. S.={0, 2}
  S.={-1/2} -0,5  é  raiz dupla
Resolve, por dois processos diferentes, as equa ç ões seguintes. ou
Problema: Observa as figuras. 6 6 Um voluntário?! Sabendo que as figuras são equivalentes, determina as dimensões do rectângulo.

Mais conteúdo relacionado

Mais procurados

Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º graualdaalves
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau pptktorz
 
Trigonometria – 9° ano
Trigonometria – 9° anoTrigonometria – 9° ano
Trigonometria – 9° anoManuela Avelar
 
Polinómios, monómios e factorização
Polinómios, monómios e factorizaçãoPolinómios, monómios e factorização
Polinómios, monómios e factorizaçãoMateus Laranjeira
 
Teorema de Pitágoras - Matemática 8º ano - Resumo da matéria
Teorema de Pitágoras - Matemática 8º ano - Resumo da matériaTeorema de Pitágoras - Matemática 8º ano - Resumo da matéria
Teorema de Pitágoras - Matemática 8º ano - Resumo da matériaO Bichinho do Saber
 
Relação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantesRelação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantesaldaalves
 
Casos notáveis [ matemática ]
Casos notáveis [ matemática ]Casos notáveis [ matemática ]
Casos notáveis [ matemática ]Alex Faria
 
Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matériaGráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matériaO Bichinho do Saber
 
Dízimas finitas e infinitas periódicas
Dízimas finitas e infinitas periódicasDízimas finitas e infinitas periódicas
Dízimas finitas e infinitas periódicasAndreia Horta
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slideRaquel1966
 
Raiz quadrada aproximada
Raiz quadrada aproximadaRaiz quadrada aproximada
Raiz quadrada aproximadaSILVIA MESSIAS
 
Resumo do 7º e 8º ano
Resumo do 7º e 8º anoResumo do 7º e 8º ano
Resumo do 7º e 8º anoTiiagu
 
Ficha de trabalho numeros reais
Ficha de trabalho numeros reaisFicha de trabalho numeros reais
Ficha de trabalho numeros reaisGisela Carvalho
 
Ficha reforço nº6_monomios_polinomios
Ficha reforço nº6_monomios_polinomiosFicha reforço nº6_monomios_polinomios
Ficha reforço nº6_monomios_polinomiosAfectos Mala Dos
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grauestrelaeia
 

Mais procurados (20)

Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
Trigonometria – 9° ano
Trigonometria – 9° anoTrigonometria – 9° ano
Trigonometria – 9° ano
 
Polinómios, monómios e factorização
Polinómios, monómios e factorizaçãoPolinómios, monómios e factorização
Polinómios, monómios e factorização
 
Teorema de Pitágoras - Matemática 8º ano - Resumo da matéria
Teorema de Pitágoras - Matemática 8º ano - Resumo da matériaTeorema de Pitágoras - Matemática 8º ano - Resumo da matéria
Teorema de Pitágoras - Matemática 8º ano - Resumo da matéria
 
Relação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantesRelação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantes
 
Casos notáveis [ matemática ]
Casos notáveis [ matemática ]Casos notáveis [ matemática ]
Casos notáveis [ matemática ]
 
Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matériaGráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
Intervalos.números.reais
Intervalos.números.reaisIntervalos.números.reais
Intervalos.números.reais
 
Dízimas finitas e infinitas periódicas
Dízimas finitas e infinitas periódicasDízimas finitas e infinitas periódicas
Dízimas finitas e infinitas periódicas
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
 
Radiciaçâo
RadiciaçâoRadiciaçâo
Radiciaçâo
 
Raiz quadrada aproximada
Raiz quadrada aproximadaRaiz quadrada aproximada
Raiz quadrada aproximada
 
Resumo do 7º e 8º ano
Resumo do 7º e 8º anoResumo do 7º e 8º ano
Resumo do 7º e 8º ano
 
Números racionais
Números racionaisNúmeros racionais
Números racionais
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
 
