SlideShare uma empresa Scribd logo
EquaçõEs
 litErais
Observa as equações seguintes:


            3x + 7 y = 1
            3x + 7 z = y
            3x + 7 = 0
As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é
uma equação literal.

Então, qual será a definição de equação literal?



        Equações literais – são equações que têm mais do que uma variável, isto é,
        pelo menos 2 incógnitas.
Exemplos de equações literais:


•A equação y = 6 x + 2 que representa uma reta não vertical (função afim)

•A equação   y = 6x       que representa uma reta que passa na origem
                          do referencial (função linear).
 (equações do 1.º grau com duas incógnitas)
                                                                   Geogebra
 Quantas soluções têm?

 •As fórmulas:                       b×h            ( B + b) × h
                 A = l2         A=             A=
                                      2                  2
 que representam, respetivamente, as áreas do quadrado, do triângulo e
 do trapézio.

  • A equação da relatividade E = mc2.

  •A fórmula do teorema de Pitágoras a = b + c
                                      2   2    2
Como resolver equações literais?

  As regras para resolver equações, também se aplicam à resolução de uma
  equação literal, em ordem a qualquer uma das letras que nela figuram.

Exemplo I:

Observa a figura:
                                                    Perímetro 12 cm      y
  A figura sugere a seguinte equação,

                           2 x + 2 y = 12               x
Como a equação tem duas variáveis x e y, podemos resolvê-la em ordem a
x ou em ordem a y, isto é:                                    Nota:
                                                              Quando uma letra é
                                2 x + 2 y = 12 ⇔              a incógnita, as
                                                              outras letras
                               ⇔ 2 x = 12 − 2 y ⇔             funcionam como se
                                                              fossem números.
                                      12 − 2 y
                               ⇔x=             ⇔
                                          2
                               ⇔ x = 6− y       Resolvida em ordem a       x
Nota: Diz-se que a equação está resolvida em ordem a x porque a variável x está isolada
num dos membros da equação, neste caso no 1.º membro.



                                y                      2 x + 2 y = 12 ⇔
            Perímetro 12 cm
                                                    ⇔ 2 y = 12 − 2 x ⇔
                 x                                        12 − 2 x
                                                    ⇔y=             ⇔
                                                              2
                     Resolvida em ordem a y.        ⇔ y = 6− x

  Qual o interesse de resolver uma equação em ordem a uma das variáveis?

  Sabendo que a largura, y, do rectângulo é 2, qual é o comprimento?

  Ora, aqui interessa resolver equação em ordem a   x (é a incógnita, o valor desconhecido)
       Assim, é muito fácil dar a resposta.
                                              x = 6− y          O comprimento é 4.
                                              x = 6−2 ⇔ x = 4
Mas, se a pergunta fosse:

   Sabendo que o comprimento,    x , do rectângulo é 3, qual é a largura?
   Neste caso já interessava resolver a equação em ordem a y.

          y = 6− x
         y = 6−3 ⇔ y = 3
Se se pretende determinar o comprimento do rectângulo, então, interessa
resolver a equação em ordem a x. Por outro lado, se se quisesse saber a
sua largura, neste caso, já interessava resolver a equação em ordem a y.

Conclusão:
Uma equação literal resolve-se em ordem a uma das letras (variável)
que se considera a incógnita (valor desconhecido). As outras letras
funcionam como números (valores dados).
As regras já conhecidas para resolver equações são também aplicáveis
na resolução de equações literais.
Assim, a equação tem uma
    A=100 m2       l   infinidade de soluções.
      c
c = 100 → l = 1         c × l = 100   mas,


c = 50 → l = 2         c × l = 100    mas,


  c = 25 → l = 4       c × l = 100    mas,


c = 20 → l = 5          c × l = 100    mas,


 c = 12,5 → l = 8      c × l = 100    …
Equações do 1.º grau com duas incógnitas.

                    ax+by=c;        a, b e c
  As soluções desta equação são, geralmente, pares ordenados de
  números.

   x+2y=9              S=(1,4)           Uma solução



                       S=(0, 9/2)             Outra solução


  Quantas soluções têm?

 Estas equações têm uma infinidade de soluções ou nenhuma (no caso de a=0,

  b=0 e c    ).                                        Cuidado:
                                                       No contexto de
Relacionar com as funções afins, reta,                 problemas nem sempre
todos os pontos que estão sobre a                      todas as soluções
reta são soluções da equação.                          servem. Dar ex.
Exemplo II

           A equação E=mc2 em que:
           E- energia
           m- quantidade de matéria
           c- velocidade da luz

Descoberta de Einstein apontava para a possibilidade de se obterem grandes
quantidades de energia a partir de pequenas quantidades de matéria. A bomba
atómica é um dos frutos desta equação.