Ficha de trabalho numeros reais
Ficha de trabalho numeros reaisFicha de trabalho numeros reais
Ficha de trabalho numeros reais
 
Ficha reforço nº6_monomios_polinomios
Ficha reforço nº6_monomios_polinomiosFicha reforço nº6_monomios_polinomios
Ficha reforço nº6_monomios_polinomios
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 

Semelhante a Polinómios

Expressoes Algebricas Definitivo
Expressoes Algebricas DefinitivoExpressoes Algebricas Definitivo
Expressoes Algebricas DefinitivoBetão Betão
 
Expressoes algebricas 2
Expressoes algebricas 2Expressoes algebricas 2
Expressoes algebricas 2Betão Betão
 
Produto de um monomio por um polinomio
Produto de um monomio por um polinomioProduto de um monomio por um polinomio
Produto de um monomio por um polinomioInês Mota
 
Mat expressoes algebricas
Mat expressoes algebricasMat expressoes algebricas
Mat expressoes algebricastrigono_metria
 
Resumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º AnoResumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º Anonescalda
 
Resumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º AnoResumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º Anonescalda
 
Ceesvo (ensino fundamental) apostila 6
Ceesvo (ensino fundamental)   apostila 6Ceesvo (ensino fundamental)   apostila 6
Ceesvo (ensino fundamental) apostila 6Nome Sobrenome
 
Mat operacoes entre polinomios
Mat operacoes entre polinomiosMat operacoes entre polinomios
Mat operacoes entre polinomiostrigono_metria
 
4091934 apostila-ensino-fundamental-ceesvo-matematica-04
4091934 apostila-ensino-fundamental-ceesvo-matematica-044091934 apostila-ensino-fundamental-ceesvo-matematica-04
4091934 apostila-ensino-fundamental-ceesvo-matematica-04Haroldo Oliveira
 
www.CentroApoio.com - Matemática - Frações - Vídeo Aula
www.CentroApoio.com - Matemática - Frações - Vídeo Aulawww.CentroApoio.com - Matemática - Frações - Vídeo Aula
www.CentroApoio.com - Matemática - Frações - Vídeo AulaVídeo Aulas Apoio
 
Monómios e polinómios
Monómios e polinómiosMonómios e polinómios
Monómios e polinómiosInês Mota
 
Monómios e polinómios
Monómios e polinómiosMonómios e polinómios
Monómios e polinómiosInês Mota
 
Módulo 01 - 8 ano / Ens.Fundamental
Módulo 01 - 8 ano / Ens.Fundamental  Módulo 01 - 8 ano / Ens.Fundamental
Módulo 01 - 8 ano / Ens.Fundamental Adriana De Moraes
 

Semelhante a Polinómios (20)

Polinómios: Teoria
Polinómios: TeoriaPolinómios: Teoria
Polinómios: Teoria
 
Expressoes Algebricas Definitivo
Expressoes Algebricas DefinitivoExpressoes Algebricas Definitivo
Expressoes Algebricas Definitivo
 
Expressoes algebricas 2
Expressoes algebricas 2Expressoes algebricas 2
Expressoes algebricas 2
 
Apostila Monômios.docx
Apostila Monômios.docxApostila Monômios.docx
Apostila Monômios.docx
 
Oficina matemática
Oficina matemáticaOficina matemática
Oficina matemática
 
Produto de um monomio por um polinomio
Produto de um monomio por um polinomioProduto de um monomio por um polinomio
Produto de um monomio por um polinomio
 
Mat62a
Mat62aMat62a
Mat62a
 
Fatoração
FatoraçãoFatoração
Fatoração
 
Mat expressoes algebricas
Mat expressoes algebricasMat expressoes algebricas
Mat expressoes algebricas
 
Resumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º AnoResumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º Ano
 
Resumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º AnoResumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º Ano
 
PolinôMios 7ª SéRie
PolinôMios 7ª SéRiePolinôMios 7ª SéRie
PolinôMios 7ª SéRie
 
Ceesvo (ensino fundamental) apostila 6
Ceesvo (ensino fundamental)   apostila 6Ceesvo (ensino fundamental)   apostila 6
Ceesvo (ensino fundamental) apostila 6
 
Mat operacoes entre polinomios
Mat operacoes entre polinomiosMat operacoes entre polinomios
Mat operacoes entre polinomios
 
4091934 apostila-ensino-fundamental-ceesvo-matematica-04
4091934 apostila-ensino-fundamental-ceesvo-matematica-044091934 apostila-ensino-fundamental-ceesvo-matematica-04
4091934 apostila-ensino-fundamental-ceesvo-matematica-04
 
www.CentroApoio.com - Matemática - Frações - Vídeo Aula
www.CentroApoio.com - Matemática - Frações - Vídeo Aulawww.CentroApoio.com - Matemática - Frações - Vídeo Aula
www.CentroApoio.com - Matemática - Frações - Vídeo Aula
 
Monómios e polinómios
Monómios e polinómiosMonómios e polinómios
Monómios e polinómios
 
Monómios e polinómios
Monómios e polinómiosMonómios e polinómios
Monómios e polinómios
 
Regras da matemática
Regras da matemáticaRegras da matemática
Regras da matemática
 
Módulo 01 - 8 ano / Ens.Fundamental
Módulo 01 - 8 ano / Ens.Fundamental  Módulo 01 - 8 ano / Ens.Fundamental
Módulo 01 - 8 ano / Ens.Fundamental
 

Mais de aldaalves

1.ª chamada 2005
1.ª chamada 20051.ª chamada 2005
1.ª chamada 2005aldaalves
 
Representações gráficas
Representações gráficasRepresentações gráficas
Representações gráficasaldaalves
 
Proporcionalidades soluções
Proporcionalidades soluçõesProporcionalidades soluções
Proporcionalidades soluçõesaldaalves
 
Exercícios de proporcionalidade
Exercícios de proporcionalidadeExercícios de proporcionalidade
Exercícios de proporcionalidadealdaalves
 
Soluções estatística e probabil.
Soluções estatística e probabil.Soluções estatística e probabil.
Soluções estatística e probabil.aldaalves
 
Estatística e probabilidades ii
Estatística e probabilidades iiEstatística e probabilidades ii
Estatística e probabilidades iialdaalves
 
Estatística e probabilidades i
Estatística e probabilidades iEstatística e probabilidades i
Estatística e probabilidades ialdaalves
 
Equações do 2.º grau soluções
Equações do 2.º grau  soluçõesEquações do 2.º grau  soluções
Equações do 2.º grau soluçõesaldaalves
 
Circunferência e polígonos
Circunferência e polígonosCircunferência e polígonos
Circunferência e polígonosaldaalves
 
Circunferência e polígonos resolução
Circunferência e polígonos resoluçãoCircunferência e polígonos resolução
Circunferência e polígonos resoluçãoaldaalves
 
Trigonometria soluções
Trigonometria soluçõesTrigonometria soluções
Trigonometria soluçõesaldaalves
 
Espaço volumes-respetiva correção
Espaço volumes-respetiva correçãoEspaço volumes-respetiva correção
Espaço volumes-respetiva correçãoaldaalves
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequaçõesaldaalves
 
Sistemas de equações e respetiva correção
Sistemas de equações e respetiva correçãoSistemas de equações e respetiva correção
Sistemas de equações e respetiva correçãoaldaalves
 
Sistemas de equações
Sistemas de equaçõesSistemas de equações
Sistemas de equaçõesaldaalves
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequaçõesaldaalves
 
Equações literais
Equações literaisEquações literais
Equações literaisaldaalves
 
Equações literais
Equações literaisEquações literais
Equações literaisaldaalves
 
Equações literais
Equações literaisEquações literais
Equações literaisaldaalves
 

Mais de aldaalves (20)

1.ª chamada 2005
1.ª chamada 20051.ª chamada 2005
1.ª chamada 2005
 
Representações gráficas
Representações gráficasRepresentações gráficas
Representações gráficas
 
Proporcionalidades soluções
Proporcionalidades soluçõesProporcionalidades soluções
Proporcionalidades soluções
 
Exercícios de proporcionalidade
Exercícios de proporcionalidadeExercícios de proporcionalidade
Exercícios de proporcionalidade
 
Soluções estatística e probabil.
Soluções estatística e probabil.Soluções estatística e probabil.
Soluções estatística e probabil.
 