Resolve a equação em ordem a m e depois em ordem a c.
                                                       E
E = mc ⇔
       2
                                           E = mc ⇔ c = ⇔
                                                   2      2

                                                       m
  E mc 2    E
⇔ 2 = 2 ⇔m= 2                                   E
 c    c    c                               ⇔c=±
                                                m

           Resolvida em ordem a m.
                                      Resolvida em ordem a c.
Exemplo III

A fórmula V=c.l.h serve para determinar o volume de uma caixa de cereais.

Resolve a equação em ordem a c.

Neste caso, c é a incógnita.

Para isolar c divide-se ambos os membros por lh e depois simplifica-se.


                V c.l.h
                   =     ⇔
                lh    lh
               ⇔ c =V
                      lh
Exemplo IV

Resolve a equação em ordem a h.

Neste caso, a incógnita é a letra h, as outras letras funcionam como se fossem
números.

                                                 A=
                                                    ( B + b) × h
A área de um trapézio é dada pela fórmula
                                                             2

                      B+b                               2A
                A=        × h ⇔ 2 A = ( B + b) h ⇔ h =
                       2                               B+b
    Se pretender saber quanto é a altura do trapézio é necessário conhecer os valores de B
    (base maior) , b (base menor) e A (área). Por exemplo:
    Determina h, sabendo que A=10 cm2, B=4 cm e b=1 cm.

                                                         2 ×10
                                                      h=       = 4 cm
                                                         4 +1
Exercícios:

                                      5           y
 2. Resolve em ordem a x, a equação     ( y − 1) = + x
                                      3           2
  Neste caso a incógnita é x. A letra y “funciona” como um número.

  5           y
    ( y − 1) = + x ⇔                    1.º Tiram-se os parênteses
  3           2                         2.º Tiram-se os denominadores
   5       5   y
 ⇔ y− = + x ⇔                           3.º Isolam-se os termos com a incógnita
   3       3   2 ( ×6 )                 (pretendida) num dos membros
      ( ×2 )   ( ×2 )   ( ×3 )
                                        4.º Reduzem-se os termos semelhantes
 ⇔ 10 y − 10 = 3 y + 6 x ⇔
                                  5.º Determina-se o valor da incógnita,
 ⇔ 6 x = 7 y − 10 ⇔               quando são dados os valores das outras
                                   variáveis.
        7 y − 10
 ⇔x=               A equação está resolvida em ordem a x.
            6
5           y
2. Resolver a mesma equação em ordem a y.
                                                ( y − 1) = + x
                                              3           2
                5           y
                  ( y − 1) = + x ⇔
                3           2
                 5      5    y
               ⇔ y− = + x ⇔
                 3      3    2 ( ×6 )
                   ( ×2 )   ( ×2 )   ( ×3 )
               ⇔ 10 y − 10 = 3 y + 6 x ⇔
               ⇔ 10 y − 3 y = 10 + 6 x ⇔
               ⇔ 7 y = 10 + 6 x ⇔
                     10 + 6 x
               ⇔ y=
                         7
3.                   C F − 32
Em Física, a fórmula   =          estabelece a correspondência entre C (graus
                     5   9
Celsius) e F (graus Fahrenheirt). A Isabel está doente. A sua temperatura é

102,2ºF. Qual é a sua temperatura em ºC?

Processo 1:   Substitui-se F por 102,2 e resolve-se a equação em ordem a C.

 C 102,2 − 32   C 70,2
   =          ⇔   =    ⇔ 9C = 351 ⇔ C = 39
 5     9        5   9
                         ( ×9 )   ( ×5 )

Processo 2: Começa-se por resolver a equação em ordem a C.

 C F − 32                        5 F − 160
   =      = 9C = 5 F − 160 ⇔ C =
 5   9                               9
     Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas:

   5 ×102,2 − 160
C=                = 39              R.: A Isabel tem de temperatura 39 ºC.
         9
Tarefa 3 página137
 139 exercício 9
      10 e 11

Mais conteúdo relacionado

Mais procurados

Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matériaGráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
O Bichinho do Saber
 
Posições de pontos, retas e planos
Posições de pontos, retas e planosPosições de pontos, retas e planos
Posições de pontos, retas e planos
SANDRA_SOUZA
 
Probabilidades - Resumo teórico 9º Ano
Probabilidades - Resumo teórico 9º AnoProbabilidades - Resumo teórico 9º Ano
Probabilidades - Resumo teórico 9º Ano
Ana Tapadinhas
 