Estatística e probabilidades ii
Estatística e probabilidades iiEstatística e probabilidades ii
Estatística e probabilidades ii
 
Estatística e probabilidades i
Estatística e probabilidades iEstatística e probabilidades i
Estatística e probabilidades i
 
Equações do 2.º grau soluções
Equações do 2.º grau  soluçõesEquações do 2.º grau  soluções
Equações do 2.º grau soluções
 
Circunferência e polígonos
Circunferência e polígonosCircunferência e polígonos
Circunferência e polígonos
 
Circunferência e polígonos resolução
Circunferência e polígonos resoluçãoCircunferência e polígonos resolução
Circunferência e polígonos resolução
 
Trigonometria soluções
Trigonometria soluçõesTrigonometria soluções
Trigonometria soluções
 
Espaço volumes-respetiva correção
Espaço volumes-respetiva correçãoEspaço volumes-respetiva correção
Espaço volumes-respetiva correção
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
 
Sistemas de equações e respetiva correção
Sistemas de equações e respetiva correçãoSistemas de equações e respetiva correção
Sistemas de equações e respetiva correção
 
Sistemas de equações
Sistemas de equaçõesSistemas de equações
Sistemas de equações
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Aula 4 e 5
Aula 4 e 5Aula 4 e 5
Aula 4 e 5
 

Último

22-modernismo-5-prosa-de-45.pptxrpnsaaaa
22-modernismo-5-prosa-de-45.pptxrpnsaaaa22-modernismo-5-prosa-de-45.pptxrpnsaaaa
22-modernismo-5-prosa-de-45.pptxrpnsaaaaCarolineFrancielle
 
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]ESCRIBA DE CRISTO
 
Apresentação Formação em Prevenção ao Assédio
Apresentação Formação em Prevenção ao AssédioApresentação Formação em Prevenção ao Assédio
Apresentação Formação em Prevenção ao Assédioifbauab
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é precisoMary Alvarenga
 
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...Manuais Formação
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosbiancaborges0906
 
bem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animalbem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animalcarlamgalves5
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilMariaHelena293800
 
Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40vitoriaalyce2011
 
América Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados NacionaisAmérica Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados NacionaisValéria Shoujofan
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - FalamansaMary Alvarenga
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaCludiaRodrigues693635
 
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdfHans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdfrarakey779
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfssuserbb4ac2
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assisbrunocali007
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptxlucioalmeida2702
 
Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-carloseduardogonalve36
 
Exercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfExercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfRILTONNOGUEIRADOSSAN
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...LuizHenriquedeAlmeid6
 

Último (20)

22-modernismo-5-prosa-de-45.pptxrpnsaaaa
22-modernismo-5-prosa-de-45.pptxrpnsaaaa22-modernismo-5-prosa-de-45.pptxrpnsaaaa
22-modernismo-5-prosa-de-45.pptxrpnsaaaa
 
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
 
Apresentação Formação em Prevenção ao Assédio
Apresentação Formação em Prevenção ao AssédioApresentação Formação em Prevenção ao Assédio
Apresentação Formação em Prevenção ao Assédio
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é preciso
 
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anos
 
bem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animalbem estar animal em proteção integrada componente animal
bem estar animal em proteção integrada componente animal
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantil
 
Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40
 
América Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados NacionaisAmérica Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados Nacionais
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - Falamansa
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditiva
 
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdfHans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptx
 
Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-
 
Exercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfExercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdf
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
 

Polinómios

  • 1. MONÓMIOS E POLINÓMIOS
  • 2. Problema: Observa as figuras. x - 9 x – 4 Sabendo que as figuras são equivalentes, determina as dimensões do rectângulo. 6 6 Se as figuras são equivalentes significa que têm a mesma área, logo podemos formar a seguinte equação: Resolução: No 1.º membro da equação surge um produto que ainda não sabem efectuar. Portanto, torna-se necessário estudar novas expressões e suas operações que nos permitam dar resposta a alguns problemas.
  • 4. Um polinómio é uma soma algébrica de vários monómios . No polinómio , às parcelas, , e chamam-se termos ou monómios . Exemplos: Trinómio porque é constituído por 3 monómios Binómio , porque é constituído por dois monómios.
  • 5. Curiosidade: Monómio é uma palavra de origem grega, derivada de monos , que significa único . Monómio significa único termo . Um monómio é uma expressão que pode ser constituída por um número ou por um produto de números em que alguns podem ser representados por letras. MONÓMIOS Exemplos: M 3 -xy 6 23x x Nota: Num monómio não aparecem adições nem subtracções.
  • 6. Constituição de um monómio Exemplo: -7y 3 Neste monómio podemos distinguir uma parte numérica ou coeficiente (-7) e uma parte literal (y 3 ). Exercício: Completa a tabela seguinte : Monómio Coeficiente Parte literal
  • 7. Como escrever correctamente um monómio? A área do maior rectângulo da figura ao lado pode ser dada pela expressão: mas deve escrever-se: Exemplo II Observa a figura: Qual a sua área? 7x  2x = 14x 2 Exemplo I
  • 8. O produto de dois monómios é um monómio cujo coeficiente é o produto dos coeficientes e cuja parte literal é o produto das partes literais. Convencionou-se que para escrever um produto de vários factores (um monómio) escreve-se primeiro os números, e, em seguida, as letras por ordem alfabética. Por exemplo: Monómio Escrita correcta
  • 9. Grau de um monómio grau 1 grau 2 grau 4 grau 7 6 grau 3 grau 0 Então, como se determina o grau de um monómio? O grau de um monómio é igual à soma dos expoentes da parte literal.
  • 10. Completa a tabela: Monómios semelhantes Considera o seguinte polinómio: Este polinómio é constituído por 4 monómios , , e . e Os monómios e são semelhantes. Monómios semelhantes – são aqueles que têm a mesma parte literal. Monómios Grau
  • 11. Os monómios e não são semelhantes porque não têm a mesma parte literal. Grau de um polinómio Consideremos o polinómio . O grau deste polinómio é 4. Chama-se grau de um polinómio ao maior grau dos monómios que o constituem.
  • 12. Adição algébrica de polinómios Nos monómios as letras representam números e as operações têm as mesmas propriedades que as operações com números. Por exemplo: Propriedade comutativa Propriedade associativa Aritmética Álgebra Tal como na aritmética, é possível simplificar expressões quando estas têm termos semelhantes.
  • 13. Tal como na aritmética, é possível simplificar expressões quando estas têm termos semelhantes. A soma de vários monómios semelhantes é um monómio semelhante com coeficiente igual à soma algébrica dos coeficientes dos monómios das parcelas. Aritmética Álgebra 3 + 3 + 3 + 3 = 4  3 a + a + a + a =4  a = 4a 5  4 + 6  4 = 11  4 5 a + 6 a = 11a 3  7 + 2  7 + 4  7 = 9  7 3a + 2a + 4a = 9a
  • 14.
  • 16. Produto de um mon ó mio por um polin ó mio