Trigonometria – 9° ano
Trigonometria – 9° anoTrigonometria – 9° ano
Trigonometria – 9° ano
Manuela Avelar
 
Pronome em adjacencia_verbal
Pronome em adjacencia_verbalPronome em adjacencia_verbal
Pronome em adjacencia_verbal
gracacruz
 
Recursos expressivos
Recursos expressivosRecursos expressivos
Recursos expressivos
Ana Arminda Moreira
 
O fidalgo
O fidalgoO fidalgo
O fidalgo
annapasilva
 
MACS - grafos, trajetos e circuitos eulerianos; circuitos eulerianos...
MACS - grafos, trajetos e circuitos eulerianos; circuitos eulerianos...MACS - grafos, trajetos e circuitos eulerianos; circuitos eulerianos...
MACS - grafos, trajetos e circuitos eulerianos; circuitos eulerianos...
Joana Pinto
 
Relação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantesRelação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantes
aldaalves
 
Equações do 2º grau fórmula resolvente
Equações do 2º grau   fórmula resolventeEquações do 2º grau   fórmula resolvente
Equações do 2º grau fórmula resolvente
marmorei
 
Quantificadores
QuantificadoresQuantificadores
Quantificadores
Rosalina Simão Nunes
 
Ficha de trabalho numeros reais
Ficha de trabalho numeros reaisFicha de trabalho numeros reais
Ficha de trabalho numeros reais
Gisela Carvalho
 
Critérios de paralelismo e perpendicularidade
Critérios de paralelismo e perpendicularidadeCritérios de paralelismo e perpendicularidade
Critérios de paralelismo e perpendicularidade
Joana Ferreira
 
Ai flores, ai flores
Ai flores, ai floresAi flores, ai flores
Ai flores, ai flores
Paula Oliveira Cruz
 
Representar um conjunto por extensão e por compreensão e diagrama de venus
Representar um conjunto por extensão e por compreensão e diagrama de venusRepresentar um conjunto por extensão e por compreensão e diagrama de venus
Representar um conjunto por extensão e por compreensão e diagrama de venus
Paulo Mutolo
 
Formulario iave-2018-mat-a
Formulario iave-2018-mat-aFormulario iave-2018-mat-a
Formulario iave-2018-mat-a
Susana Fernandes
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º graualdaalves
 
Amor é fogo que arde
Amor é fogo que ardeAmor é fogo que arde
Amor é fogo que arde
Helena Coutinho
 
Obstáculos ao desenvolvimento
Obstáculos ao desenvolvimentoObstáculos ao desenvolvimento
Obstáculos ao desenvolvimento
Rosária Zamith
 
Transformação ativa-passiva
Transformação ativa-passivaTransformação ativa-passiva
Transformação ativa-passiva
António Mateus
 

Mais procurados (20)

Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matériaGráficos de funções afim - Matemática 8º ano - Resumo da matéria
Gráficos de funções afim - Matemática 8º ano - Resumo da matéria
 
Posições de pontos, retas e planos
Posições de pontos, retas e planosPosições de pontos, retas e planos
Posições de pontos, retas e planos
 
Probabilidades - Resumo teórico 9º Ano
Probabilidades - Resumo teórico 9º AnoProbabilidades - Resumo teórico 9º Ano
Probabilidades - Resumo teórico 9º Ano
 
Trigonometria – 9° ano
Trigonometria – 9° anoTrigonometria – 9° ano
Trigonometria – 9° ano
 
Pronome em adjacencia_verbal
Pronome em adjacencia_verbalPronome em adjacencia_verbal
Pronome em adjacencia_verbal
 
Recursos expressivos
Recursos expressivosRecursos expressivos
Recursos expressivos
 
O fidalgo
O fidalgoO fidalgo
O fidalgo
 
MACS - grafos, trajetos e circuitos eulerianos; circuitos eulerianos...
MACS - grafos, trajetos e circuitos eulerianos; circuitos eulerianos...MACS - grafos, trajetos e circuitos eulerianos; circuitos eulerianos...
MACS - grafos, trajetos e circuitos eulerianos; circuitos eulerianos...
 
Relação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantesRelação entre perímetros e áreas em triângulos semelhantes
Relação entre perímetros e áreas em triângulos semelhantes
 
Equações do 2º grau fórmula resolvente
Equações do 2º grau   fórmula resolventeEquações do 2º grau   fórmula resolvente
Equações do 2º grau fórmula resolvente
 
Quantificadores
QuantificadoresQuantificadores
Quantificadores
 
Ficha de trabalho numeros reais
Ficha de trabalho numeros reaisFicha de trabalho numeros reais
Ficha de trabalho numeros reais
 
Critérios de paralelismo e perpendicularidade
Critérios de paralelismo e perpendicularidadeCritérios de paralelismo e perpendicularidade
Critérios de paralelismo e perpendicularidade
 
Ai flores, ai flores
Ai flores, ai floresAi flores, ai flores
Ai flores, ai flores
 
Representar um conjunto por extensão e por compreensão e diagrama de venus
Representar um conjunto por extensão e por compreensão e diagrama de venusRepresentar um conjunto por extensão e por compreensão e diagrama de venus
Representar um conjunto por extensão e por compreensão e diagrama de venus
 
Formulario iave-2018-mat-a
Formulario iave-2018-mat-aFormulario iave-2018-mat-a
Formulario iave-2018-mat-a
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
 
Amor é fogo que arde
Amor é fogo que ardeAmor é fogo que arde
Amor é fogo que arde
 
Obstáculos ao desenvolvimento
Obstáculos ao desenvolvimentoObstáculos ao desenvolvimento
Obstáculos ao desenvolvimento
 
Transformação ativa-passiva
Transformação ativa-passivaTransformação ativa-passiva
Transformação ativa-passiva
 

Semelhante a Equações literais

Equações literais
Equações literaisEquações literais
Equações literais
aldaalves
 
Equaçoes literais
Equaçoes literaisEquaçoes literais
Equaçoes literais
Laurinda Barros
 
Equações literais
Equações literaisEquações literais
Equações literais
Manuel Nunes Correia
 
Mat74a
Mat74aMat74a
Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5
janepaulla
 
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio CarlosEquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
Antonio Carneiro
 
Trabalho de estudos orientados 2 regular eepjis
Trabalho de estudos orientados 2 regular eepjisTrabalho de estudos orientados 2 regular eepjis
Trabalho de estudos orientados 2 regular eepjis
Cristiano José
 
Simave proeb 2011 para 3º ano
Simave proeb 2011 para 3º anoSimave proeb 2011 para 3º ano
Simave proeb 2011 para 3º ano
Idelma
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basica
trigono_metrico
 
Teste Derivadas
Teste DerivadasTeste Derivadas
Teste Derivadas
Maths Tutoring
 
EquaçAo Do 2º Grau
EquaçAo Do 2º GrauEquaçAo Do 2º Grau
EquaçAo Do 2º Grau
Antonio Carneiro
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
iraciva
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
2marrow
 
Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...
Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...
Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...
Adriano Silva
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -
Patrícia Costa Grigório
 
Lista de exercícios 4 - Cálculo
Lista de exercícios 4 - CálculoLista de exercícios 4 - Cálculo
Lista de exercícios 4 - Cálculo
Carlos Campani
 
Matematica 2015
Matematica 2015Matematica 2015
Matematica 2015
Eduardo Araujo
 
Calculo1 aula04
Calculo1 aula04Calculo1 aula04
Calculo1 aula04
Élica Dias
 
Calculo1 aula04
Calculo1 aula04Calculo1 aula04
Calculo1 aula04
Cleide Soares
 
Ap matematica
Ap matematicaAp matematica
Ap matematica
marcioluiz2008
 

Semelhante a Equações literais (20)

Equações literais
Equações literaisEquações literais
Equações literais
 
Equaçoes literais
Equaçoes literaisEquaçoes literais
Equaçoes literais
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Mat74a
Mat74aMat74a
Mat74a
 
Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5
 
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio CarlosEquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
 
Trabalho de estudos orientados 2 regular eepjis
Trabalho de estudos orientados 2 regular eepjisTrabalho de estudos orientados 2 regular eepjis
Trabalho de estudos orientados 2 regular eepjis
 
Simave proeb 2011 para 3º ano
Simave proeb 2011 para 3º anoSimave proeb 2011 para 3º ano
Simave proeb 2011 para 3º ano
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basica
 
Teste Derivadas
Teste DerivadasTeste Derivadas
Teste Derivadas
 
EquaçAo Do 2º Grau
EquaçAo Do 2º GrauEquaçAo Do 2º Grau
EquaçAo Do 2º Grau
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
 
Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...
Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...
Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -
 
Lista de exercícios 4 - Cálculo
Lista de exercícios 4 - CálculoLista de exercícios 4 - Cálculo
Lista de exercícios 4 - Cálculo
 