  • 17. b a c A á rea é dada pela expressão:   ab bc b b c b 2 bc Como escrever correctamente, sem utilizar parênteses, á rea do maior rectângulo da figura?
  • 18. Para multiplicar um mon ó mio por um polin ó mio, aplica-se a propriedade distributiva da multiplica ç ão em rela ç ão à adi ç ão, isto é , multiplica-se o mon ó mio por cada um dos termos do polin ó mio.
  • 19. Multiplica ç ão de polin ó mios A figura representa um rectângulo. A expressão que representa a sua á rea é : Como transformar esta expressão num polin ó mio reduzido? x+8 x+2 Produto de dois polin ó mios
  • 20. 1.ª processo: 2.ª processo: Expressão que representa a área do rectângulo dado. Polinómio reduzido Para multiplicar polin ó mios, multiplica-se cada termo de um, por todos os termos do outro, obtendo-se assim um novo polin ó mio.
  • 21. Exerc í cio: Transforma num polin ó mio reduzido:
  • 22. CASOS NOTÁVEIS DA MULTIPLICAÇÃO
  • 23. Entre todos os produtos de polin ó mios h á dois casos que têm um interesse particular, não s ó pela sua aplica ç ão a muitas situa ç ões, como pela sua liga ç ão à geometria. J á vimos que um polin ó mio com dois termos, ou seja, com dois mon ó mios, tamb é m se pode chamar BIN Ó MIO. Se é um bin ó mio, então representa o quadrado de um bin ó mio .
  • 24.
  • 25.
  • 27. De um modo geral, Quadrado do 2. º termo É importante ler a igualdade nos dois sentidos. Quadrado do 1. º termo
  • 28.
  • 29.
  • 31. As igualdades são casos particulares da multiplica ç ão de polin ó mios. Chamam-se por isso , CASOS NOT Á VEIS DA MULTIPLICA Ç ÃO .
  • 32.
  • 33.
  • 34.
  • 36. DECOMPOSI Ç ÃO EM FACTORES A+B é uma soma A e B são parcelas A  B é um produto A e B são os factores Recordar … Factorizar um polin ó mio é escrevê-lo sob a forma de um produto de factores. Para decompor um polin ó mio em factores, aplicando a propriedade distributiva, procuram-se os factores comuns e colocam-se em evidência.
  • 37. J á sabem transformar produtos em somas alg é bricas, agora pretende-se que fa ç am o contr á rio.  A Propriedade distributiva na decomposição em factores PRODUTO SOMA Acab á mos de transformar a soma num produto de factores – factoriza ç ão do polin ó mio. Colocámos em evidência o factor comum a Distribuímos o factor a pelas parcelas SOMA PRODUTO
  • 38. Factor comum Expressão obtida suprimindo o factor comum Factoriza a seguinte expressão: 4x+5xy = .......... x ......................... x (4+5y) Se multiplicares o factor comum pela expressão dada, terás de obter a expressão inicial. Caso contrário, a expressão está mal factorizada . = 4x+5xy x (4+5y) Colocámos em evidência o factor x.
  • 40.
  • 41. Lei do anulamento do produto Reparem que: Assim, se o produto de dois (ou mais) factores é zero, então, pelo menos um dos factores é zero. Ou seja , Esta propriedade é conhecida pela LEI DO ANULAMENTO DO PODUTO . Um produto é nulo se e só se (sse) pelo menos um dos seus factores é nulo. Nota: O s í mbolo lê-se ou .
  • 42.
  • 43. Ao aplicar esta lei, obtemos uma disjunção de duas condições, a que corresponde a reunião de dois conjuntos-solução. Conseguirás descobrir mentalmente as soluções?
  • 44.  
  • 45. Para aplicar a lei do anulamento do produto, é necessário factorizar o 1.º membro da equação. Nota: é uma equação de grau 2, completa (porque tem o termo de grau 2, de grau um e de grau zero). Está escrita na forma canónica. S.={0, 2}
  • 46. S.={-1/2} -0,5 é raiz dupla
  • 47. Resolve, por dois processos diferentes, as equa ç ões seguintes. ou
  • 48. Problema: Observa as figuras. 6 6 Um voluntário?! Sabendo que as figuras são equivalentes, determina as dimensões do rectângulo.