Matematica 2015
Matematica 2015Matematica 2015
Matematica 2015
 
Calculo1 aula04
Calculo1 aula04Calculo1 aula04
Calculo1 aula04
 
Calculo1 aula04
Calculo1 aula04Calculo1 aula04
Calculo1 aula04
 
Ap matematica
Ap matematicaAp matematica
Ap matematica
 

Mais de aldaalves

1.ª chamada 2005
1.ª chamada 20051.ª chamada 2005
1.ª chamada 2005
aldaalves
 
Representações gráficas
Representações gráficasRepresentações gráficas
Representações gráficas
aldaalves
 
Proporcionalidades soluções
Proporcionalidades soluçõesProporcionalidades soluções
Proporcionalidades soluções
aldaalves
 
Exercícios de proporcionalidade
Exercícios de proporcionalidadeExercícios de proporcionalidade
Exercícios de proporcionalidade
aldaalves
 
Soluções estatística e probabil.
Soluções estatística e probabil.Soluções estatística e probabil.
Soluções estatística e probabil.
aldaalves
 
Estatística e probabilidades ii
Estatística e probabilidades iiEstatística e probabilidades ii
Estatística e probabilidades ii
aldaalves
 
Estatística e probabilidades i
Estatística e probabilidades iEstatística e probabilidades i
Estatística e probabilidades i
aldaalves
 
Equações do 2.º grau soluções
Equações do 2.º grau  soluçõesEquações do 2.º grau  soluções
Equações do 2.º grau soluções
aldaalves
 
Circunferência e polígonos
Circunferência e polígonosCircunferência e polígonos
Circunferência e polígonos
aldaalves
 
Circunferência e polígonos resolução
Circunferência e polígonos resoluçãoCircunferência e polígonos resolução
Circunferência e polígonos resolução
aldaalves
 
Trigonometria soluções
Trigonometria soluçõesTrigonometria soluções
Trigonometria soluções
aldaalves
 
Espaço volumes-respetiva correção
Espaço volumes-respetiva correçãoEspaço volumes-respetiva correção
Espaço volumes-respetiva correção
aldaalves
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
aldaalves
 
Sistemas de equações e respetiva correção
Sistemas de equações e respetiva correçãoSistemas de equações e respetiva correção
Sistemas de equações e respetiva correção
aldaalves
 
Sistemas de equações
Sistemas de equaçõesSistemas de equações
Sistemas de equações
aldaalves
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
aldaalves
 
Equações literais
Equações literaisEquações literais
Equações literais
aldaalves
 
Aula 4 e 5
Aula 4 e 5Aula 4 e 5
Aula 4 e 5
aldaalves
 
Revisões estatistica 1 (1)
Revisões estatistica 1 (1)Revisões estatistica 1 (1)
Revisões estatistica 1 (1)
aldaalves
 
Aula 2
Aula 2Aula 2
Aula 2
aldaalves
 

Mais de aldaalves (20)

1.ª chamada 2005
1.ª chamada 20051.ª chamada 2005
1.ª chamada 2005
 
Representações gráficas
Representações gráficasRepresentações gráficas
Representações gráficas
 
Proporcionalidades soluções
Proporcionalidades soluçõesProporcionalidades soluções
Proporcionalidades soluções
 
Exercícios de proporcionalidade
Exercícios de proporcionalidadeExercícios de proporcionalidade
Exercícios de proporcionalidade
 
Soluções estatística e probabil.
Soluções estatística e probabil.Soluções estatística e probabil.
Soluções estatística e probabil.
 
Estatística e probabilidades ii
Estatística e probabilidades iiEstatística e probabilidades ii
Estatística e probabilidades ii
 
Estatística e probabilidades i
Estatística e probabilidades iEstatística e probabilidades i
Estatística e probabilidades i
 
Equações do 2.º grau soluções
Equações do 2.º grau  soluçõesEquações do 2.º grau  soluções
Equações do 2.º grau soluções
 
Circunferência e polígonos
Circunferência e polígonosCircunferência e polígonos
Circunferência e polígonos
 
Circunferência e polígonos resolução
Circunferência e polígonos resoluçãoCircunferência e polígonos resolução
Circunferência e polígonos resolução
 
Trigonometria soluções
Trigonometria soluçõesTrigonometria soluções
Trigonometria soluções
 
Espaço volumes-respetiva correção
Espaço volumes-respetiva correçãoEspaço volumes-respetiva correção
Espaço volumes-respetiva correção
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
 
Sistemas de equações e respetiva correção
Sistemas de equações e respetiva correçãoSistemas de equações e respetiva correção
Sistemas de equações e respetiva correção
 
Sistemas de equações
Sistemas de equaçõesSistemas de equações
Sistemas de equações
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Aula 4 e 5
Aula 4 e 5Aula 4 e 5
Aula 4 e 5
 
Revisões estatistica 1 (1)
Revisões estatistica 1 (1)Revisões estatistica 1 (1)
Revisões estatistica 1 (1)
 
Aula 2
Aula 2Aula 2
Aula 2
 

Último

Funções e Progressões - Livro completo prisma
Funções e Progressões - Livro completo prismaFunções e Progressões - Livro completo prisma
Funções e Progressões - Livro completo prisma
djincognito
 
Caderno de Resumos XVIII ENPFil UFU, IX EPGFil UFU E VII EPFEM.pdf
Caderno de Resumos XVIII ENPFil UFU, IX EPGFil UFU E VII EPFEM.pdfCaderno de Resumos XVIII ENPFil UFU, IX EPGFil UFU E VII EPFEM.pdf
Caderno de Resumos XVIII ENPFil UFU, IX EPGFil UFU E VII EPFEM.pdf
enpfilosofiaufu
 
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdfiNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
andressacastro36
 
UFCD_10949_Lojas e-commerce no-code_índice.pdf
UFCD_10949_Lojas e-commerce no-code_índice.pdfUFCD_10949_Lojas e-commerce no-code_índice.pdf
UFCD_10949_Lojas e-commerce no-code_índice.pdf
Manuais Formação
 
the_story_garden_5_SB_with_activities.pdf
the_story_garden_5_SB_with_activities.pdfthe_story_garden_5_SB_with_activities.pdf
the_story_garden_5_SB_with_activities.pdf
CarinaSoto12
 
A dinâmica da população mundial de acordo com as teorias populacionais.pptx
A dinâmica da população mundial de acordo com as teorias populacionais.pptxA dinâmica da população mundial de acordo com as teorias populacionais.pptx
A dinâmica da população mundial de acordo com as teorias populacionais.pptx
ReinaldoSouza57
 
Pintura Romana .pptx
Pintura Romana                     .pptxPintura Romana                     .pptx
Pintura Romana .pptx
TomasSousa7
 
Sócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slidesSócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slides
jbellas2
 
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
AntnioManuelAgdoma
 
“A classe operária vai ao paraíso os modos de produzir e trabalhar ao longo ...
“A classe operária vai ao paraíso  os modos de produzir e trabalhar ao longo ...“A classe operária vai ao paraíso  os modos de produzir e trabalhar ao longo ...
“A classe operária vai ao paraíso os modos de produzir e trabalhar ao longo ...
AdrianoMontagna1
 
Sinais de pontuação
Sinais de pontuaçãoSinais de pontuação
Sinais de pontuação
Mary Alvarenga
 
Especialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdfEspecialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdf
DanielCastro80471
 
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptxApresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
JulianeMelo17
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
PowerPoint Newton gostava de Ler - Saber em Gel.pdf
PowerPoint Newton gostava de Ler - Saber em Gel.pdfPowerPoint Newton gostava de Ler - Saber em Gel.pdf
PowerPoint Newton gostava de Ler - Saber em Gel.pdf
1000a
 
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.pptEstrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
livrosjovert
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
MarcosPaulo777883
 
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Biblioteca UCS
 
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptxSlides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
LuizHenriquedeAlmeid6
 
livro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdflivro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdf
cmeioctaciliabetesch
 

Último (20)

Funções e Progressões - Livro completo prisma
Funções e Progressões - Livro completo prismaFunções e Progressões - Livro completo prisma
Funções e Progressões - Livro completo prisma
 
Caderno de Resumos XVIII ENPFil UFU, IX EPGFil UFU E VII EPFEM.pdf
Caderno de Resumos XVIII ENPFil UFU, IX EPGFil UFU E VII EPFEM.pdfCaderno de Resumos XVIII ENPFil UFU, IX EPGFil UFU E VII EPFEM.pdf
Caderno de Resumos XVIII ENPFil UFU, IX EPGFil UFU E VII EPFEM.pdf
 
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdfiNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
 
UFCD_10949_Lojas e-commerce no-code_índice.pdf
UFCD_10949_Lojas e-commerce no-code_índice.pdfUFCD_10949_Lojas e-commerce no-code_índice.pdf
UFCD_10949_Lojas e-commerce no-code_índice.pdf
 
the_story_garden_5_SB_with_activities.pdf
the_story_garden_5_SB_with_activities.pdfthe_story_garden_5_SB_with_activities.pdf
the_story_garden_5_SB_with_activities.pdf
 
A dinâmica da população mundial de acordo com as teorias populacionais.pptx
A dinâmica da população mundial de acordo com as teorias populacionais.pptxA dinâmica da população mundial de acordo com as teorias populacionais.pptx
A dinâmica da população mundial de acordo com as teorias populacionais.pptx
 
Pintura Romana .pptx
Pintura Romana                     .pptxPintura Romana                     .pptx
Pintura Romana .pptx
 
Sócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slidesSócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slides
 
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
 
“A classe operária vai ao paraíso os modos de produzir e trabalhar ao longo ...
“A classe operária vai ao paraíso  os modos de produzir e trabalhar ao longo ...“A classe operária vai ao paraíso  os modos de produzir e trabalhar ao longo ...
“A classe operária vai ao paraíso os modos de produzir e trabalhar ao longo ...
 
Sinais de pontuação
Sinais de pontuaçãoSinais de pontuação
Sinais de pontuação
 
Especialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdfEspecialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdf
 
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptxApresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
 
PowerPoint Newton gostava de Ler - Saber em Gel.pdf
PowerPoint Newton gostava de Ler - Saber em Gel.pdfPowerPoint Newton gostava de Ler - Saber em Gel.pdf
PowerPoint Newton gostava de Ler - Saber em Gel.pdf
 
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.pptEstrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
 
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
 
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptxSlides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
 
livro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdflivro ciclo da agua educação infantil.pdf
livro ciclo da agua educação infantil.pdf
 

Equações literais

  • 2. Observa as equações seguintes: 3x + 7 y = 1 3x + 7 z = y 3x + 7 = 0 As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é uma equação literal. Então, qual será a definição de equação literal? Equações literais – são equações que têm mais do que uma variável, isto é, pelo menos 2 incógnitas.
  • 3. Exemplos de equações literais: •A equação y = 6 x + 2 que representa uma reta não vertical (função afim) •A equação y = 6x que representa uma reta que passa na origem do referencial (função linear). (equações do 1.º grau com duas incógnitas) Geogebra Quantas soluções têm? •As fórmulas: b×h ( B + b) × h A = l2 A= A= 2 2 que representam, respetivamente, as áreas do quadrado, do triângulo e do trapézio. • A equação da relatividade E = mc2. •A fórmula do teorema de Pitágoras a = b + c 2 2 2
  • 4. Como resolver equações literais? As regras para resolver equações, também se aplicam à resolução de uma equação literal, em ordem a qualquer uma das letras que nela figuram. Exemplo I: Observa a figura: Perímetro 12 cm y A figura sugere a seguinte equação, 2 x + 2 y = 12 x Como a equação tem duas variáveis x e y, podemos resolvê-la em ordem a x ou em ordem a y, isto é: Nota: Quando uma letra é 2 x + 2 y = 12 ⇔ a incógnita, as outras letras ⇔ 2 x = 12 − 2 y ⇔ funcionam como se fossem números. 12 − 2 y ⇔x= ⇔ 2 ⇔ x = 6− y Resolvida em ordem a x
  • 5. Nota: Diz-se que a equação está resolvida em ordem a x porque a variável x está isolada num dos membros da equação, neste caso no 1.º membro. y 2 x + 2 y = 12 ⇔ Perímetro 12 cm ⇔ 2 y = 12 − 2 x ⇔ x 12 − 2 x ⇔y= ⇔ 2 Resolvida em ordem a y. ⇔ y = 6− x Qual o interesse de resolver uma equação em ordem a uma das variáveis? Sabendo que a largura, y, do rectângulo é 2, qual é o comprimento? Ora, aqui interessa resolver equação em ordem a x (é a incógnita, o valor desconhecido) Assim, é muito fácil dar a resposta. x = 6− y O comprimento é 4. x = 6−2 ⇔ x = 4
  • 6. Mas, se a pergunta fosse: Sabendo que o comprimento, x , do rectângulo é 3, qual é a largura? Neste caso já interessava resolver a equação em ordem a y. y = 6− x y = 6−3 ⇔ y = 3 Se se pretende determinar o comprimento do rectângulo, então, interessa resolver a equação em ordem a x. Por outro lado, se se quisesse saber a sua largura, neste caso, já interessava resolver a equação em ordem a y. Conclusão: Uma equação literal resolve-se em ordem a uma das letras (variável) que se considera a incógnita (valor desconhecido). As outras letras funcionam como números (valores dados). As regras já conhecidas para resolver equações são também aplicáveis na resolução de equações literais.
  • 7. Assim, a equação tem uma A=100 m2 l infinidade de soluções. c c = 100 → l = 1 c × l = 100 mas, c = 50 → l = 2 c × l = 100 mas, c = 25 → l = 4 c × l = 100 mas, c = 20 → l = 5 c × l = 100 mas, c = 12,5 → l = 8 c × l = 100 …
  • 8. Equações do 1.º grau com duas incógnitas. ax+by=c; a, b e c As soluções desta equação são, geralmente, pares ordenados de números. x+2y=9 S=(1,4) Uma solução S=(0, 9/2) Outra solução Quantas soluções têm? Estas equações têm uma infinidade de soluções ou nenhuma (no caso de a=0, b=0 e c ). Cuidado: No contexto de Relacionar com as funções afins, reta, problemas nem sempre todos os pontos que estão sobre a todas as soluções reta são soluções da equação. servem. Dar ex.
  • 9. Exemplo II A equação E=mc2 em que: E- energia m- quantidade de matéria c- velocidade da luz Descoberta de Einstein apontava para a possibilidade de se obterem grandes quantidades de energia a partir de pequenas quantidades de matéria. A bomba atómica é um dos frutos desta equação. Resolve a equação em ordem a m e depois em ordem a c. E E = mc ⇔ 2 E = mc ⇔ c = ⇔ 2 2 m E mc 2 E ⇔ 2 = 2 ⇔m= 2 E c c c ⇔c=± m Resolvida em ordem a m. Resolvida em ordem a c.
  • 10. Exemplo III A fórmula V=c.l.h serve para determinar o volume de uma caixa de cereais. Resolve a equação em ordem a c. Neste caso, c é a incógnita. Para isolar c divide-se ambos os membros por lh e depois simplifica-se. V c.l.h = ⇔ lh lh ⇔ c =V lh
  • 11. Exemplo IV Resolve a equação em ordem a h. Neste caso, a incógnita é a letra h, as outras letras funcionam como se fossem números. A= ( B + b) × h A área de um trapézio é dada pela fórmula 2 B+b 2A A= × h ⇔ 2 A = ( B + b) h ⇔ h = 2 B+b Se pretender saber quanto é a altura do trapézio é necessário conhecer os valores de B (base maior) , b (base menor) e A (área). Por exemplo: Determina h, sabendo que A=10 cm2, B=4 cm e b=1 cm. 2 ×10 h= = 4 cm 4 +1
  • 12. Exercícios: 5 y 2. Resolve em ordem a x, a equação ( y − 1) = + x 3 2 Neste caso a incógnita é x. A letra y “funciona” como um número. 5 y ( y − 1) = + x ⇔ 1.º Tiram-se os parênteses 3 2 2.º Tiram-se os denominadores 5 5 y ⇔ y− = + x ⇔ 3.º Isolam-se os termos com a incógnita 3 3 2 ( ×6 ) (pretendida) num dos membros ( ×2 ) ( ×2 ) ( ×3 ) 4.º Reduzem-se os termos semelhantes ⇔ 10 y − 10 = 3 y + 6 x ⇔ 5.º Determina-se o valor da incógnita, ⇔ 6 x = 7 y − 10 ⇔ quando são dados os valores das outras variáveis. 7 y − 10 ⇔x= A equação está resolvida em ordem a x. 6
  • 13. 5 y 2. Resolver a mesma equação em ordem a y. ( y − 1) = + x 3 2 5 y ( y − 1) = + x ⇔ 3 2 5 5 y ⇔ y− = + x ⇔ 3 3 2 ( ×6 ) ( ×2 ) ( ×2 ) ( ×3 ) ⇔ 10 y − 10 = 3 y + 6 x ⇔ ⇔ 10 y − 3 y = 10 + 6 x ⇔ ⇔ 7 y = 10 + 6 x ⇔ 10 + 6 x ⇔ y= 7
  • 14. 3. C F − 32 Em Física, a fórmula = estabelece a correspondência entre C (graus 5 9 Celsius) e F (graus Fahrenheirt). A Isabel está doente. A sua temperatura é 102,2ºF. Qual é a sua temperatura em ºC? Processo 1: Substitui-se F por 102,2 e resolve-se a equação em ordem a C. C 102,2 − 32 C 70,2 = ⇔ = ⇔ 9C = 351 ⇔ C = 39 5 9 5 9 ( ×9 ) ( ×5 ) Processo 2: Começa-se por resolver a equação em ordem a C. C F − 32 5 F − 160 = = 9C = 5 F − 160 ⇔ C = 5 9 9 Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas: 5 ×102,2 − 160 C= = 39 R.: A Isabel tem de temperatura 39 ºC. 9
  • 15. Tarefa 3 página137 139 exercício 9 10 e 11